

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

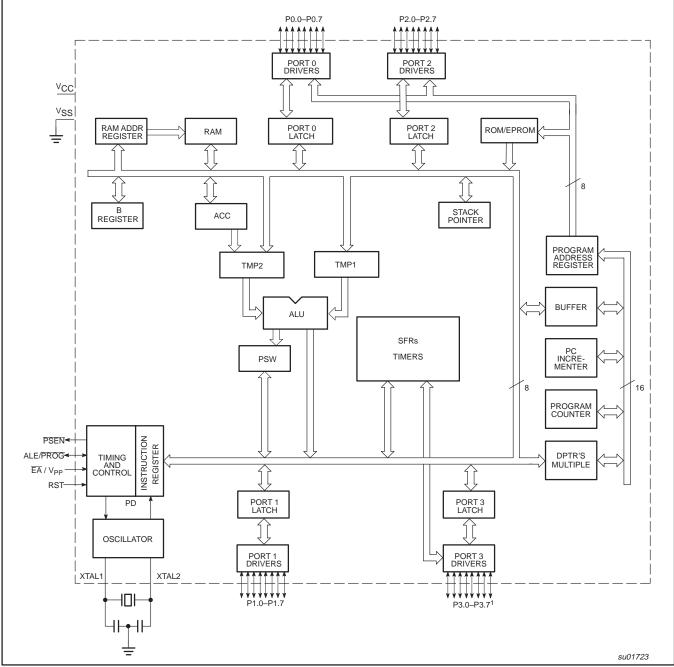
E·XFl

Product StatusActiveCore Processor-Gone Stafe-Speed-Connectivity-Propherals-Number of I/O-Program Memory Stafe-Program Memory Type-Program Memory Type-RA Stafe-Stafe Stafe-Nutber of Jone Stafe-Program Memory Type-Ber OM Stafe-Program Memory Type-Stafe Stafe-Stafe Stafe-Stafe Stafe-Program Memory Type-Ber OM Stafe-Stafe Stafe-Stafe Stafe-Stafe Stafe-Stafe Stafe Stafe-Stafe Stafe Stafe-Stafe Stafe Stafe Stafe-Stafe Stafe St		
Core Size-Speed-Connectivity-Peripherals-Number of I/O-Pogram Memory Size-Program Memory Type-EEPROM Size-Nutber of Lycover base-Voltage - Supply (Vcc/Vdd)-Oscillator Type-Oscillator Type-Nuthing Type-Package / Case-Nourting Type-Nourting Type-N	Product Status	Active
Speed.Connectivity.Peripherals.Number of I/O.Program Memory Size.Program Memory Type.EPROM Size.RAM Size.Voltage - Supply (Vcc/Vdd).Data Converters.Operating Temperature.Mounting Type.Package / Case.Supple Device Backage.	Core Processor	-
Connectivity-Peripherals-Number of I/O-Program Memory Size-Program Memory Type-EERROM Size-RAM Size-Voltage - Supply (Vcc/Vdd)-Data Converters-Oscillator Type-Operating Temperature-Mounting Type-Package / Case-Supple Device Package-Operating Temperature-Operating Temperature- <td< td=""><td>Core Size</td><td>-</td></td<>	Core Size	-
Peripherals-Number of I/O-Program Memory Size-Program Memory Type-EPROM Size-RAM Size-Voltage - Supply (Vcc/Vdd)-Data Converters-Oscillator Type-Operating Temperature-Mounting Type-Package / Case-Suppler Device Package-	Speed	-
Number of I/O-Program Memory Size-Program Memory Type-EEPROM Size-RAM Size-Voltage - Supply (Vcc/Vdd)-Data Converters-Oscillator Type-Operating Temperature-Mounting Type-Package / Case-Suppler Device Package-	Connectivity	-
Program Memory Size-Program Memory Type-EPROM Size-RAM Size-Voltage - Supply (Vcc/Vdd)-Data Converters-Oscillator Type-Operating Temperature-Mounting Type-Package / Case-Supplier Device Package-	Peripherals	-
Program Memory Type-EEPROM Size-RAM Size-Voltage - Supply (Vcc/Vdd)-Data Converters-Oscillator Type-Operating Temperature-Mounting Type-Package / Case-Supplier Device Package-	Number of I/O	-
EEPROM Size-RAM Size-Voltage - Supply (Vcc/Vdd)-Data Converters-Oscillator Type-Operating Temperature-Mounting Type-Package / Case-Supplier Device Package-	Program Memory Size	-
RAM Size-Voltage - Supply (Vcc/Vdd)-Data Converters-Oscillator Type-Operating Temperature-Mounting Type-Package / Case-Supplier Device Package-	Program Memory Type	-
Voltage - Supply (Vcc/Vdd)-Data Converters-Oscillator Type-Operating Temperature-Mounting Type-Package / Case-Supplier Device Package-	EEPROM Size	-
Data Converters-Oscillator Type-Operating Temperature-Mounting Type-Package / Case-Supplier Device Package-	RAM Size	-
Oscillator Type-Operating Temperature-Mounting Type-Package / Case-Supplier Device Package-	Voltage - Supply (Vcc/Vdd)	-
Operating Temperature - Mounting Type - Package / Case - Supplier Device Package -	Data Converters	-
Mounting Type-Package / Case-Supplier Device Package-	Oscillator Type	-
Package / Case - Supplier Device Package -	Operating Temperature	-
Supplier Device Package -	Mounting Type	-
	Package / Case	-
Purchase URL https://www.e-xfl.com/product-detail/rochester-electronics/p87c51x2bbd-157	Supplier Device Package	-
	Purchase URL	https://www.e-xfl.com/product-detail/rochester-electronics/p87c51x2bbd-157

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

P80C3xX2; P80C5xX2; P87C5xX2

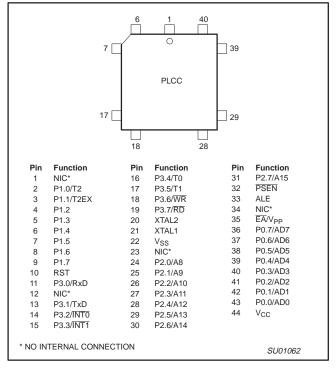

PART NUMBER DERIVATION

Memory			Temperature Range	Package
P87C51X2 7 = OTP 0 = ROM or ROMless	1 = 128 BYTES RAM 4 KBYTES ROM/OTP 2 = 256 BYTES RAM 8 KBYTES ROM/OTP 4 = 256 BYTES RAM 16 KBYTES ROM/OTP 8 = 256 BYTES RAM	X2 = 6-clock mode available	B = 0 °C TO +70 °C F = -40 °C TO +85 °C	A = PLCC N = DIP BD = LQFP DH = TSSOP
	32 KBYTES ROM/OTP			

