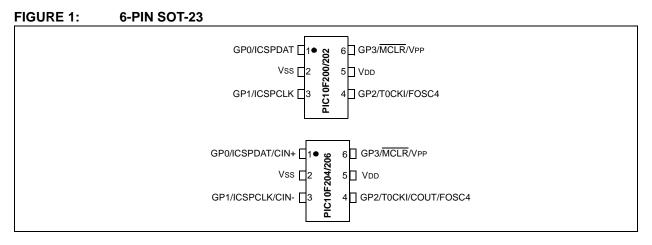


Welcome to E-XFL.COM

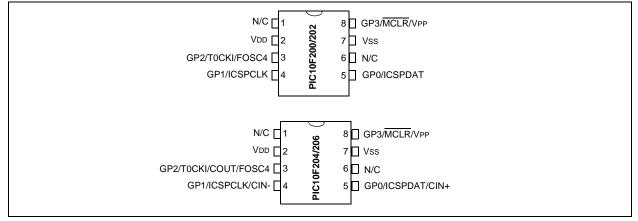
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

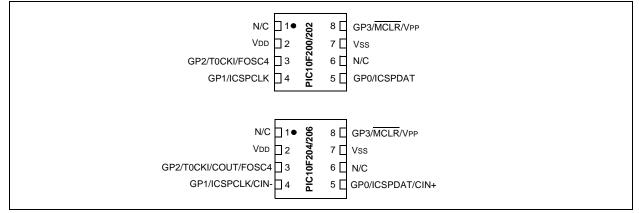
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	3
Program Memory Size	768B (512 x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	SOT-23-6
Supplier Device Package	SOT-23-6
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10f202t-e-ot


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Pin Diagrams

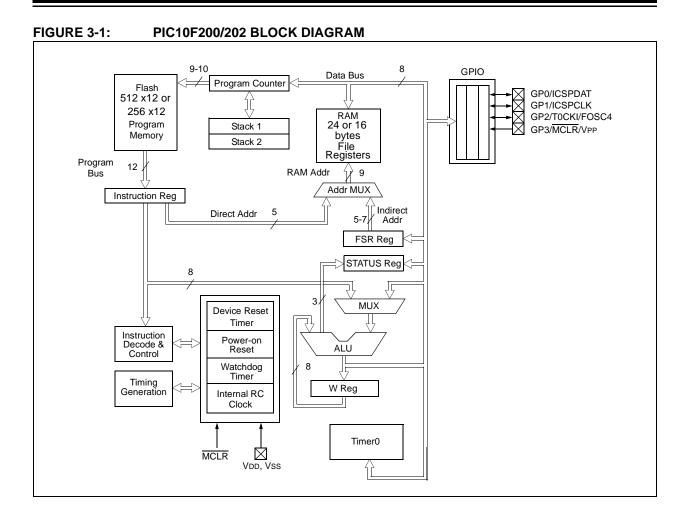


FIGURE 2: 8-PIN PDIP

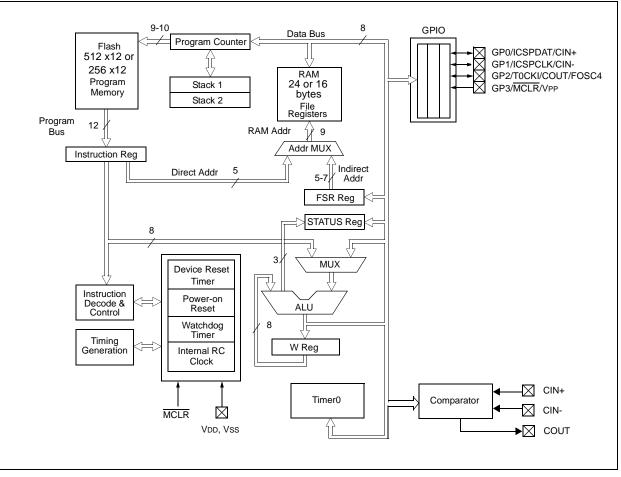
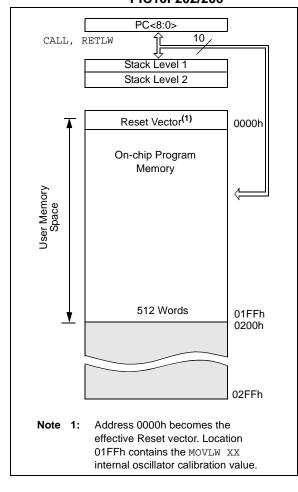


