

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	3
Program Memory Size	768B (512 x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VFDFN Exposed Pad
Supplier Device Package	8-DFN (2x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10f206-e-mc

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	4
2.0	PIC10F200/202/204/206 Device Varieties	5
3.0	Architectural Overview	6
4.0	Memory Organization	11
5.0	I/O Port	20
6.0	Timer0 Module and TMR0 Register (PIC10F200/202)	23
7.0	Timer0 Module and TMR0 Register (PIC10F204/206)	27
8.0	Comparator Module	31
9.0	Special Features of the CPU	35
10.0	Instruction Set Summary	45
11.0	Development Support	53
12.0	Electrical Characteristics	57
13.0	DC and AC Characteristics Graphs and Tables	67
14.0	Packaging Information	75
The N	/icrochip Web Site	85
Custo	mer Change Notification Service	85
Custo	mer Support	85
Produ	Ict Identification System	86

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip's Worldwide Web site; http://www.microchip.com

· Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

2.0 PIC10F200/202/204/206 DEVICE VARIETIES

A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC10F200/202/204/206 Product Identification System at the back of this data sheet to specify the correct part number.

2.1 Quick Turn Programming (QTP) Devices

Microchip offers a QTP programming service for factory production orders. This service is made available for users who choose not to program medium-to-high quantity units and whose code patterns have stabilized. The devices are identical to the Flash devices but with all Flash locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.2 Serialized Quick Turn ProgrammingSM (SQTPSM) Devices

Microchip offers a unique programming service, where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry code, password or ID number.

4.0 MEMORY ORGANIZATION

The PIC10F200/202/204/206 memories are organized into program memory and data memory. Data memory banks are accessed using the File Select Register (FSR).

4.1 Program Memory Organization for the PIC10F200/204

The PIC10F200/204 devices have a 9-bit Program Counter (PC) capable of addressing a 512 x 12 program memory space.

Only the first 256 x 12 (0000h-00FFh) for the PIC10F200/204 are physically implemented (see Figure 4-1). Accessing a location above these boundaries will cause a wraparound within the first 256 x 12 space (PIC10F200/204). The effective Reset vector is at 0000h (see Figure 4-1). Location 00FFh (PIC10F200/204) contains the internal clock oscillator calibration value. This value should never be overwritten.

FIGURE 4-1:

PROGRAM MEMORY MAP AND STACK FOR THE PIC10F200/204

4.6 OSCCAL Register

The Oscillator Calibration (OSCCAL) register is used to calibrate the internal precision 4 MHz oscillator. It contains seven bits for calibration.

Note:	Erasing the device will also erase the							
	pre-programmed internal calibration value							
	for the internal oscillator. The calibration							
	value must be read prior to erasing the							
	part so it can be reprogrammed correctly							
	later.							

After you move in the calibration constant, do not change the value. See Section 9.2.2 "Internal 4 MHz Oscillator".

REGISTER 4-3: OSCCAL REGISTER

R/W-1	R/W-0						
CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CALO	FOSC4
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-1	CAL<6:0>: Oscillator Calibration bits
	0111111 = Maximum frequency
	•
	•
	•
	0000001
	0000000 = Center frequency
	1111111
	•
	•
	•
	1000000 = Minimum frequency
bit 0	FOSC4: INTOSC/4 Output Enable bit ⁽¹⁾
	1 = INTOSC/4 output onto GP2
	0 = GP2/T0CKI/COUT applied to GP2

Note 1: Overrides GP2/T0CKI/COUT control registers when enabled.

5.0 I/O PORT

As with any other register, the I/O register(s) can be written and read under program control. However, read instructions (e.g., MOVF GPIO, W) always read the I/O pins independent of the pin's Input/Output modes. On Reset, all I/O ports are defined as input (inputs are at high-impedance) since the I/O control registers are all set.

5.1 GPIO

GPIO is an 8-bit I/O register. Only the low-order 4 bits are used (GP<3:0>). Bits 7 through 4 are unimplemented and read as '0's. Please note that GP3 is an input-only pin. Pins GP0, GP1 and GP3 can be configured with weak pull-ups and also for wake-up on change. The wake-up on change and weak pull-up functions are <u>not pin</u> selectable. If GP3/MCLR is configured as MCLR, weak pull-up is always on and wake-up on change for this pin is not enabled.

5.2 TRIS Registers

The Output Driver Control register is loaded with the contents of the W register by executing the TRIS f instruction. A '1' from a TRIS register bit puts the corresponding output driver in a High-Impedance mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer. The exceptions are GP3, which is input-only and the GP2/TOCKI/COUT/FOSC4 pin, which may be controlled by various registers. See Table 5-1.

