Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Obsolete | | Core Processor | 8051 | | Core Size | 8-Bit | | Speed | 33MHz | | Connectivity | EBI/EMI, UART/USART | | Peripherals | POR | | Number of I/O | 32 | | Program Memory Size | 8KB (8K x 8) | | Program Memory Type | ОТР | | EEPROM Size | - | | RAM Size | 256 x 8 | | Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V | | Data Converters | - | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Through Hole | | Package / Case | 40-DIP (0.600", 15.24mm) | | Supplier Device Package | 40-DIP | | Purchase URL | https://www.e-xfl.com/product-detail/nxp-semiconductors/p87c52x2fn-112 | 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 # PART NUMBER DERIVATION | Memory | | Temperature Range | Package | |-----------------------------------|---|----------------------|------------| | P87C51X2 | | B = 0 °C TO +70 °C | A = PLCC | | | 1 | F = -40 °C TO +85 °C | N = DIP | | 7 = OTP 5 = ROM/OTP 3 = ROMless | 1 = 128 BYTES RAM X2 = 6-clock
4 KBYTES ROM/OTP mode available | | BD = LQFP | | 0 = ROM or 3 = ROMless
ROMless | 2 = 256 BYTES RAM | | DH = TSSOP | | 1' | 8 KBYTES ROM/OTP | | | | | 4 = 256 BYTES RAM
16 KBYTES ROM/OTP | | | | | 8 = 256 BYTES RAM | | | | | 32 KBYTES ROM/OTP | | | The following table illustrates the correlation between operating mode, power supply and maximum external clock frequency: | Operating Mode | Power Supply | Maximum Clock Frequency | |----------------|----------------|-------------------------| | 6-clock | 5 V ± 10% | 30 MHz | | 6-clock | 2.7 V to 5.5 V | 16 MHz | | 12-clock | 5 V ± 10% | 33 MHz | | 12-clock | 2.7 V to 5.5 V | 16 MHz | 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 # LOGIC SYMBOL NOTE: 1. INTO/P3.2 and T1/P3.5 are absent in the TSSOP38 package. # PLASTIC DUAL IN-LINE PACKAGE PIN CONFIGURATIONS 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 # **PIN DESCRIPTIONS** | | | PIN N | UMBER | | | | | |-----------------|-------|--------------|---------------|-------|---|--|--| | MNEMONIC | DIP | PLCC | LQFP | TSSOP | TYPE | NAME AND FUNCTION | | | V _{SS} | 20 | 22 | 16 | 9 | I | Ground: 0 V reference. | | | V _{CC} | 40 | 44 | 38 | 29 | ı | Power Supply: This is the power supply voltage for normal, idle, and power-down operation. | | | P0.0-0.7 | 39–32 | 43–36 | 37–30 | 28–21 | have 1s written to them are pulled high by the internal pull-ups and can be use inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I _{IL}). Port 1 receives the low-order address byte during program memory verification. Altern functions for Port 1 include: 1/O T2 (P1.0): Timer/Counter 2 external count input/clockout (see Programmab Clock-Out) 1 T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction control 1/O Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins have 1s written to them are pulled high by the internal pull-ups and can be use inputs. As inputs, port 2 pins that are externally being pulled low will source cu because of the internal pull-ups. (See DC Electrical Characteristics: I _{IL}). Port 2 emits the high-order address byte during fetches from external program memo and during accesses to external data memory that use 16-bit addresses (MOV @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), 2 emits the contents of the P2 special function register. Some Port 2 pins receithe high order address bits during EPROM programming and verification. 1/O Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins have 1s written to them are pulled high by the internal pull-ups and can be use inputs. As inputs, port 3 pins that are externally being pulled low will source cu because of the pull-ups. (See DC Electrical Characteristics: I _{IL}). Port 3 also se the special features of the 80C51 family, as listed below: 1 RxD (P3.1): Serial output port 1 INTO (P3.1): External interrupt 1 | | | | P1.0-P1.7 | 1–8 | 2–9 | 40–44,
1–3 | 30–37 | I/O | because of the internal pull-ups. (See DC Electrical Characteristics: I _{IL}). Port 1 also receives the low-order address byte during program memory verification. Alternate | | | | 1 | 2 | 40 | 30 | I/O | T2 (P1.0): Timer/Counter 2 external count input/clockout (see Programmable Clock-Out) | | | | 2 | 3 | 41 | 31 | 1 | T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction control | | | P2.0-P2.7 | 21–28 | 24–31 | 18–25 | 10–17 | I/O | During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function register. Some Port 2 pins receive | | | P3.0-P3.7 | 10–17 | 11,
13–19 | 5,