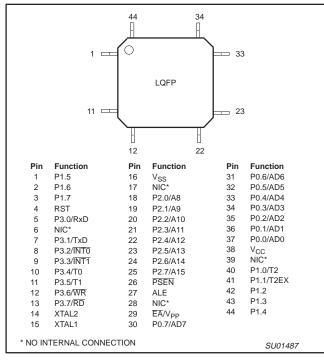
The following table illustrates the correlation between operating mode, power supply and maximum external clock frequency:

Operating Mode	Power Supply	Maximum Clock Frequency
6-clock	5 V ± 10%	30 MHz
6-clock	2.7 V to 5.5 V	16 MHz
12-clock	5 V ± 10%	33 MHz
12-clock	2.7 V to 5.5 V	16 MHz

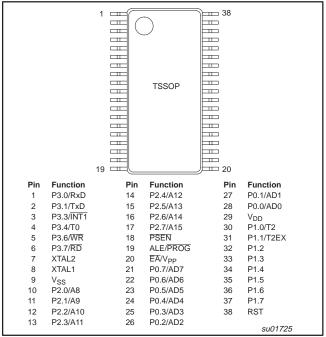
BLOCK DIAGRAM 2 (CPU-ORIENTED)



NOTE:


1. P3.2 and P3.5 absent in the TSSOP38 package.

P80C3xX2; P80C5xX2; P87C5xX2


PLASTIC LEADED CHIP CARRIER PIN FUNCTIONS

LOW PROFILE QUAD FLAT PACK PIN FUNCTIONS

PLASTIC THIN SHRINK SMALL OUTLINE PACK PIN FUNCTIONS

OSCILLATOR CHARACTERISTICS

Using the oscillator

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator, as shown in the logic symbol.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. However, minimum and maximum high and low times specified in the data sheet must be observed.

Clock Control Register (CKCON)

This device provides control of the 6-clock/12-clock mode by both an SFR bit (bit X2 in register CKCON and an OTP bit (bit OX2). When X2 is 0, 12-clock mode is activated. By setting this bit to 1, the system is switching to 6-clock mode. Having this option implemented as SFR bit, it can be accessed anytime and changed to either value. Changing X2 from 0 to 1 will result in executing user code at twice the speed, since all system time intervals will be divided by 2. Changing back from 6-clock to 12-clock mode will slow down running code by a factor of 2.

The OTP clock control bit (OX2) activates the 6-clock mode when programmed using a parallel programmer, superceding the X2 bit (CKCON.0). Please also see Table 2 below.

Table 2.

OX2 clock mode bit (can only be set by parallel programmer)	X2 bit (CKCON.0)	CPU clock mode
erased	0	12-clock mode (default)
erased	1	6-clock mode
programmed	Х	6-clock mode

Programmable Clock-Out

A 50% duty cycle clock can be programmed to be output on P1.0. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed:

1. to input the external clock for Timer/Counter 2, or

 to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz at a 16 MHz operating frequency in 12-clock mode (122 Hz to 8 MHz in 6-clock mode).

To configure the Timer/Counter 2 as a clock generator, bit C/T_2 (in T2CON) must be cleared and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) also must be set to start the timer.

The Clock-Out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L) as shown in this equation:

```
\frac{\text{Oscillator Frequency}}{n \times (65536 - \text{RCAP2H}, \text{RCAP2L})}
```

Where:

n = 2 in 6-clock mode, 4 in 12-clock mode. (RCAP2H,RCAP2L) = the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

In the Clock-Out mode Timer 2 roll-overs will not generate an interrupt. This is similar to when it is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock

generator simultaneously. Note, however, that the baud-rate and the Clock-Out frequency will be the same.

RESET

A reset is accomplished by holding the RST pin HIGH for at least two machine cycles (24 oscillator periods in 12-clock and 12 oscillator periods in 6-clock mode), while the oscillator is running. To insure a reliable power-up reset, the RST pin must be high long enough to allow the oscillator time to start up (normally a few milliseconds) plus two machine cycles. After the reset, the part runs in 12-clock mode, unless it has been set to 6-clock operation using a parallel programmer.

LOW POWER MODES

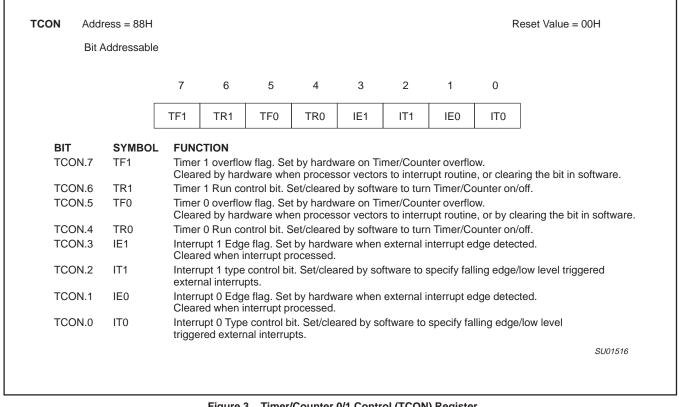
Stop Clock Mode

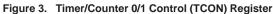
The static design enables the clock speed to be reduced down to 0 MHz (stopped). When the oscillator is stopped, the RAM and Special Function Registers retain their values. This mode allows step-by-step utilization and permits reduced system power consumption by lowering the clock frequency down to any value. For lowest power consumption the Power Down mode is suggested.

Idle Mode

In idle mode (see Table 3), the CPU puts itself to sleep while all of the on-chip peripherals stay active. The instruction to invoke the idle mode is the last instruction executed in the normal operating mode before the idle mode is activated. The CPU contents, the on-chip RAM, and all of the special function registers remain intact during this mode. The idle mode can be terminated either by any enabled interrupt (at which time the process is picked up at the interrupt service routine and continued), or by a hardware reset which starts the processor in the same manner as a power-on reset.

Power-Down Mode


To save even more power, a Power Down mode (see Table 3) can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values down to 2.0 V and care must be taken to return V_{CC} to the minimum specified operating voltages before the Power Down Mode is terminated.