FIGURE 3: 8-PIN DFN



4.2 Program Memory Organization for the PIC10F202/206

The PIC10F202/206 devices have a 10-bit Program Counter (PC) capable of addressing a 1024 x 12 program memory space.

Only the first 512×12 (0000h-01FFh) for the PIC10F202/206 are physically implemented (see Figure 4-2). Accessing a location above these boundaries will cause a wraparound within the first 512×12 space (PIC10F202/206). The effective Reset vector is at 0000h (see Figure 4-2). Location 01FFh (PIC10F202/206) contains the internal clock oscillator calibration value. This value should never be overwritten.

FIGURE 4-2: PROGRAM MEMORY MAP AND STACK FOR THE PIC10F202/206

4.3 Data Memory Organization

Data memory is composed of registers or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: Special Function Registers (SFR) and General Purpose Registers (GPR).

The Special Function Registers include the TMR0 register, the Program Counter (PCL), the STATUS register, the I/O register (GPIO) and the File Select Register (FSR). In addition, Special Function Registers are used to control the I/O port configuration and prescaler options.

The General Purpose registers are used for data and control information under command of the instructions.

For the PIC10F200/204, the register file is composed of seven Special Function registers and 16 General Purpose registers (see Figure 4-3 and Figure 4-4).

For the PIC10F202/206, the register file is composed of eight Special Function registers and 24 General Purpose registers (see Figure 4-4).

4.3.1 GENERAL PURPOSE REGISTER FILE

The General Purpose Register file is accessed, either directly or indirectly, through the File Select Register (FSR). See Section 4.9 "Indirect Data Addressing: INDF and FSR Registers".

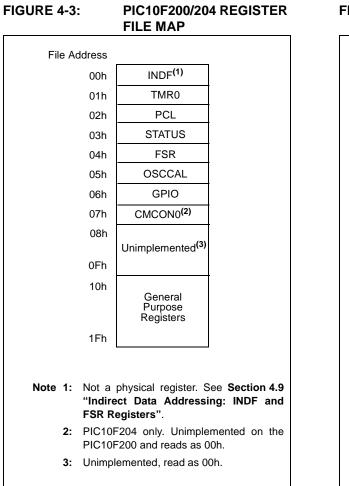


FIGURE 4-4:

PIC10F202/206 REGISTER FILE MAP

ddress		
00h	INDF ⁽¹⁾	
01h	TMR0	
02h	PCL	
03h	STATUS	
04h	FSR	
05h	OSCCAL	
06h	GPIO	
07h	CMCON0 ⁽²⁾	
08h		
	General Purpose Registers	
1Fh		
"Indire FSR R PIC10F	ct Data Addressi egisters". 206 only. Unimple	ing: INDF and emented on the
	01h 02h 03h 04h 05h 06h 07h 08h 1Fh Not a "Indire FSR R PIC10F	00h INDF ⁽¹⁾ 01h TMR0 02h PCL 03h STATUS 04h FSR 05h OSCCAL 06h GPIO 07h CMCON0 ⁽²⁾ 08h General Purpose Registers 1Fh

4.4 STATUS Register

This register contains the arithmetic status of the ALU, the Reset status and the page preselect bit.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as $000u \ u1uu$ (where u = unchanged).

Therefore, it is recommended that only BCF, BSF and MOVWF instructions be used to alter the STATUS register. These instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions which do affect Status bits, see **Section 10.0** "Instruction Set Summary".