7–13 | 1–6 | I/O | Port 3 : Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: I _{IL}). Port 3 also serves the special features of the 80C51 family, as listed below: | | | | 10 | 11 | 5 | 1 | ı | RxD (P3.0): Serial input port | | | | 11 | 13 | 7 | 2 | 0 | TxD (P3.1): Serial output port | | | | 12 | 14 | 8 | | ı | ĪNTŌ (P3.2): External interrupt ¹ | | | | 13 | 15 | 9 | 3 | ı | INT1 (P3.3): External interrupt | | | | 14 | 16 | 10 | 4 | ı | T0 (P3.4): Timer 0 external input | | | | 15 | 17 | 11 | | ı | T1 (P3.5): Timer 1 external input ¹ | | | | 16 | 18 | 12 | 5 | 0 | WR (P3.6): External data memory write strobe | | | | 17 | 19 | 13 | 6 | 0 | RD (P3.7): External data memory read strobe | | | RST | 9 | 10 | 4 | 38 | I | Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} . | | | ALE/PROG | 30 | 33 | 27 | 19 | 0 | Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (12-clock Mode) or 1/3 (6-clock Mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This
pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR auxiliary.0. With this bit set, ALE will be active only during a MOVX instruction. | | 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 Table 1. Special Function Registers | SYMBOL | DESCRIPTION | DIRECT
ADDRESS | MSB | IT ADDRI | SS, SYM | BOL, OR | ALTERNA | TIVE PO | RT FUNC | TION
LSB | RESET
VALUE | |---------------------|---|-------------------|--------|----------|----------|-------------------|----------|----------|----------|-------------|----------------| | ACC* | Accumulator | E0H | E7 | E6 | E5 | E4 | E3 | E2 | E1 | E0 | 00H | | AUXR# | Auxiliary | 8EH | - | _ | <u> </u> | <u> </u> | _ | <u> </u> | _ | AO | xxxxxxx0B | | AUXR1# | Auxiliary 1 | A2H | - | - | - | LPEP ² | WUPD | 0 | - | DPS | xxx000x0E | | B* | B register | F0H | F7 | F6 | F5 | F4 | F3 | F2 | F1 | F0 | 00H | | CKCON | Clock Control Register | 8FH | _ | _ | <u> </u> | <u> </u> | _ | T - | <u> </u> | X2 | xxx00000E | | DPTR:
DPH
DPL | Data Pointer (2 bytes) Data Pointer High Data Pointer Low | 83H
82H | | | • | <u>I</u> | | | | | 00H
00H | | | | | AF | AE | AD | AC | AB | AA | A9 | A8 | | | IE* | Interrupt Enable | A8H | ĒĀ | _ | ET2 | ES | ET1 | EX1 | ET0 | EX0 | 0x000000E | | | | | BF | BE | BD | ВС | BB | ВА | В9 | B8 | 1 | | IP* | Interrupt Priority | B8H | - | - | PT2 | PS | PT1 | PX1 | PT0 | PX0 | xx000000E | | IPH# | Interrupt Priority High | В7Н | - | - | PT2H | PSH | PT1H | PX1H | PT0H | PX0H | xx000000E | | | | | 87 | 86 | 85 | 84 | 83 | 82 | 81 | 80 | 1 | | P0* | Port 0 | 80H | AD7 | AD6 | AD5 | AD4 | AD3 | AD2 | AD1 | AD0 | FFH | | | | | 97 | 96 | 95 | 94 | 93 | 92 | 91 | 90 | 1 | | P1* | Port 1 | 90H | - | - | <u> </u> | <u> </u> | _ | - | T2EX | T2 | FFH | | | | | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | 1 | | P2* | Port 2 | A0H | AD15 | AD14 | AD13 | AD12 | AD11 | AD10 | AD9 | AD8 | FFH | | - | | | B7 | B6 | B5 | B4 | B3 | B2 | B1 | В0 | 1 | | P3* | Port 3 | вон | RD | WR | T1 | T0 | ĪNT1 | ĪNT0 | TxD | RxD | FFH | | PCON#1 | Power Control | 87H | SMOD1 | SMOD0 | | POF | GF1 | GF0 | PD | IDL | 00xx0000E | | | | | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | 1 | | PSW* | Program Status Word | D0H | CY | AC | F0 | RS1 | RS0 | OV | _ | Р | 000000x0E | | RACAP2H# | Timer 2 Capture High | СВН | | | | | <u>I</u> | | | | 00H | | RACAP2L# | Timer 2 Capture Low | CAH | | | | | | | | | 00H | | SADDR# | Slave Address | A9H | | | | | | | | | 00H | | SADEN# | Slave Address Mask | В9Н | | | | | | | | | 00H | | SBUF | Serial Data Buffer | 99H | | | | | | | | | xxxxxxxxB | | | | | 9F | 9E | 9D | 9C | 9B | 9A | 99 | 98 | | | SCON* | Serial Control | 98H | SM0/FE | SM1 | SM2 | REN | TB8 | RB8 | TI | RI | 00H | | SP | Stack Pointer | 81H | | | ļ | ļ | <u>I</u> | | <u>I</u> | ļ | 07H | | | | | 8F | 8E | 8D | 8C | 8B | 8A | 89 | 88 | | | TCON* | Timer Control | 88H | TF1 | TR1 | TF0 | TR0 | IE1 | IT1 | IE0 | IT0 | 00H | | | | | CF | CE | CD | CC | СВ | CA | C9 | C8 | 1 | | T2CON* | Timer 2 Control | C8H | TF2 | EXF2 | RCLK | TCLK | EXEN2 | TR2 | C/T2 | CP/RL2 | 00H | | T2MOD# | Timer 2 Mode Control | C9H | - | _ | - | – | - LALINZ | - | T20E | DCEN | xxxxxx00B | | TH0 | Timer High 0 | 8CH | | | | | | | .202 | DOLIV | 00H | | TH1 | Timer High 1 | 8DH | | | | | | | | | 00H | | TH2# | Timer High 2 | CDH | | | | | | | | | 00H | | TL0 | Timer Low 0 | 8AH | | | | | | | | | 00H | | TL1 | Timer Low 1 | 8BH | | | | | | | | | 00H | | TL2# | Timer Low 2 | CCH | | | | | | | | | 00H | | TMOD | Timer Mode | 89H | GATE | C/T | M1 | M0 | GATE | C/T | M1 | M0 | 00H | # NOTE: Unused register bits that are not defined should not be set by the user's program. If violated, the device could function incorrectly. - SFRs are bit addressable. - # SFRs are modified from or added to the 80C51 SFRs. - Reserved bits. - 1. Reset value depends on reset source. - 2. LPEP Low Power EPROM operation (OTP only) 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 Figure 1. Timer/Counter 0/1 Mode Control (TMOD) Register Figure 2. Timer/Counter 0/1 Mode 0: 13-Bit Timer/Counter 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 **Table 4. Timer 2 Operating Modes** | RCLK + TCLK | CP/RL2 | TR2 | MODE | |-------------|--------|-----|---------------------| | 0 | 0 | 1 | 16-bit Auto-reload | | 0 | 1 | 1 | 16-bit Capture | | 1 | Х | 1 | Baud rate generator | | Х | Х | 0 | (off) | | | ddress =