Note: A read of the ports reads the pins, not the output data latches. That is, if an output driver on a pin is enabled and driven high, but the external system is holding it low, a read of the port will indicate that the pin is low.

The TRIS registers are "write-only" and are set (output drivers disabled) upon Reset.

TABLE 5-1:ORDER OF PRECEDENCEFOR PIN FUNCTIONS

Priority	GP0	GP1	GP2	GP3
1	CIN+	CIN-	FOSC4	I/MCLR
2	TRIS GPIO	TRIS GPIO	COUT	—
3	_			_
4	_	_	TRIS GPIO	_

5.3 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 5-1. All port pins, except GP3 which is inputonly, may be used for both input and output operations. For input operations, these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF GPIO, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except GP3) can be programmed individually as input or output.

PIC10F200/202/204/206 EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

TABLE 5-2: SUMMARY OF PORT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	TRISGPIO	_	_	_		I/O Cor	trol Regi	ster		1111	1111
N/A	OPTION	GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03h	STATUS	GPWUF	CWUF	_	то	PD	Z	DC	С	00-1 1xxx	qq-q quuu(1), (2)
06h	GPIO	—	—	_	—	GP3	GP2	GP1	GP0	xxxx	uuuu

Shaded cells are not used by PORT registers, read as '0', - = unimplemented, read as '0', x = unknown, u = unchanged, Legend: q = depends on condition.

г

Note 1: If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.

2: If Reset was due to wake-up on comparator change, then bit 6 = 1. All other Resets will cause bit 6 = 0.

5.4 I/O Programming Considerations

5.4.1 **BIDIRECTIONAL I/O PORTS**

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and rewrite the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit 2 of GPIO will cause all eight bits of GPIO to be read into the CPU, bit 2 to be set and the GPIO value to be written to the output latches. If another bit of GPIO is used as a bidirectional I/O pin (say bit 0), and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit 0 is switched into Output mode later on, the content of the data latch may now be unknown.

Example 5-1 shows the effect of two sequential Read-Modify-Write instructions (e.g., BCF, BSF, etc.) on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired OR", "wired AND"). The resulting high output currents may damage the chip.

EXAMPLE 5-1:	READ-MODIFY-WRITE
	INSTRUCTIONS ON AN
	I/O PORT

;Initial GPIO Settings									
;GPIO<3:2> Inputs									
;GPIO<1:0> Outputs									
;									
;	GPIO latch	GPIO pins							
;									
BCF GPIO, 1	; pp01	pp11							
BCF GPIO, O	; pp10	pp11							
MOVLW 007h;									
TRIS GPIO	; pp10	pp11							
;									
Note 1: The user may have expected the pin values to be pp00. The 2nd BCF caused GP1 to be latched as the pin value (High).									

5.4.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction causes that file to be read into the CPU. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

6.0 TIMER0 MODULE AND TMR0 REGISTER (PIC10F200/202)

The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select:
- Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The T0SE bit (OPTION<4>) determines the source edge. Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.1 "Using Timer0 with an External Clock (PIC10F200/202)".

The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. The prescaler assignment is controlled in software by the control bit, PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, 1:256 are selectable. **Section 6.2 "Prescaler**" details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 6-1.

FIGURE 6-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

PC (Program Counter)	Q1 Q2 Q3 Q4 (PC – 1	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 (Q1 Q2 Q3 Q4 PC + 3	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 (PC + 5	Q1 Q2 Q3 Q4 X PC + 6
Instruction Fetch	1 1 1	MOVWF TMR0	MOVF TMR0,W					
Timer0	(χ	Τ0 + 1 χ	T0 + 2		NTO X	χ	NT0 + 1χ	NT0 + 2
Instruction Executed		 	Write TMR0 executed	Read TMR0 reads NT0	Read TMR0 reads NT0	Read TMR0 reads NT0	Read TMR0 reads NT0 + 1	Read TMR0 reads NT0 + 2

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
01h	TMR0	Timer0 –	imer0 – 8-bit Real-Time Clock/Counter								uuuu uuuu
N/A	OPTION	GPWU	GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
N/A	TRISGPIO(1)	_	_	-		I/O Control Register				1111	1111

Legend: Shaded cells not used by Timer0. - = unimplemented, x = unknown, u = unchanged.

Note 1: The TRIS of the TOCKI pin is overridden when TOCS = 1.

6.1 Using Timer0 with an External Clock (PIC10F200/202)

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-4). Therefore, it is necessary for T0CKI to be high for at least 2 Tosc (and a small RC delay of 2 Tt0H) and low for at least 2 Tosc (and a small RC delay of 2 Tt0H). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4 Tosc (and a small RC delay of 4 Tt0H) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of Tt0H. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-4 shows the delay from the external clock edge to the timer incrementing.