R/W-0	R/W-0	U-1	R-1	R-1	R/W-x	R/W-x	R/W-x
GPWUF	CWUF ⁽¹⁾	_	ТО	PD	Z	DC	С
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
L:1.7							
bit 7		e to wake-up fro er-up or other F		pin change			
bit 6	CWUF: Comp 1 = Reset due	oarator Wake-u e to wake-up fro er-up or other F	o on Change om Sleep on	comparator cha	ange		
bit 5	Reserved: De	o not use. Use	of this bit ma	y affect upward	d compatibility	with future produ	ucts.
bit 4	TO: Time-out	bit					
		er-up, CLRWDT		SLEEP instruc	ction		
bit 3	PD: Power-do	own bit					
		er-up or by the tion of the SLEE					
bit 2	Z: Zero bit						
		t of an arithmet	• .				
		t of an arithmet	• ·				
bit 1	•	ry/Borrow bit (fo	or ADDWF and	SUBWF instruc	ctions)		
	ADDWF:	ana tha 1th law.	andan bit af th		a d		
		om the 4th low- om the 4th low-					
	SUBWF:						
		from the 4th lov from the 4th lov					
bit 0	C: Carry/Borr	ow bit (for ADD	VF, SUBWF ar	d RRF, RLF ins	structions)		
	ADDWF:		UBWF:		RRF or RLF:		
	1 = A carry or 0 = A carry di		= A borrow		Load bit with L	Sb or MSb, resp	ectively

Note 1: This bit is used on the PIC10F204/206. For code compatibility do not use this bit on the PIC10F200/202.

4.5 **OPTION Register**

The OPTION register is a 8-bit wide, write-only register, which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W register will be transferred to the OPTION register. A Reset sets the OPTION<7:0> bits.

REGISTER 4-2: OPTION REGISTER

Note:	If TRIS bit is set to '0', the wake-up on
	change and pull-up functions are disabled
	for that pin (i.e., note that TRIS overrides
	Option control of GPPU and GPWU).

Note: If the TOCS bit is set to '1', it will override the TRIS function on the TOCKI pin.

W-1	W-1 W-1		W-1	W-1	W-1	W-1	W-1
GPWU	GPPU T0CS		T0SE	PSA	PS2	PS1	PS0
bit 7	•						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

1:16

1:32

1:64

1:128

1 :	
bit 7	GPWU: Enable Wake-up on Pin Change bit (GP0, GP1, GP3)
	1 = Disabled
	0 = Enabled
bit 6	GPPU: Enable Weak Pull-ups bit (GP0, GP1, GP3)
	1 = Disabled
	0 = Enabled
bit 5	TOCS: Timer0 Clock Source Select bit
	1 = Transition on T0CKI pin (overrides TRIS on the T0CKI pin)
	0 = Transition on internal instruction cycle clock, Fosc/4
bit 4	TOSE: Timer0 Source Edge Select bit
	1 = Increment on high-to-low transition on the T0CKI pin
	0 = Increment on low-to-high transition on the T0CKI pin
bit 3	PSA: Prescaler Assignment bit
	1 = Prescaler assigned to the WDT
	0 = Prescaler assigned to Timer0
bit 2-0	PS<2:0>: Prescaler Rate Select bits
	Bit Value Timer0 Rate WDT Rate
	000 1:2 1:1
	001 1:4 1:2
	010 1:8 1:4
	011 1:16 1:8

1:32

1:64

1 : 128 1 : 256

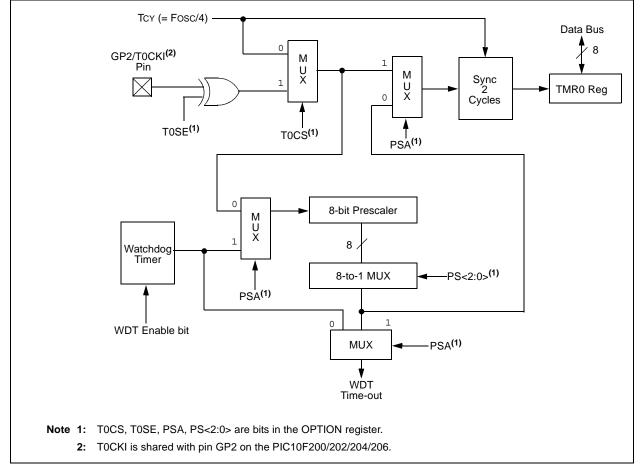
100

101

110 111

FIGURE 5-2: SUCCESSIVE I/O OPERATION (PIC10F200/202/204/206)