t Address | | | | | | | ŀ | Reset Value | = 00H | |--------|-----------------------|------------|--|---------------------------|--------------|--------------------------------|-----------------------------|---------------------------|-------------------------------|--| | | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | TF2 | EXF2 | RCLK | TCLK | EXEN2 | TR2 | C/T2 | CP/RL2 | | | Symbol | Positi | on Na | me and Sig | nificance | | | | | | | | TF2 | T2CO | | ner 2 overflo | | | overflow and | d must be c | leared by so | oftware. TF2 | will not be set | | EXF2 | T2CO | EX
inte | Firmer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1). | | | | | | | | | RCLK | T2CO | | ceive clock f
modes 1 and | | | | | | | r its receive clock | | TCLK | T2CO | | ansmit clock
modes 1 and | | | | | | | or its transmit clocl
ck. | | EXEN2 | T2CO | tra | ner 2 externa
nsition on T2
ore events a | EX if Timer | g. When se | t, allows a ca | apture or re
lock the se | load to occurial port. EX | ur as a result
EN2 = 0 cau | of a negative
ses Timer 2 to | | TR2 | T2CO | N.2 Sta | art/stop contr | ol for Timer | 2. A logic 1 | starts the tir | mer. | | | | | C/T2 | T2CO | N.1 Tin | | nternal time | r (OSĆ/12 ir | n 12-clock m
falling edge t | | C/6 in 6-cloc | ck mode) | | | CP/RL2 | T2CO | cle
EX | ared, auto-re | eloads will onen either R | ccur either | with Timer 2 | overflows | or negative | transitions a | EXEN2 = 1. When
T2EX when
ced to auto-reload | Figure 6. Timer/Counter 2 (T2CON) Control Register 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 Figure 11. Timer 2 in Baud Rate Generator Mode # **Baud Rate Generator Mode** Bits TCLK and/or RCLK in T2CON (Table 4) allow the serial port transmit and receive baud rates to be derived from either Timer 1 or Timer 2. When TCLK= 0, Timer 1 is used as the serial port transmit baud rate generator. When TCLK= 1, Timer 2 is used as the serial port transmit baud rate generator. RCLK has the same effect for the serial port receive baud rate. With these two bits, the serial port can have different receive and transmit baud rates – one generated by Timer 1, the other by Timer 2. Figure 11 shows the Timer 2 in baud rate generation mode. The baud rate generation mode is like the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software. The baud rates in modes 1 and 3 are determined by Timer 2's overflow rate given below: Modes 1 and 3 Baud Rates = $$\frac{\text{Timer 2 Overflow Rate}}{16}$$ The timer can be configured for either "timer" or "counter" operation. In many applications, it is configured for "timer" operation (C/T2=0). Timer operation is different for Timer 2 when it is being used as a baud rate generator. Usually, as a timer it would increment every machine cycle (i.e., 1/6 the oscillator frequency in 6-clock mode or 1/12 the oscillator frequency in 12-clock mode). As a baud rate generator, it increments at the oscillator frequency in 6-clock mode or at 1/2 the oscillator frequency in 12-clock mode. Thus the baud rate formula is as follows: Modes 1 and 3 Baud Rates = Oscillator Frequency [n × [65536 – (RCAP2H, RCAP2L)]] Where: n = 16 in 6-clock mode, 32 in 12-clock mode. (RCAP2H, RCAP2L)= The content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer. The Timer 2 as a baud rate generator mode shown in Figure 11 is valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Thus, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Also if the EXEN2 (T2 external enable flag) is set, a 1-to-0 transition in T2EX (Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2). Therefore when Timer 2 is in use as a baud rate generator, T2EX can be used as an additional external interrupt, if needed. When Timer 2 is in the baud rate generator mode, one should not try to read or write TH2 and TL2. As a baud rate generator, Timer 2 is incremented every state time (osc/2) or asynchronously from pin T2; under these conditions, a read or write of TH2 or TL2 may not be accurate. The RCAP2 registers may be read, but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off