3: The arrows indicate the points in time where sampling occurs.

6.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer (WDT), respectively (see **Section 9.6** "**Watchdog Timer (WDT)**"). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet.

Note:	The prescaler may be used by either the					
	Timer0 module or the WDT, but not both.					
	Thus, a prescaler assignment for the					
	Timer0 module means that there is no					
	prescaler for the WDT and vice versa.					

The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a Reset, the prescaler contains all '0's.

6.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). To avoid an unintended device Reset, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

EXAMP	PLE 6-1:	CHANGING PRESCALER (TIMER0 \rightarrow WDT)
CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 & Prescaler
MOVLW	`00xx1111 <i>'</i> b	;These 3 lines (5, 6, 7)
OPTION		;are required only if
		;desired
CLRWDT		;PS<2:0> are 000 or 001
MOVLW	`00xx1xxx′b	;Set Postscaler to
OPTION		;desired WDT rate

FIGURE 8-3: ANALOG INPUT MODE

TABLE 8-2:	REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other Resets
03h	STATUS	GPWUF	CWUF	_	TO	PD	Z	DC	С	00-1 1xxx	qq0q quuu
07h	CMCON0	CMPOUT	COUTEN	POL	CMPT0CS	CMPON	CNREF	CPREF	CWU	1111 1111	uuuu uuuu
N/A	TRISGPIO	—	_	_	—	I/O Contr	ol Registe	er		1111	1111

Legend: x = Unknown, u = Unchanged, - = Unimplemented, read as '0', q = Depends on condition.

9.7 Time-out Sequence, Power-down and <u>Wake-up</u> from Sleep Status Bits (TO, PD, GPWUF, CWUF)

The $\overline{\text{TO}}$, $\overline{\text{PD}}$, GPWUF and CWUF bits in the STATUS register can be tested to determine if a Reset condition has been caused by a power-up condition, a $\overline{\text{MCLR}}$, Watchdog Timer (WDT) Reset, wake-up on comparator change or wake-up on pin change.

TABLE 9-5: TO, PD, GPWUF, CWUF STATUS AFTER RESET

CWUF	GPWUF	ТО	PD	Reset Caused By	
0	0	0	0	WDT wake-up from Sleep	
0	0	0	u	WDT time-out (not from Sleep)	
0	0	1	0	0 MCLR wake-up from Sleep	
0	0	1	1	Power-up	
0	0	u	u	MCLR not during Sleep	
0	1	1	0	Wake-up from Sleep on pin change	
1	0	1	0	Wake-up from Sleep on comparator change	

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: The TO, PD, GPWUF and CWUF bits maintain their status (u) until a Reset occurs. A low-pulse on the MCLR input does not change the TO, PD, GPWUF or CWUF Status bits.

9.8 Reset on Brown-out

A Brown-out Reset is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset PIC10F200/202/204/206 devices when a Brown-out Reset occurs, external brown-out protection circuits may be built, as shown in Figure 9-7 and Figure 9-8.

FIGURE 9-7: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 9-8: BROWN-OUT PROTECTION CIRCUIT 2

BTFSS	Bit Test f, Skip if Set		
Syntax:	[label] BTFSS f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b < 7 \end{array}$		
Operation:	skip if (f) = 1		
Status Affected:	None		
Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped.		
	If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2-cycle instruction.		

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W); \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The W register is cleared. Zero bit (Z) is set.

CALL	Subroutine Call				
Syntax:	[<i>label</i>] CALL k				
Operands:	$0 \le k \le 255$				
Operation:	(PC) + 1 \rightarrow Top-of-Stack; k \rightarrow PC<7:0>; (STATUS<6:5>) \rightarrow PC<10:9>; 0 \rightarrow PC<8>				
Status Affected:	None				
Description:	Subroutine call. First, return address (PC + 1) is PUSHed onto the stack. The 8-bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STATUS<6:5>, PC<8> is cleared. CALL is a 2-cycle instruction.				

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation: Status Affected:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow WDT \mbox{ prescaler (if assigned);} \\ 1 \rightarrow \overline{TO}; \\ 1 \rightarrow \overline{PD} \\ \overline{TO}, \mbox{ PD} \end{array}$
Description:	The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits \overline{TO} and \overline{PD} are set.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 31$
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

COMF	Complement f			
Syntax:	[label] COMF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$			
Operation:	$(\overline{f}) \rightarrow (dest)$			
Status Affected:	Z			
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

RETLW	Return with literal in W	SLEEP	Enter SLEEP Mode
Syntax:	[<i>label</i>] RETLW k	Syntax:	[label] SLEEP
Operands:	$0 \leq k \leq 255$	Operands:	None
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operation:	00h \rightarrow WDT; 0 \rightarrow WDT prescaler:
Status Affected:	None		$1 \rightarrow \overline{\overline{10}};$
Description:	The W register is loaded with the 8-bit literal 'k'. The program	Status Affected:	$0 \rightarrow PD$ TO, PD, RBWUF
	counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	Time-out Status bit (TO) is set. The Power-down Status bit (PD) is cleared.
			RBWUF is unaffected.
			The WDT and its prescaler are cleared.
			The processor is put into Sleep mode with the oscillator stopped.