Either a hardware reset or external interrupt can be used to exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values. WUPD (AUXR1.3–Wakeup from Power Down) enables or disables the wakeup from power down with external interrupt. Where:

WUPD = 0: Disable WUPD = 1: Enable

To properly terminate Power Down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

To terminate Power Down with an external interrupt, INT0 or INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

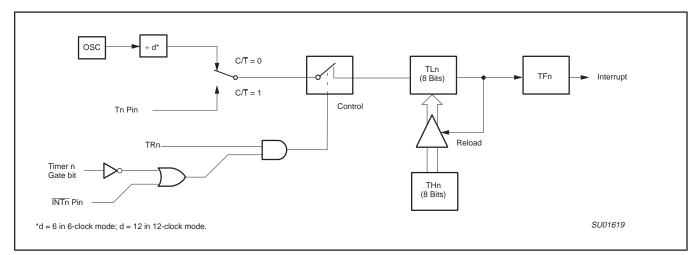


Figure 4. Timer/Counter 0/1 Mode 2: 8-Bit Auto-Reload

P80C3xX2; P80C5xX2; P87C5xX2

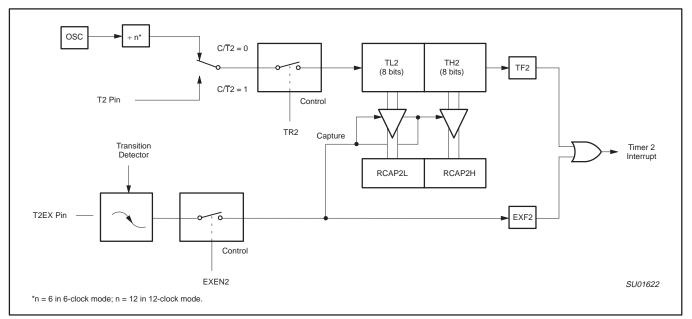


Figure 7. Timer 2 in Capture Mode

T2MOD	Address	= 0C9H							Reset Va	lue = XXXX XX00E
	Not Bit Ad	dressal	ble							
		7	6	5	4	3	2	1	0	
		_	_	_	_	_	_	T2OE	DCEN	
Symbol	Positior	1		unction lot implemer	nted. reserve	ed for future	use.*			
T2OE	T2MOD.	1		imer 2 Outp						
	se, the rese	l not wri	c te 1s to rese	ounter. erved bits. Th	nese bits ma	ay be used in	n future 805	1 family pro	ducts to invo	as an up/down oke new features. n a reserved bit is

Figure 8. Timer 2 Mode (T2MOD) Control Register

Table 5. Timer 2 Generated Commonly Used Baud Rates

Baud	Rate		Tim	er 2
12-clk mode	6-clk mode	Osc Freq	RCAP2H	RCAP2L
375 K	750 K	12 MHz	FF	FF
9.6 K	19.2 K	12 MHz	FF	D9
4.8 K	9.6 K	12 MHz	FF	B2
2.4 K	4.8 K	12 MHz	FF	64
1.2 K	2.4 K	12 MHz	FE	C8
300	600	12 MHz	FB	1E
110	220	12 MHz	F2	AF
300	600	6 MHz	FD	8F
110	220	6 MHz	F9	57

Summary Of Baud Rate Equations

Timer 2 is in baud rate generating mode. If Timer 2 is being clocked through pin T2(P1.0) the baud rate is:

Baud Rate = $\frac{\text{Timer 2 Overflow Rate}}{16}$

If Timer 2 is being clocked internally, the baud rate is:

Baud Rate =
$$\frac{f_{OSC}}{[n \times [65536 - (RCAP2H, RCAP2L)]]}$$

Where:

n = 16 in 6-clock mode, 32 in 12-clock mode.

f_{OSC}= Oscillator Frequency

To obtain the reload value for RCAP2H and RCAP2L, the above equation can be rewritten as:

$$\text{RCAP2H, RCAP2L} = 65536 - \left(\frac{f_{\text{OSC}}}{n \times \text{Baud Rate}}\right)$$

Timer/Counter 2 Set-up

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the timer on. See Table 6 for set-up of Timer 2 as a timer. Also see Table 7 for set-up of Timer 2 as a counter.

Table 6. Timer 2 as a Timer

	T20	ON
MODE	INTERNAL CONTROL (Note 1)	EXTERNAL CONTROL (Note 2)
16-bit Auto-Reload	00H	08H
16-bit Capture	01H	09H
Baud rate generator receive and transmit same baud rate	34H	36H
Receive only	24H	26H
Transmit only	14H	16H

Table 7. Timer 2 as a Counter

	ТМ	OD
MODE	INTERNAL CONTROL (Note 1)	EXTERNAL CONTROL (Note 2)
16-bit	02H	0AH
Auto-Reload	03H	0BH

NOTES:

- 1. Capture/reload occurs only on timer/counter overflow.
- Capture/reload occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate generator mode.

FULL-DUPLEX ENHANCED UART

Standard UART operation

The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the register. (However, if the first byte still hasn't been read by the time reception of the second byte is complete, one of the bytes will be lost.) The serial port receive and transmit registers are both accessed at Special Function Register SBUF. Writing to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register.

The serial port can operate in 4 modes:

- Mode 0: Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received (LSB first). The baud rate is fixed at 1/12 the oscillator frequency in 12-clock mode or 1/6 the oscillator frequency in 6-clock mode.
- Mode 1: 10 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in Special Function Register SCON. The baud rate is variable.
- Mode 2: 11 bits are transmitted (through TxD) or received (through RxD): start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On Transmit, the 9th data bit (TB8 in SCON) can be assigned the value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. On receive, the 9th data bit goes into RB8 in Special Function Register SCON, while the stop bit is ignored. The baud rate is programmable to either 1/32 or 1/64 the oscillator frequency in 12-clock mode or 1/16 or 1/32 the oscillator frequency in 6-clock mode.
- Mode 3: 11 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). In fact, Mode 3 is the same as Mode 2 in all respects except baud rate. The baud rate in Mode 3 is variable.

In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. Reception is initiated in the other modes by the incoming start bit if REN = 1.

Multiprocessor Communications

Modes 2 and 3 have a special provision for multiprocessor communications. In these modes, 9 data bits are received. The 9th one goes into RB8. Then comes a stop bit. The port can be programmed such that when the stop bit is received, the serial port interrupt will be activated only if RB8 = 1. This feature is enabled by setting bit SM2 in SCON. A way to use this feature in multiprocessor systems is as follows:

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no slave will be interrupted by a data byte. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that will be coming.