(clear TR2) before accessing the Timer 2 or RCAP2 registers. Table 5 shows commonly used baud rates and how they can be obtained from Timer 2. 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 ## **FULL-DUPLEX ENHANCED UART** # Standard UART operation The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the register. (However, if the first byte still hasn't been read by the time reception of the second byte is complete, one of the bytes will be lost.) The serial port receive and transmit registers are both accessed at Special Function Register SBUF. Writing to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register. The serial port can operate in 4 modes: Mode 0: Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received (LSB first). The baud rate is fixed at 1/12 the oscillator frequency in 12-clock mode or 1/6 the oscillator frequency in 6-clock mode. Mode 1: 10 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in Special Function Register SCON. The baud rate is variable. Mode 2: 11 bits are transmitted (through TxD) or received (through RxD): start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On Transmit, the 9th data bit (TB8 in SCON) can be assigned the value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. On receive, the 9th data bit goes into RB8 in Special Function Register SCON, while the stop bit is ignored. The baud rate is programmable to either 1/32 or 1/64 the oscillator frequency in 12-clock mode or 1/16 or 1/32 the oscillator frequency in 6-clock mode. Mode 3: 11 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). In fact, Mode 3 is the same as Mode 2 in all respects except baud rate. The baud rate in Mode 3 is variable. In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. Reception is initiated in the other modes by the incoming start bit if REN = 1. # **Multiprocessor Communications** Modes 2 and 3 have a special provision for multiprocessor communications. In these modes, 9 data bits are received. The 9th one goes into RB8. Then comes a stop bit. The port can be programmed such that when the stop bit is received, the serial port interrupt will be activated only if RB8 = 1. This feature is enabled by setting bit SM2 in SCON. A way to use this feature in multiprocessor systems is as follows: When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no slave will be interrupted by a data byte. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that will be coming. The slaves that weren't being addressed leave their SM2s set and go on about their business, ignoring the coming data bytes. SM2 has no effect in Mode 0, and in Mode 1 can be used to check the validity of the stop bit. In a Mode 1 reception, if SM2 = 1, the receive interrupt will not be activated unless a valid stop bit is received. ### **Serial Port Control Register** The serial port control and status register is the Special Function Register SCON, shown in Figure 12. This register contains not only the mode selection bits, but also the 9th data bit for transmit and receive (TB8 and RB8), and the serial port interrupt bits (TI and RI). #### **Baud Rates** The baud rate in Mode 0 is fixed: Mode 0 Baud Rate = Oscillator Frequency / 12 (12-clock mode) or / 6 (6-clock mode). The baud rate in Mode 2 depends on the value of bit SMOD in Special Function Register PCON. If SMOD = 0 (which is the value on reset), and the port pins in 12-clock mode, the baud rate is 1/64 the oscillator frequency. If SMOD = 1, the baud rate is 1/32 the oscillator frequency. In 6-clock mode, the baud rate is 1/32 or 1/16 the oscillator frequency, respectively. Mode 2 Baud Rate = $$\frac{2^{\text{SMOD}}}{n} \times \text{(Oscillator Frequency)}$$ Where: n = 64 in 12-clock mode, 32 in 6-clock mode The baud rates in Modes 1 and 3 are determined by the Timer 1 or Timer 2 overflow rate. #### **Using Timer 1 to Generate Baud Rates** When Timer 1 is used as the baud rate generator (T2CON.RCLK = 0, T2CON.TCLK = 0), the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate and the value of SMOD as follows: Mode 1. 3 Baud Rate = $$\frac{2^{\text{SMOD}}}{n} \times \text{(Timer 1 Overflow Rate)}$$ Where: n = 32 in 12-clock mode, 16 in 6-clock mode The Timer 1 interrupt should be disabled in this application. The Timer itself can be configured for either "timer" or "counter" operation, and in any of its 3 running modes. In the most typical applications, it is configured for "timer" operation, in the auto-reload mode (high nibble of TMOD = 0010B). In that case the baud rate is given by the formula: Mode 1, 3 Baud Rate = $$\frac{2^{\text{SMOD}}}{n} \times \frac{\text{Oscillator Frequency}}{12 \times [256-(\text{TH1})]}$$ Where: n = 32 in 12-clock mode, 16 in 6-clock mode One can achieve very low baud rates with Timer 1 by leaving the Timer 1 interrupt enabled, and configuring the Timer to run as a 16-bit timer (high nibble of TMOD = 0001B), and using the Timer 1 interrupt to do a 16-bit software reload. Figure 13 lists various commonly used baud rates and how they can be obtained from Timer 1. 