`Q1| Q2| Q3| Q4` Q1| Q2| Q3| Q4` Q1| Q2| Q3| Q4` Q1| Q2| Q3| Q4`


Instruction	PC	V PC + 1	PC + 2	X PC + 3	This example shows a write to GPIO followed by a read from GPIO.
Fetched	MOVWF GPIO	MOVF GPIO, W	NOP	NOP	Data setup time = (0.25 TCY - TPD)
		i i			where: TCY = instruction cycle
GP<2:0>			χ		TPD = propagation delay
Instruction Executed		Port pin written here MOVWF GPIO (Write to GPIO)	Port pin sampled here MOVF GPIO,W (Read GPIO)	NOP	Therefore, at higher clock frequencies, a write followed by a read may be problematic.

To change the prescaler from the WDT to the Timer0 module, use the sequence shown in Example 6-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 6-2: CHANGING PRESCALER (WDT→TIMER0)

		· ·
CLRWDT		;Clear WDT and
		;prescaler
MOVLW	'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source
OPTION		

FIGURE 6-5: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

7.0 TIMER0 MODULE AND TMR0 REGISTER (PIC10F204/206)

The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select:
- Edge select for external clock
- External clock from either the T0CKI pin or from the output of the comparator

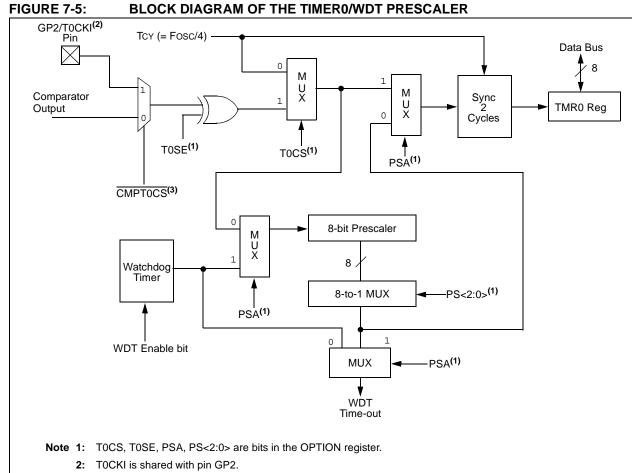
Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

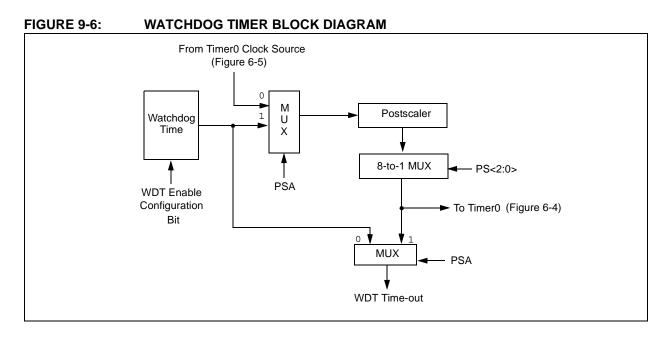
There are two types of Counter mode. The first Counter mode uses the T0CKI pin to increment Timer0. It is selected by setting the T0CS bit (OPTION<5>), setting the CMPT0CS bit (CMCON0<4>) and setting the COUTEN bit (CMCON0<6>). In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The T0SE bit (OPTION<4>) determines the source edge. Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.1 "Using Timer0 with an External Clock (PIC10F204/206)".

The second Counter mode uses the output of the comparator to increment Timer0. It can be entered in two different ways. The first way is selected by setting the T0CS bit (OPTION<5>) and clearing the CMPT0CS bit (CMCON<4>); (COUTEN [CMCON<6>]) does not affect this mode of operation. This enables an internal connection between the comparator and the Timer0.