P80C3xX2; P80C5xX2; P87C5xX2

The slaves that weren't being addressed leave their SM2s set and go on about their business, ignoring the coming data bytes.

SM2 has no effect in Mode 0, and in Mode 1 can be used to check the validity of the stop bit. In a Mode 1 reception, if SM2 = 1, the receive interrupt will not be activated unless a valid stop bit is received.

Serial Port Control Register

The serial port control and status register is the Special Function Register SCON, shown in Figure 12. This register contains not only the mode selection bits, but also the 9th data bit for transmit and receive (TB8 and RB8), and the serial port interrupt bits (TI and RI).

Baud Rates

The baud rate in Mode 0 is fixed: Mode 0 Baud Rate = Oscillator Frequency / 12 (12-clock mode) or / 6 (6-clock mode). The baud rate in Mode 2 depends on the value of bit SMOD in Special Function Register PCON. If SMOD = 0 (which is the value on reset), and the port pins in 12-clock mode, the baud rate is 1/64 the oscillator frequency. If SMOD = 1, the baud rate is 1/32 the oscillator frequency. In 6-clock mode, the baud rate is 1/32 or 1/16 the oscillator frequency, respectively.

Mode 2 Baud Rate =

 $\frac{2^{\text{SMOD}}}{n} \times (\text{Oscillator Frequency})$

Where:

n = 64 in 12-clock mode, 32 in 6-clock mode

The baud rates in Modes 1 and 3 are determined by the Timer 1 or Timer 2 overflow rate.

Using Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator (T2CON.RCLK = 0, T2CON.TCLK = 0), the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 Baud Rate =

$$\frac{2^{\text{SMOD}}}{n} \times$$
 (Timer 1 Overflow Rate)

Where:

n = 32 in 12-clock mode, 16 in 6-clock mode

The Timer 1 interrupt should be disabled in this application. The Timer itself can be configured for either "timer" or "counter" operation, and in any of its 3 running modes. In the most typical applications, it is configured for "timer" operation, in the auto-reload mode (high nibble of TMOD = 0010B). In that case the baud rate is given by the formula:

Mode 1, 3 Baud Rate =

$$\frac{2^{\text{SMOD}}}{n} \times \frac{\text{Oscillator Frequency}}{12 \times [256-(\text{TH1})]}$$

Where:

n = 32 in 12-clock mode, 16 in 6-clock mode

One can achieve very low baud rates with Timer 1 by leaving the Timer 1 interrupt enabled, and configuring the Timer to run as a 16-bit timer (high nibble of TMOD = 0001B), and using the Timer 1 interrupt to do a 16-bit software reload. Figure 13 lists various commonly used baud rates and how they can be obtained from Timer 1.

P80C3xX2; P80C5xX2; P87C5xX2

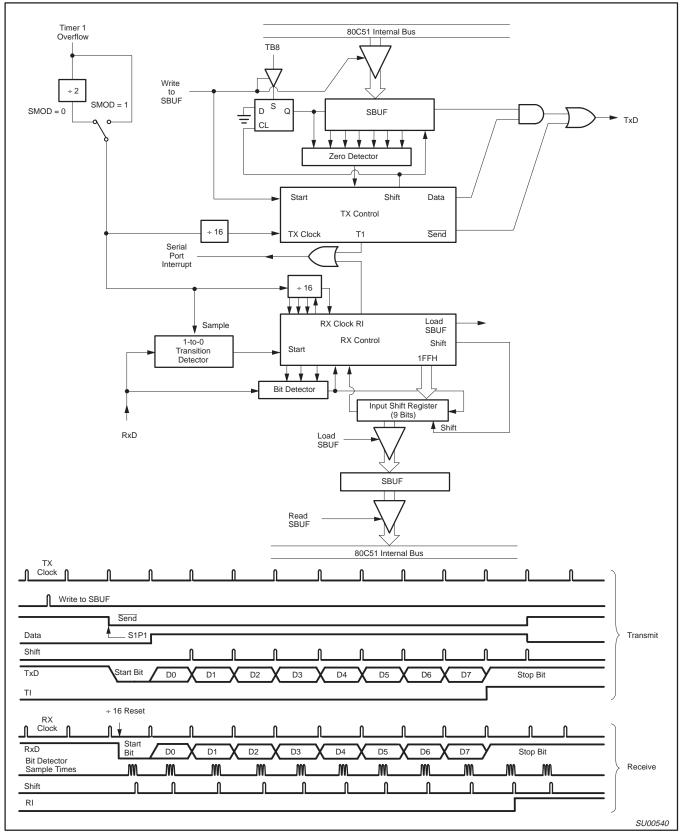


Figure 15. Serial Port Mode 1

P80C3xX2; P80C5xX2; P87C5xX2

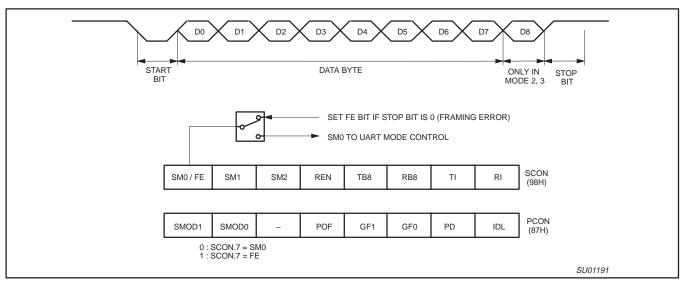


Figure 19. UART Framing Error Detection

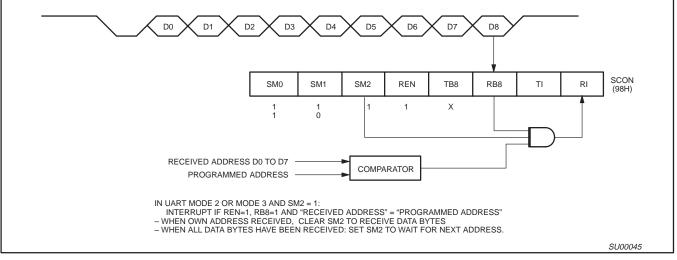


Figure 20. UART Multiprocessor Communication, Automatic Address Recognition

P87C5xX2

P80C3xX2; P80C5xX2;