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 shifted to the left one position. The value that comes in from the right is the value that was sampled at the P3.0 pin at S5P2 of the same machine cycle. As data bits come in from the right, 1s shift out to the left. When the 0 that was initially loaded into the rightmost position arrives at the leftmost position in the shift register, it flags the RX Control block to do one last shift and load SBUF. At S1P1 of the 10th machine cycle after the write to SCON that cleared RI, RECEIVE is cleared as RI is set. #### More About Mode 1 Ten bits are transmitted (through TxD), or received (through RxD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in SCON. In the 80C51 the baud rate is determined by the Timer 1 or Timer 2 overflow rate. Figure 15 shows a simplified functional diagram of the serial port in Mode 1, and associated timings for transmit receive. Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads a 1 into the 9th bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission actually commences at S1P1 of the machine cycle following the next rollover in the divide-by-16 counter. (Thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SBUF" signal.) The transmission begins with activation of SEND which puts the start bit at TxD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TxD. The first shift pulse occurs one bit time after that. As data bits shift out to the right, zeros are clocked in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position is just to the left of the MSB, and all positions to the left of that contain zeros. This condition flags the TX Control unit to do one last shift and then deactivate SEND and set TI. This occurs at the 10th divide-by-16 rollover after "write to SBUF." Reception is initiated by a detected 1-to-0 transition at RxD. For this purpose RxD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by-16 counter is immediately reset, and 1FFH is written into the input shift register. Resetting the divide-by-16 counter aligns its rollovers with the boundaries of the incoming bit times. The 16 states of the counter divide each bit time into 16ths. At the 7th, 8th, and 9th counter states of each bit time, the bit detector samples the value of RxD. The value accepted is the value that was seen in at least 2 of the 3 samples. This is done for noise rejection. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to looking for another 1-to-0 transition. This is to provide rejection of false start bits. If the start bit proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed. As data bits come in from the right, 1s shift out to the left. When the start bit arrives at the leftmost position in the shift register (which in mode 1 is a 9-bit register), it flags the RX Control block to do one last shift, load SBUF and RB8, and set RI. The signal to load SBUF and RB8, and to set RI, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated.: - 1. R1 = 0, and - 2. Either SM2 = 0, or the received stop bit = 1. If either of these two conditions is not met, the received frame is irretrievably
lost. If both conditions are met, the stop bit goes into RB8, the 8 data bits go into SBUF, and RI is activated. At this time, whether the above conditions are met or not, the unit goes back to looking for a 1-to-0 transition in RxD. #### More About Modes 2 and 3 Eleven bits are transmitted (through TxD), or received (through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On transmit, the 9th data bit (TB8) can be assigned the value of 0 or 1. On receive, the 9the data bit goes into RB8 in SCON. The baud rate is programmable to either 1/32 or 1/64 (12-clock mode) or 1/16 or 1/32 the oscillator frequency (6-clock mode) the oscillator frequency in Mode 2. Mode 3 may have a variable baud rate generated from Timer 1 or Timer 2. Figures 16 and 17 show a functional diagram of the serial port in Modes 2 and 3. The receive portion is exactly the same as in Mode 1. The transmit portion differs from Mode 1 only in the 9th bit of the transmit shift register. Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads TB8 into the 9th bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission commences at S1P1 of the machine cycle following the next rollover in the divide-by-16 counter. (Thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SBUF" signal.) The transmission begins with activation of SEND, which puts the start bit at TxD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TxD. The first shift pulse occurs one bit time after that. The first shift clocks a 1 (the stop bit) into the 9th bit position of the shift register. Thereafter, only zeros are clocked in. Thus, as data bits shift out to the right, zeros are clocked in from the left. When TB8 is at the output position of the shift register, then the stop bit is just to the left of TB8, and all positions to the left of that contain zeros. This condition flags the TX Control unit to do one last shift and then deactivate SEND and set TI. This occurs at the 11th divide-by-16 rollover after "write to SUBF." Reception is initiated by a detected 1-to-0 transition at RxD. For this purpose RxD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by-16 counter is immediately reset, and 1FFH is written to the input shift register. At the 7th, 8th, and 9th counter states of each bit time, the bit detector samples the value of R-D. The value accepted is the value that was seen in at least 2 of the 3 samples. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to looking for another 1-to-0 transition. If the start bit proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed. As data bits come in from the right, 1s shift out to the left. When the start bit arrives at the leftmost position in the shift register (which in Modes 2 and 3 is a 9-bit register), it flags the RX Control block to do one last shift, load SBUF and RB8, and set RI. The signal to load SBUF and RB8, and to set RI, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated. - 1. RI = 0, and - 2. Either SM2 = 0, or the received 9th data bit = 1. If either of these conditions is not met, the received frame is irretrievably lost, and RI is not set. If both conditions are met, the received 9th data bit goes into RB8, and the first 8 data bits go into SBUF. One bit time later, whether the above conditions were met or not, the unit goes back to looking for a 1-to-0 transition at the RxD input. 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) Figure 16. Serial Port Mode 2 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 | | lress = 98H
Addressable | | | | | | | | Reset Value = 0000 0000E | |--|----------------------------|--------------------|--------------------------|-------------------------------|-------------------------------------|----------------------------|-------------------------------|----------------------|---| | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | SMC | /FE SM1 | SM2 | REN | TB8 | RB8 | TI | RI | | | | (SMO | D0 = 0/1)* | | ' | | | | | | | Symbol | Position | Function | on | | | | | | | | FE | SCON.7 | cleared | | ames but sho | | | | | etected. The FE bit is not must be set to enable | | SM0 | SCON.7 | Serial F | ort Mode I | Bit 0, (SMOD | 0 must = 0 to | access bit | SM0) | | | | SM1 | SCON.6 | Serial F | ort Mode I | Bit 1 | | | , | | | | | | SM0 | SM1 | Mode | Description | Bau | d Rate** | | | | | | 0 | 0
1 | 0
1 | shift register
8-bit UART | f _{OSC} | , | mode) or | f _{OSC} /6 (6-clk mode) | | | | 1 | 0 | 2 | 9-bit UART | fosc | | | _{SC} /16 (6-clock mode) or | | | | 1 | 1 | 3 | 9-bit UART | varia | ble | , | | | SM2 | SCON.5 | unless t
Broadc | he receive
ast Addres | d 9th data bi
s. In Mode 1 | t (RB8) is 1, ir
, if SM2 = 1 th | dicating a
en RI will r | n address, a
not be activa | and the reated unles | 2 = 1 then RI will not be set
eceived byte is a Given or
ss a valid stop bit was
0, SM2 should be 0. | | REN | SCON.4 | Enables | s serial rec | eption. Set b | y software to | enable rec | eption. Clea | r by soft | ware to disable reception. | | TB8 | SCON.3 | The 9th | data bit th | at will be trai | nsmitted in Mo | des 2 and | 3. Set or cl | ear by so | oftware as desired. | | RB8 | SCON.2 | was red | | | bit that was re | eceived. In | Mode 1, if | SM2 = 0, | RB8 is the stop bit that | | TI | SCON.1 | | | | nardware at th
, in any serial | | | | de 0, or at the beginning of by software. | | RI | SCON.0 | | time in the | | | | | | e 0, or halfway through the
Must be cleared by | | TES:
MOD0 is locate
asc = oscillator | | | | | | | | | SU0162 | Figure 18. SCON: Serial Port Control Register 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 # **Interrupt Priority Structure** Figure 21. Interrupt Sources # Interrupts The devices described in this data sheet provide six interrupt sources. These are shown in Figure 21. The External Interrupts INTO and INTT can each be either level-activated or transition-activated, depending on bits ITO and IT1 in Register TCON. The flags that actually generate these interrupts are bits IEO and IE1 in TCON. When an external interrupt is generated, the flag that generated it is cleared by the hardware when the service routine is vectored to only if the interrupt was transition-activated. If the interrupt was level-activated, then the external requesting source is what controls the request flag, rather than the on-chip hardware. The Timer 0 and Timer 1 Interrupts are generated by TF0 and TF1, which are set by a rollover in their respective Timer/Counter registers (except see Timer 0 in Mode 3). When a timer interrupt is generated, the flag that generated it is cleared by the on-chip hardware when the service routine is vectored to. The Serial Port Interrupt is generated by the logical OR of RI and TI. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine will normally have to determine whether it was RI or TI that generated the interrupt, and the bit will have to be cleared in software. All of the bits that generate interrupts can be set or cleared by software, with the same result as though it had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be canceled in software. Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE (Figure 22). IE also contains a global disable bit, $\overline{\text{EA}}$, which disables all interrupts at once. #### **Priority Level Structure** Each interrupt source can also be individually programmed to one of four priority levels by setting or clearing bits in Special Function Registers IP (Figure 23) and IPH (Figure 24). A lower-priority interrupt can itself be interrupted by a higher-priority interrupt, but not by another interrupt of the same level. A high-priority level 3 interrupt can't be interrupted by any other interrupt source. If two request of different priority levels are received simultaneously, the request of higher priority level is serviced. If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence as follows: # Source Priority Within Level 1. IE0 (External Int 0) (highest) - 2. TF0 (Timer 0) - 3. IE1 (External Int 1) - 4. TF1 (Timer 1) - 5. RI+TI (UART) - 6. TF2, EXF2 (Timer 2) (lowest) Note that the "priority within level" structure is only used to resolve simultaneous requests of the same priority level. The IP and IPH registers contain a number of unimplemented bits. User software should not write 1s to these positions, since they may be used in other 80C51 Family products. ### **How Interrupts Are Handled** The interrupt flags are sampled at S5P2 of every machine cycle. The samples are polled during the following machine cycle. If one of the flags was in a set condition at S5P2 of the preceding cycle, the polling cycle will find it and the interrupt system will generate an LCALL to the
appropriate service routine, provided this hardware-generated LCALL is not blocked by any of the following conditions: - An interrupt of equal or higher priority level is already in progress. - 2. The current (polling) cycle is not the final cycle in the execution of the instruction in progress. - The instruction in progress is RETI or any write to the IE or IP registers. Any of these three conditions will block the generation of the LCALL to the interrupt service routine. Condition 2 ensures that the instruction in progress will be completed before vectoring to any service routine. Condition 3 ensures that if the instruction in progress is RETI or any access to IE or IP, then at least one more instruction will be executed before any interrupt is vectored to. The polling cycle is repeated with each machine cycle, and the values polled are the values that were present at S5P2 of the previous machine cycle. Note that if an interrupt flag is active but not being responded to for one of the above conditions, if the flag is not still active when the blocking condition is removed, the denied interrupt will not be serviced. In other words, the fact that the interrupt flag was once active but not serviced is not remembered. Every polling cycle is new. 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 # **ABSOLUTE MAXIMUM RATINGS**1, 2, 3 | PARAMETER | RATING | UNIT | |--|------------------------|------| | Operating temperature under bias | 0 to +70 or -40 to +85 | °C | | Storage temperature range | -65 to +150 | °C | | Voltage on EA/V _{PP} pin to V _{SS} | 0 to +13.0 | V | | Voltage on any other pin to V _{SS} | -0.5 to +6.5 | V | | Maximum I _{OL} per I/O pin | 15 | mA | | Power dissipation (based on package heat transfer limitations, not device power consumption) | 1.5 | W | ### NOTES: 1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section of this specification is not implied. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted. # **AC ELECTRICAL CHARACTERISTICS** $T_{amb} = 0$ °C to +70°C or -40°C to +85°C | | | | | | CLOCK FREC | | | |---------------------|--------|----------------------|----------------|-------------------------|------------|-----|------| | SYMBOL | FIGURE | PARAMETER | OPERATING MODE | POWER SUPPLY