The second way is selected by setting the TOCS bit (OPTION<5>). the **CMPT0CS** setting bit and clearing the COUTEN (CMCON0<4>) bit (CMCON0<6>). This allows the output of the comparator onto the TOCKI pin, while keeping the T0CKI input active. Therefore, any comparator change on the COUT pin is fed back into the TOCKI input. The TOSE bit (OPTION<4>) determines the source edge. Clearing the TOSE bit selects the rising edge. Restrictions on the external clock input as discussed in Section 7.1 "Using Timer0 with an External Clock (PIC10F204/206)"


The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. The prescaler assignment is controlled in software by the control bit, PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. **Section 7.2 "Prescaler"** details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 7-1.



EXAMPLE 7-2: CHANGING PRESCALER (WDT→TIMER0)

		· /
CLRWDT		;Clear WDT and
		;prescaler
MOVLW	`xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source
OPTION		

3: Bit CMPT0CS is located in the CMCON0 register.

TABLE 9-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	OPTION	GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: Shaded boxes = Not used by Watchdog Timer, - = unimplemented, read as '0', u = unchanged.

Mnemonic, Operands		Description	Cycles	12-Bit Opcode			Status	Notes
				MSb		LSb	Affected	Notes
ADDWF	f, d	Add W and f	1	0001	11df	ffff	C, DC, Z	1, 2, 4
ANDWF	f, d	AND W with f	1	0001	01df	ffff	Z	2, 4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	—	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2, 4
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	0010	11df	ffff	None	2, 4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2, 4
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	0011	11df	ffff	None	2, 4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2, 4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2, 4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1, 4
NOP	_	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2, 4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2, 4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C, DC, Z	1, 2, 4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2, 4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2, 4
		BIT-ORIENTED FILE REGISTE		ATIONS				
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2, 4
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2, 4
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	0110	bbbf	ffff	None	-
BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	0111	bbbf	ffff	None	
	LITERAL AND CONTROL OPERATIONS							
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Call Subroutine	2	1001	kkkk	kkkk	None	1
CLRWDT		Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	1100	kkkk	kkkk	None	
OPTION	_	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place Literal in W	2	1000	kkkk	kkkk	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0011	TO, PD	
TRIS	f	Load TRIS register	1	0000	0000	0fff	None	3
XORLW	k	Exclusive OR literal to W	1		kkkk		Z	-
Note 1		it of the program counter will be forced to a fai						

TABLE 10-2: INSTRUCTION SET SUMMARY

Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO. See Section 4.7 "Program Counter".

2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 6, causes the contents of the W register to be written to the tri-state latches of PORTB. A '1' forces the pin to a high-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

(W) .XOR. $k \rightarrow (W)$

The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W

Ζ

register.

TRIS	Load TRIS Register	XORWF	Exclusive OR W with f		
Syntax:	[label] TRIS f	Syntax:	[<i>label</i>] XORWF f,d		
Operands:	f = 6	Operands:	$0 \le f \le 31$		
Operation:	(W) \rightarrow TRIS register f		$d \in [0,1]$		
Status Affected:	None	Operation:	(W) .XOR. (f) \rightarrow (dest)		
Description:	TRIS register 'f' (f = 6 or 7) is	Status Affected:	Z		
	loaded with the contents of the W register	Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is		
XORLW	Exclusive OR literal with W		stored back in register 'f'.		
Syntax:	[<i>label</i>] XORLW k		ç		
Operands:	$0 \le k \le 255$				

Operation:

Description:

Status Affected:

11.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

11.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

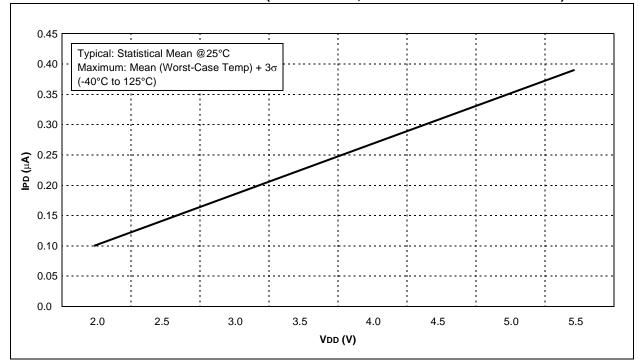
- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