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

IE	Address = 0A8H								R	eset Value = 0X000000B
	Bit Addressable	7	6	5	4	3	2	1	0	
		EA		ET2	ES	ET1	EX1	ET0	EX0	
	_		Bit = 1 en: Bit = 0 dis	ables the i ables it.	nterrupt.					
в	SIT SYMBOL	FUNC	TION							
IE	E.7 EA					rrupts are earing its e			each inte	rrupt can be individually
IE IE	E.6 —	Not im	plemente	d. Reserve	ed for futu	ire use.				
IE	E.5 ET2	Timer	2 interrup	t enable b	it.					
IE	E.4 ES	Serial	Port inter	rupt enabl	e bit.					
IE IE	E.3 ET1	Timer	1 interrup	t enable b	it.					
IE IE	E.2 EX1	Extern	al interru	ot 1 enable	e bit.					
IE IE	E.1 ET0	Timer	0 interrup	t enable b	it.					
IE IE	E.0 EX0	Extern	al interrup	ot 0 enable	e bit.					
										SU01522

IP	Address = 0B8H Bit Addressable								Re	eset Value = xx000000B
	Bit Audressable	7	6	5	4	3	2	1	0	
	[_	PT2	PS	PT1	PX1	PT0	PX0]
		Priority I	Bit = 0 ass	signs high signs lowe	er priority er priority					
	BIT SYMBOL									
	IP.7 —	Not im	plemente	d, reserve	d for futur	e use.				
	IP.6 —	Not im	plemente	d, reserve	d for futur	e use.				
	IP.5 PT2	Timer	2 interrup	t priority b	it.					
	IP.4 PS	Serial	Port interi	upt priorit	y bit.					
	IP.3 PT1			t priority b						
	IP.2 PX1			ot 1 priorit						
	IP.1 PT0			t priority b	•					
	IP.0 PX0			ot 0 priorit					SU01523	

Figure 23. Interrupt Priority (IP) Register

IPH	Addres	ss = B7H								Res	set Value = xx000000B
	Bit Add	dressable	7	6	5	4	3	2	1	0	
		ſ	_	_	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	
		L			signs high signs lowe						
	BIT	SYMBOL	FUNC	TION							
	IPH.7	_	Not im	plemente	d, reserve	d for futur	e use.				
	IPH.6	_	Not im	Not implemented, reserved for future use.							
	IPH.5	PT2H	Timer	2 interrup	t priority b	it high.					
	IPH.4	PSH	Serial	Port inter	upt priorit	y bit high.					
	IPH.3	PT1H	Timer	1 interrup	t priority b	it high.					
	IPH.2	PX1H	Extern	al interrup	ot 1 priority	/ bit high.					
	IPH.1	PT0H	Timer	0 interrup	t priority b	it high.					
	IPH.0	PX0H	Extern	al interrup	ot 0 priority	/ bit high.				SU015	524

Figure 24. Interrupt Priority HIGH (IPH) Register

P87C5xX2

P80C3xX2; P80C5xX2;

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.

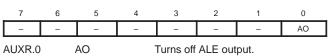
Table 8. Interrupt Table

SOURCE	POLLING PRIORITY	REQUEST BITS	HARDWARE CLEAR?	VECTOR ADDRESS
External interrupt 0	1	IE0	N (L) ¹ Y (T) ²	03H
Timer 0	2	TF0	Y	0BH
External interrupt 1	3	IE1	N (L) Y (T)	13H
Timer 1	4	TF1	Y	1BH
UART	5	RI, TI	Ν	23H
Timer 2	6	TF2, EXF2	N	2BH

NOTES:

1. L = Level activated

2. T = Transition activated


Reduced EMI

All port pins have slew rate controlled outputs. This is to limit noise generated by quickly switching output signals. The slew rate is factory set to approximately 10 ns rise and fall times.

Reduced EMI Mode

The AO bit (AUXR.0) in the AUXR register when set disables the ALE output.

AUXR (8EH)

Dual DPTR

The dual DPTR structure (see Figure 26) enables a way to specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 that allows the program code to switch between them.

- New Register Name: AUXR1#
- SFR Address: A2H
- Reset Value: xxx000x0B

AUXR1 (A2H)

LPEP WUPD 0 - DPS	7	6	5	4	3	2	1	0
	-	-	-	LPEP	WUPD	0	-	DPS

```
Where:
```

DPS = AUXR1/bit0 = Switches between DPTR0 and DPTR1.

Select Reg	DPS
DPTR0	0
DPTR1	1

The DPS bit status should be saved by software when switching between DPTR0 and DPTR1.

Note that bit 2 is not writable and is always read as a zero. This allows the DPS bit to be quickly toggled simply by executing an INC DPTR instruction without affecting the WUPD or LPEP bits.

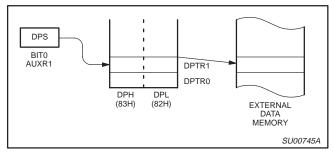


Figure 26.

DPTR Instructions

The instructions that refer to DPTR refer to the data pointer that is currently selected using the AUXR1/bit 0 register. The six instructions that use the DPTR are as follows:

INC DPTR	Increments the data pointer by 1
MOV DPTR, #data16	Loads the DPTR with a 16-bit constant
MOV A, @ A+DPTR	Move code byte relative to DPTR to ACC
MOVX A, @ DPTR	Move external RAM (16-bit address) to ACC
MOVX @ DPTR , A	Move ACC to external RAM (16-bit address)
JMP @ A + DPTR	Jump indirect relative to DPTR

The data pointer can be accessed on a byte-by-byte basis by specifying the low or high byte in an instruction which accesses the SFRs. See application note AN458 for more details.