			-		
RLF	Rotate Left f through Carry				
Syntax:	[label]	RLF	f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$				
Operation:	See description below				
Status Affected:	С				
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.				

SUBWF	Subtract W from f			
Syntax:	[<i>label</i>] SUBWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$			
Operation:	$(f) - (W) \rightarrow (dest)$			
Status Affected:	C, DC, Z			
Description:	Subtract (2's complement method) the W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

See Section 9.9 "Power-down Mode (Sleep)" for more details.

RRF	Rotate Right f through Carry			
Syntax:	[<i>label</i>] RRF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$			
Operation:	See description below			
Status Affected:	С			
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.			
	C register 'f'			

SWAPF	Swap Nibbles in f			
Syntax:	[label] SWAPF f,d			
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$			
Operation:	(f<3:0>) → (dest<7:4>); (f<7:4>) → (dest<3:0>)			
Status Affected:	None			
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W register. If 'd' is '1', the result is placed in register 'f'.			

AC CHARACTERISTICS		Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial), $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)Operating Voltage VDD range is described in Section 12.1 "DC Characteristics: PIC10F200/202/204/206 (Industrial)"						
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур.†	Max.	Units	Conditions
F10	Fosc	Internal Calibrated INTOSC Frequency ^(1,2)	± 1% ± 2%	3.96 3.92	4.00 4.00	4.04 4.08	MHz MHz	VDD=3.5V @ 25°C 2.5V ≤ VDD ≤ 5.5V 0°C ≤ TA ≤ +85°C (industrial)
			± 5%	3.80	4.00	4.20	MHz	$\begin{array}{l} 2.0V \leq VDD \leq 5.5V \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ (industrial)} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ (extended)} \end{array}$

TABLE 12-3: CALIBRATED INTERNAL RC FREQUENCIES - PIC10F200/202/204/206

* These parameters are characterized but not tested.

† Data in the Typical ("Typ.") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

2: Under stable VDD conditions.

FIGURE 12-3: RESET, WATCHDOG TIMER AND DEVICE RESET TIMER TIMING – PIC10F200/202/204/206

FIGURE 13-2: TYPICAL IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)

TABLE 14-1:8-LEAD 2x3 DFN (MC)PACKAGE TOP MARKING

Part Number	Marking
PIC10F200-I/MC	BA0
PIC10F200-E/MC	BB0
PIC10F202-I/MC	BC0
PIC10F202-E/MC	BD0
PIC10F204-I/MC	BE0
PIC10F204-E/MC	BF0
PIC10F206-I/MC	BG0
PIC10F206-E/MC	BH0

TABLE 14-2: 6-LEAD SOT-23 (OT) PACKAGE TOP MARKING

Part Number	Marking
PIC10F200-I/OT	00NN
PIC10F200-E/OT	00NN
PIC10F202-I/OT	02NN
PIC10F202-E/OT	02NN
PIC10F204-I/OT	04NN
PIC10F204-E/OT	04NN
PIC10F206-I/OT	06NN
PIC10F206-E/OT	06NN

Note: NN represents the alphanumeric traceability code.

APPENDIX A: REVISION HISTORY

Revision C (August 2006)

Added 8-Pin DFN Pin Diagram; Revised Table 1-1; Reformatted all Registers; Revised Section 4.8 and added note; Section 5.3 (changed Figure reference to Figure 5-1); Tables 6-1 and 7-1 (removed shading from TRISGPIO (I/O Control Register); Sections 8.1-8.4 (changed Table reference to Table 12-2); Section 14.1 Revised and replaced Package Marking Information and drawings, Added Tables 14-1 & 14-2, Added DFN Package drawing.

Revision D (April 2007)

Revised section 12.1, 12.2, 12.3, Table 1-1, 12-1, 12-3, 12-4. Added Section 13.0. Replaced Package Drawings (Rev. AP); Removed instances of PICmicro[®] and replaced it with PIC[®].

Revision E (October 2013)

Revised Figure 8-1 (deleted OSCCAL); Revised Packaging Legend.

Revision F (September 2014)

Added Table 12-6 (Thermal Considerations); Updated Register 4-1, Register 9-1 and Chapter 14 (Packaging Information); Other minor corrections.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV — ISO/TS 16949—

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2004-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-597-0

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.