12.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

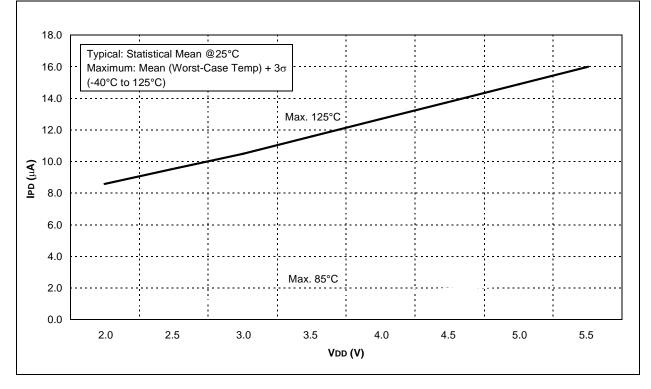
Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0 to +6.5V
Voltage on MCLR with respect to Vss	0 to +13.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	800 mW
Max. current out of Vss pin	80 mA
Max. current into Vod pin	80 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	25 mA
Max. output current sourced by I/O port	75 mA
Max. output current sunk by I/O port	75 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD $-\Sigma$	Voh) x Ioh} + Σ (Vol x Iol)

[†]NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.


12.2 DC Characteristics: PIC10F200/202/204/206 (Extended)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise specified) Operating Temperature -40°C \leq TA \leq +125°C (extended)						
Param. No.	Sym.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
D001	Vdd	Supply Voltage	2.0		5.5	V	See Figure 12-1		
D002	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5*		_	V	Device in Sleep mode		
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	_	V			
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	—		V/ms			
	Idd	Supply Current ⁽³⁾							
D010			_	175 0.63	275 1.1	μA mA	VDD = 2.0V VDD = 5.0V		
	IPD	Power-down Current ⁽⁴⁾							
D020			_	0.1 0.35	9 15	μΑ μΑ	VDD = 2.0V VDD = 5.0V		
	IWDT	WDT Current ⁽⁵⁾		1					
D022			_	1.0 7	18 22	μΑ μΑ	VDD = 2.0V VDD = 5.0V		
	Ісмр	Comparator Current ⁽⁵⁾		1		1			
D023			_	12 42	27 85	μΑ μΑ	VDD = 2.0V VDD = 5.0V		
	VREF	Internal Reference Current ^(5,6)							
D024			—	85 175	120 200	μΑ μΑ	VDD = 2.0V VDD = 5.0V		

These parameters are characterized but not tested.


Note 1: Data in the Typical ("Typ.") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- 2: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.
- **3:** The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active operation mode are: All I/O pins tri-stated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in Sleep mode.
- 4: Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS.
- **5:** The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled.
- 6: Measured with the Comparator enabled.

FIGURE 13-2: TYPICAL IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO	[X] ⁽¹⁾ - X /XX T International Temperature Package Option Range	XXX Pattern	Examples: a) PIC10F202T - E/OT Tape and Reel Extended temperature SOT-23 package (Pb-free)
Device:	PIC10F200 PIC10F202 PIC10F204 PIC10F206 PIC10F200T (Tape & Reel) PIC10F202T (Tape & Reel) PIC10F204T (Tape & Reel) PIC10F206T (Tape & Reel)		 b) PIC10F200 - I/P Industrial temperature, PDIP package (Pb-free) c) PIC10F204 - I/MC Industrial temperature DFN package (Pb-free)
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾		
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)		Note 1: Tape and Reel identifier only appears in the
Package:	P = 300 mil PDIP (Pb-free) OT = SOT-23, 6-LD (Pb-free) MC = DFN, 8-LD 2x3 (Pb-free)		catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)		

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2004-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-597-0

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.