DC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0$ °C to +70 °C or -40 °C to +85 °C; $V_{CC} = 5 V \pm 10\%$; $V_{SS} = 0 V (30/33 \text{ MHz max. CPU clock})$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS	UNIT		
			MIN	TYP ¹	MAX	1
V _{IL}	Input low voltage ¹¹	4.5 V < V _{CC} < 5.5 V	-0.5		0.2 V _{CC} -0.1	V
V _{IH}	Input high voltage (ports 0, 1, 2, 3, EA)	-	0.2 V _{CC} +0.9		V _{CC} +0.5	V
V _{IH1}	Input high voltage, XTAL1, RST ¹¹	-	0.7 V _{CC}		V _{CC} +0.5	V
V _{OL}	Output low voltage, ports 1, 2, 3 8	$V_{CC} = 4.5 \text{ V}; I_{OL} = 1.6 \text{ mA}^2$	-		0.4	V
V _{OL1}	Output low voltage, port 0, ALE, PSEN 7, 8	$V_{CC} = 4.5 \text{ V}; I_{OL} = 3.2 \text{ mA}^2$	-		0.4	V
V _{OH}	Output high voltage, ports 1, 2, 3 3	$V_{CC} = 4.5 \text{ V}; I_{OH} = -30 \mu\text{A}$	V _{CC} - 0.7		-	V
V _{OH1}	Output high voltage (port 0 in external bus mode), ALE^9 , \overline{PSEN}^3	$V_{CC} = 4.5 \text{ V}; I_{OH} = -3.2 \text{ mA}$	V _{CC} - 0.7		-	V
IIL	Logical 0 input current, ports 1, 2, 3	V _{IN} = 0.4 V	-1		-50	μA
I _{TL}	Logical 1-to-0 transition current, ports 1, 2, 3 ⁶	V _{IN} = 2.0 V; See note 4	-		-650	μA
ILI	Input leakage current, port 0	$0.45 < V_{IN} < V_{CC} - 0.3$	-		±10	μA
I _{CC}	Power supply current (see Figure 34):					
	Active mode (see Note 5)					
	Idle mode (see Note 5)					
	Power-down mode or clock stopped (see Figure 39 for conditions)	$T_{amb} = 0 \ ^{\circ}C \text{ to } 70 \ ^{\circ}C$		2	30	μA
		$T_{amb} = -40 \degree C$ to +85 $\degree C$		3	50	μA
V _{RAM}	RAM keep-alive voltage	-	1.2			V
R _{RST}	Internal reset pull-down resistor	-	40		225	kΩ
C _{IO}	Pin capacitance ¹⁰ (except EA)	-	-		15	pF

NOTES:

1. Typical ratings are not guaranteed. The values listed are at room temperature, 5 V.

Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V_{OL}s of ALE and ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the 2. worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. IOL can exceed these conditions provided that no single output sinks more than 5 mA and no more than two outputs exceed the test conditions.

Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the V_{CC}-0.7 specification when the 3. address bits are stabilizing.

Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its 4. maximum value when V_{IN} is approximately 2 V.

5. See Figures 36 through 39 for I_{CC} test conditions and Figure 34 for I_{CC} vs. Frequency. 12-clock mode characteristics:

Active mode (operating):	$I_{CC(MAX)} = 1.0 \text{ mA} + 0.9 \text{ mA} \times \text{FREQ}.[MHz]$
Active mode (reset):	$I_{CC(MAX)} = 7.0 \text{ mA} + 0.5 \text{ mA} \text{ x} \text{ FREQ}.[MHz]$
Idle mode:	$I_{CC(MAX)} = 7.0 \text{ mA} + 0.5 \text{ mA} \text{ x} \text{ FREQ.[MHz]}$ $I_{CC(MAX)} = 1.0 \text{ mA} + 0.18 \text{ mA} \times \text{FREQ.[MHz]}$
This value applies to T (1° C to $\pm 70^{\circ}$ C. For T ₂ = -40° C to $\pm 85^{\circ}$ C. $ _{T_{2}}$

 40° C to +85°C, $I_{TL} = -750 \ \mu$ A. 6. This value applies to Tamb) to +1 amb Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.

7.

8. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum IOL per port pin: 15 mA (*NOTE: This is 85 °C specification.)

Maximum IOL per 8-bit port:

26 mA Maximum total I_{OL} for all outputs: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

ALE is tested to V_{OH1}, except when ALE is off then V_{OH} is the voltage specification.

10. Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF. Pin capacitance of ceramic package is less than 15 pF (except EA is 25 pF).

11. To improve noise rejection a nominal 100 ns glitch rejection circuitry has been added to the RST pin, and a nominal 15 ns glitch rejection circuitry has been added to the INTO and INTT pins. Previous devices provided only an inherent 5 ns of glitch rejection.

P80C3xX2; P80C5xX2; P87C5xX2

P80C3xX2; P80C5xX2; P87C5xX2

AC ELECTRICAL CHARACTERISTICS (12-CLOCK MODE, 5 V ±10% OPERATION)

 $T_{amb} = 0 \degree C$ to +70 $\degree C$ or -40 $\degree C$ to +85 $\degree C$; $V_{CC} = 5 V \pm 10\%$, $V_{SS} = 0 V^{1,2,3,4}$

Symbol	Figure	Parameter	Limits		16 MHz Clock		Unit
			MIN	MAX	MIN	MAX	7
1/t _{CLCL}	31	Oscillator frequency	0	33	-	-	MHz
LHLL	27	ALE pulse width	2 t _{CLCL} -8	-	117	-	ns
AVLL	27	Address valid to ALE low	t _{CLCL} –13	-	49.5	-	ns
LLAX	27 Address hold after ALE low		t _{CLCL} –20	-	42.5	-	ns
t _{LLIV}	27	ALE low to valid instruction in	-	4 t _{CLCL} –35	-	215	ns
LLPL	27	ALE low to PSEN low	t _{CLCL} –10	-	52.5	-	ns
^t PLPH	27	PSEN pulse width	3 t _{CLCL} –10	-	177.5	-	ns
PLIV	27	PSEN low to valid instruction in	-	3 t _{CLCL} –35	-	152.5	ns
t _{PXIX}	27	Input instruction hold after PSEN	0	-	0	-	ns
PXIZ	27	Input instruction float after PSEN	_	t _{CLCL} -10	-	52.5	ns
t _{aviv}	27	Address to valid instruction in	-	5 t _{CLCL} –35	-	277.5	ns
^t PLAZ	27	PSEN low to address float	_	10	-	10	ns
Data Men	nory		•	•			
t _{RLRH}	28	RD pulse width	6 t _{CLCL} –20	-	355	-	ns
t _{WLWH}	29	WR pulse width	6 t _{CLCL} –20	_	355	-	ns
RLDV	28	RD low to valid data in	-	5 t _{CLCL} –35	-	277.5	ns
RHDX	28	Data hold after RD	0	-	0	-	ns
RHDZ			_	2 t _{CLCL} –10	-	115	ns
LLDV	28	ALE low to valid data in	_	8 t _{CLCL} –35	-	465	ns
t _{avdv}	28	Address to valid data in	-	9 t _{CLCL} –35	-	527.5	ns
tLLWL	28, 29	ALE low to RD or WR low	3 t _{CLCL} –15	3 t _{CLCL} +15	172.5	202.5	ns
t _{AVWL}	28, 29	Address valid to WR low or RD low	4 t _{CLCL} –15	-	235	-	ns
t _{QVWX}	29	Data valid to WR transition	t _{CLCL} –25	_	37.5	-	ns
t _{WHQX}	29	Data hold after WR	t _{CLCL} –15	-	47.5	-	ns
t _{QVWH}	29	Data valid to WR high	7 t _{CLCL} –5	-	432.5	-	ns
t _{RLAZ}	28	RD low to address float	-	0	-	0	ns
twhlh	28, 29	RD or WR high to ALE high	t _{CLCL} –10	t _{CLCL} +10	52.5	72.5	ns
External	Clock	1	•	•	-	I	
t _{CHCX}	31	High time	0.32 t _{CLCL}	t _{CLCL} - t _{CLCX}	-	-	ns
tCLCX	31	Low time	0.32 t _{CLCL}	t _{CLCL} - t _{CHCX}	-	-	ns
^t сlсн			-	5	-	_	ns
^t CHCL	31	Fall time	_	5	-	-	ns
Shift regi	ster	1		•	-	I	
t _{XLXL}	30	Serial port clock cycle time	12 t _{CLCL}	-	750	-	ns
t _{qvxh}	30	Output data setup to clock rising edge	10 t _{CLCL} –25	-	600	-	ns
t _{XHQX}	30	Output data hold after clock rising edge	2 t _{CLCL} –15	_	110	_	ns
t _{XHDX}	30	Input data hold after clock rising edge	0	_	0	_	ns
t _{XHDV}	30	Clock rising edge to input data valid	-	10 t _{CLCL} –133	-	492	ns

NOTES:

Parameters are valid over operating temperature range unless otherwise specified.
 Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all outputs = 80 pF

3. Interfacing the microcontroller to devices with float time up to 45 ns is permitted. This limited bus contention will not cause damage to port 0 drivers.

4. Parts are guaranteed by design to operate down to 0 Hz.

P80C3xX2; P80C5xX2; P87C5xX2

AC ELECTRICAL CHARACTERISTICS (6-CLOCK MODE, 2.7 V TO 5.5 V OPERATION)

 $T_{amb} = 0 \degree C$ to +70 $\degree C$ or -40 $\degree C$ to +85 $\degree C$; V_{CC} =2.7 V to 5.5 V, $V_{SS} = 0 V^{1,2,3,4,5}$

Symbol	Figure	Parameter	Limits	Limits			Unit
			MIN	MAX	MIN	MAX	1
1/t _{CLCL}	31	Oscillator frequency	0	16	-	-	MHz
LHLL	27	ALE pulse width	t _{CLCL} -10	-	52.5	-	ns
AVLL	27 Address valid to ALE low		0.5 t _{CLCL} –15	_	16.25	-	ns
LLAX	27	Address hold after ALE low	0.5 t _{CLCL} –25	-	6.25	-	ns
LLIV	27	ALE low to valid instruction in	-	2 t _{CLCL} –55	-	70	ns
LLPL	27	ALE low to PSEN low	0.5 t _{CLCL} –15	-	16.25	-	ns
PLPH	27	PSEN pulse width	1.5 t _{CLCL} –15	-	78.75	-	ns
PLIV	27	PSEN low to valid instruction in	-	1.5 t _{CLCL} –55	-	38.75	ns
PXIX	27	Input instruction hold after PSEN	0	-	0	-	ns
PXIZ	27	Input instruction float after PSEN	-	0.5 t _{CLCL} –10	-	21.25	ns
AVIV	27	Address to valid instruction in	-	2.5 t _{CLCL} -50	-	101.25	ns
PLAZ	27	PSEN low to address float	_	10	_	10	ns
Data Men	nory						_
RLRH	28	RD pulse width	3 t _{CLCL} –25	-	162.5	-	ns
WLWH	29	WR pulse width	3 t _{CLCL} –25	-	162.5	-	ns
RLDV	28	RD low to valid data in	-	2.5 t _{CLCL} –50	-	106.25	ns
RHDX	28	Data hold after RD	0	-	0	-	ns
RHDZ	28	Data float after RD	-	t _{CLCL} –20	-	42.5	ns
LLDV	28	ALE low to valid data in	-	4 t _{CLCL} –55	-	195	ns
AVDV	28	Address to valid data in	-	4.5 t _{CLCL} -50	-	231.25	ns
LLWL	28, 29	ALE low to RD or WR low	1.5 t _{CLCL} –20	1.5 t _{CLCL} +20	73.75	113.75	ns
AVWL	28, 29	Address valid to WR low or RD low	2 t _{CLCL} –20	-	105	-	ns
QVWX	29	Data valid to WR transition	0.5 t _{CLCL} -30	-	1.25	-	ns
WHQX	29	Data hold after WR	0.5 t _{CLCL} -20	-	11.25	-	ns
QVWH	29	Data valid to WR high	3.5 t _{CLCL} –10	-	208.75	_	ns
RLAZ	28	RD low to address float	-	0	-	0	ns
twhlh	28, 29	RD or WR high to ALE high	0.5 t _{CLCL} –15	0.5 t _{CLCL} +15	16.25	46.25	ns
External	Clock		0101	0101			_
снсх	31	High time	0.4 t _{CLCL}	t _{CLCL} - t _{CLCX}	-	-	ns
CLCX	31	Low time	0.4 t _{CLCL}	t _{CLCL} – t _{CHCX}	-	-	ns
CLCH	31 Rise time		-	5	-	-	ns
CHCL	31	Fall time	-	5	-	-	ns
Shift regi	ster	1	1	1	1		1
XLXL	30	Serial port clock cycle time	6 t _{CLCL}	-	375	-	ns
QVXH	30 Output data setup to clock rising edge		5 t _{CLCL} –25	-	287.5	-	ns
XHQX	30	Output data hold after clock rising edge	t _{CLCL} –15	-	47.5	-	ns
XHDX	30	Input data hold after clock rising edge	0	-	0	-	ns
	30	Clock rising edge to input data valid	_	5 t _{CLCL} –133	-	179.5	ns

NOTES:

1. Parameters are valid over operating temperature range unless otherwise specified.

2. Load capacitance for port 0, ALE, and PSEN=100 pF, load capacitance for all outputs = 80 pF

3. Interfacing the microcontroller to devices with float time up to 45ns is permitted. This limited bus contention will not cause damage to port 0 drivers.

4. Parts are guaranteed by design to operate down to 0 Hz.

5. Data shown in the table are the best mathematical models for the set of measured values obtained in tests. If a particular parameter calculated at a customer specified frequency has a negative value, it should be considered equal to zero.

*/"

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

/* ## as31 version V2.10 / *js* / ## ## source file: idd_ljmp1.asm list file: idd_ljmp1.lst created Fri Apr 20 15:51:40 2001 # AUXR equ 08Eh # CKCON equ 08Fh # # # org 0 # # LJMP_LABEL: AUXR,#001h ; turn off ALE LJMP_LABEL ; jump to end of address space MOV # # LJMP NOP # # # org Offfdh # # LJMP_LABEL:

SU01499

Figure 35. Source code used in measuring I_{DD} operational

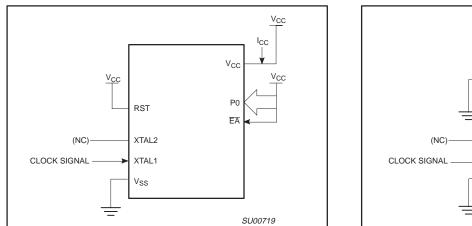
P87C5xX2

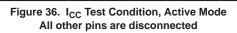
P80C3xX2; P80C5xX2;

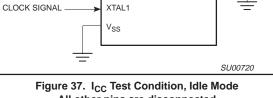
#0000 #0000 #0000 0000 /75;/8E;/01; 0003 /02;/FF;/FD; 0005 /00; #FFFD # FFFD /02;/FD;FF; # LJMP LJMP_LABEL # ; NOP #

V_{CC}

lcc

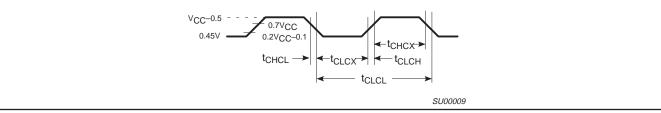

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

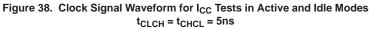

P80C3xX2; P80C5xX2; P87C5xX2


Vcc

P0

ĒΑ





RST

XTAL2

All other pins are disconnected

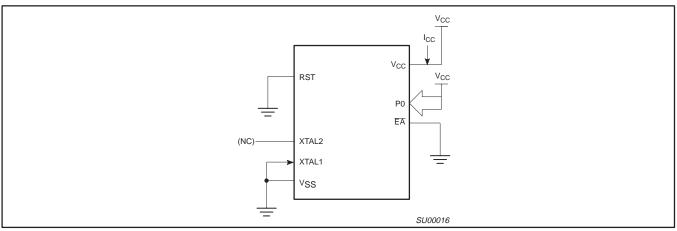
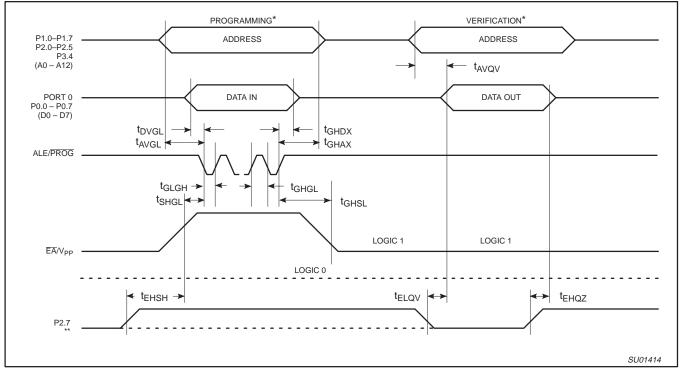


Figure 39. $I_{\mbox{\scriptsize CC}}$ Test Condition, Power Down Mode All other pins are disconnected. V_{CC} = 2 V to 5.5 V

Product data


PROGRAMMING AND VERIFICATION CHARACTERISTICS

T_{amb} = 21 °C to +27 °C, V_{CC} = 5 V±10%, V_{SS} = 0 V (See Figure 43)

SYMBOL	PARAMETER	MIN	MAX	UNIT
V _{PP}	Programming supply voltage	12.5	13.0	V
I _{PP}	Programming supply current		50 ¹	mA
1/t _{CLCL}	Oscillator frequency	4	6	MHz
t _{AVGL}	Address setup to PROG low	48t _{CLCL}		
t _{GHAX}	Address hold after PROG	48t _{CLCL}		
t _{DVGL}	Data setup to PROG low	48t _{CLCL}		
t _{GHDX}	Data hold after PROG	48t _{CLCL}		
t _{EHSH}	P2.7 (ENABLE) high to V _{PP}	48t _{CLCL}		
t _{SHGL}	V _{PP} setup to PROG low	10		μs
t _{GHSL}	V _{PP} hold after PROG	10		μs
t _{GLGH}	PROG width	90	110	μs
t _{AVQV}	Address to data valid		48t _{CLCL}	
t _{ELQZ}	ENABLE low to data valid		48t _{CLCL}	
t _{EHQZ}	Data float after ENABLE	0	48t _{CLCL}	
t _{GHGL}	PROG high to PROG low	10		μs

NOTE:

1. Not tested.

NOTES:

FOR PROGRAMMING CONFIGURATION SEE FIGURE 40. FOR VERIFICATION CONDITIONS SEE FIGURE 42.

** SEE TABLE 9.

Figure 43. Programming and Verification

P80C3xX2; P80C5xX2; P87C5xX2

REVISION HISTORY

Rev	Date	Description
_6	20030124	Product data (9397 750 10995); ECN 853-2337 29260 of 06 December 2002
		Modifications:
		Added TSSOP38 package details
_5	20020912	Product data (9397 750 10361); ECN 853-2337 28906 of 12 September 2002
_4	20020612	Product data (9397 750 09969); ECN 853-2337 28427 of 12 June 2002
_3	20020422	Product data (9397 750 09779); ECN 853-2337 28059 of 22 April 2002
_2	20020219	Preliminary data (9397 750 09467)
_1	20010924	Preliminary data (9397 750 08895); initial release

Data sheet status

Data of						
Level	Data sheet status ^[1]	Product status ^{[2] [3]}	Definitions			
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.			
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.			
111	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).			

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax:

Fax: +31 40 27 24825

© Koninklijke Philips Electronics N.V. 2003 All rights reserved. Printed in U.S.A.

Date of release: 01-03

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

Document order number:

Let's make things better.