VOLTAGE | MIN | MAX | UNIT | | 1/t _{CLCL} | 31 | Oscillator frequency | 6-clock | 5 V ± 10% | 0 | 30 | MHz | | | | | 6-clock | 2.7 V to 5.5 V | 0 | 16 | MHz | | | | | 12-clock | 5 V ± 10% | 0 | 33 | MHz | | | | | 12-clock | 2.7 V to 5.5 V | 0 | 16 | MHz | 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 # AC ELECTRICAL CHARACTERISTICS (12-CLOCK MODE, 5 V ±10% OPERATION) $T_{amb} = 0 \, ^{\circ}C \text{ to } +70 \, ^{\circ}C \text{ or } -40 \, ^{\circ}C \text{ to } +85 \, ^{\circ}C \text{ ; } V_{CC} = 5 \, ^{\circ}V \pm 10\%, V_{SS} = 0 \, V^{1,2,3,4}$ | Symbol | Figure | Parameter | Limits | | 16 MHz | Clock | Unit | |---------------------|--------|--|--------------------------|---------------------------------------|----------|-------|------| | | | | MIN | MAX | MIN | MAX | | | 1/t _{CLCL} | 31 | Oscillator frequency | 0 | 33 | - | _ | MHz | | t _{LHLL} | 27 | ALE pulse width | 2 t _{CLCL} -8 | _ | 117 | _ | ns | | t _{AVLL} | 27 | Address valid to ALE low | t _{CLCL} -13 | _ | 49.5 | _ | ns | | t _{LLAX} | 27 | Address hold after ALE low | t _{CLCL} -20 | _ | 42.5 | _ | ns | | t _{LLIV} | 27 | ALE low to valid instruction in | _ | 4 t _{CLCL} -35 | - | 215 | ns | | t _{LLPL} | 27 | ALE low to PSEN low | t _{CLCL} -10 | _ | 52.5 | _ | ns | | t _{PLPH} | 27 | PSEN pulse width | 3 t _{CLCL} -10 | _ | 177.5 | _ | ns | | t _{PLIV} | 27 | PSEN low to valid instruction in | _ | 3 t _{CLCL} -35 | - | 152.5 | ns | | t _{PXIX} | 27 | Input instruction hold after PSEN | 0 | _ | 0 | _ | ns | | t _{PXIZ} | 27 | Input instruction float after PSEN | _ | t _{CLCL} -10 | 1- | 52.5 | ns | | t _{AVIV} | 27 | Address to valid instruction in | _ | 5 t _{CLCL} -35 | 1- | 277.5 | ns | | t _{PLAZ} | 27 | PSEN low to address float | _ | 10 | 1- | 10 | ns | | Data Men | nory | | | | | | | | t _{RLRH} | 28 | RD pulse width | 6 t _{CLCL} –20 | _ | 355 | _ | ns | | t _{WLWH} | 29 | WR pulse width | 6 t _{CLCL} -20 | - | 355 | _ | ns | | t _{RLDV} | 28 | RD low to valid data in | - | 5 t _{CLCL} -35 | - | 277.5 | ns | | t _{RHDX} | 28 | Data hold after RD | 0 | - | 0 | _ | ns | | t _{RHDZ} | 28 | Data float after RD | _ | 2 t _{CLCL} -10 | | 115 | ns | | t _{LLDV} | 28 | ALE low to valid data in | _ | 8 t _{CLCL} -35 | 1_ | 465 | ns | | t _{AVDV} | 28 | Address to valid data in | _ | 9 t _{CLCL} -35 | <u> </u> | 527.5 | ns | | t _{LLWL} | 28, 29 | ALE low to RD or WR low | 3 t _{CLCL} -15 | 3 t _{CLCL} +15 | 172.5 | 202.5 | ns | | t _{AVWL} | 28, 29 | Address valid to WR low or RD low | 4 t _{CLCL} -15 | - | 235 | _ | ns | | t _{QVWX} | 29 | Data valid to WR transition | t _{CLCL} –25 | _ | 37.5 | _ | ns | | t _{WHQX} | 29 | Data hold after WR | t _{CLCL} –15 | 1- | 47.5 | _ | ns | | t _{QVWH} | 29 | Data valid to WR high | 7 t _{CLCL} –5 | 1_ | 432.5 | _ | ns | | t _{RLAZ} | 28 | RD low to address float | - | 0 | - | 0 | ns | | t _{WHLH} | 28, 29 | RD or WR high to ALE high | t _{CLCL} -10 | t _{CLCL} +10 | 52.5 | 72.5 | ns | | External (| | 3 | 0202 | 1 0101 | 1 | l | | | t _{CHCX} | 31 | High time | 0.32 t _{CLCL} | t _{CLCL} - t _{CLCX} | _ | _ | ns | | t _{CLCX} | 31 | Low time | 0.32 t _{CLCL} | t _{CLCL} - t _{CHCX} | 1_ | _ | ns | | t _{CLCH} | 31 | Rise time | - | 5 | - | _ | ns | | t _{CHCL} | 31 | Fall time | _ | 5 | 1_ | _ | ns | | Shift regi | | | I | 1 - | | | 11.5 | | t _{XLXL} | 30 | Serial port clock cycle time | 12 t _{CLCL} | 1_ | 750 | _ | ns | | t _{QVXH} | 30 | Output data setup to clock rising edge | 10 t _{CLCL} –25 | 1_ | 600 | _ | ns | | t _{XHQX} | 30 | Output data hold after clock rising edge | 2 t _{CLCL} -15 | _ | 110 | _ | ns | | t _{XHDX} | 30 | Input data hold after clock rising edge | 0 | 1_ | 0 | _ | ns | | t _{XHDV} | 30 | Clock rising edge to input data valid | | 10 t _{CLCL} -133 | - | 492 | ns | - Parameters are valid over operating temperature range unless otherwise specified. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all outputs = 80 pF - 3. Interfacing the microcontroller to devices with float time up to 45 ns is permitted. This limited bus contention will not cause damage to port 0 4. Parts are guaranteed by design to operate down to 0 Hz. 2003 Jan 24 40 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 # AC ELECTRICAL CHARACTERISTICS (12-CLOCK MODE, 2.7 V TO 5.5 V OPERATION) $T_{amb} = 0$ °C to +70 °C or -40 °C to +85 °C : $V_{CC} = 2.7$ V to 5.5 V. $V_{SS} = 0$ V^{1,2,3,4} | Symbol | Figure | Parameter | Limits | | 16 MHz | Unit | | |---------------------|--------|--|--------------------------
---------------------------------------|--------|-------|-----| | | | | MIN | MAX | MIN | MAX | ٦ | | 1/t _{CLCL} | 31 | Oscillator frequency | 0 | 16 | _ | _ | MHz | | t _{LHLL} | 27 | ALE pulse width | 2t _{CLCL} -10 | _ | 115 | _ | ns | | t _{AVLL} | 27 | Address valid to ALE low | t _{CLCL} -15 | _ | 47.5 | - | ns | | tLLAX | 27 | Address hold after ALE low | t _{CLCL} –25 | - | 37.5 | _ | ns | | t _{LLIV} | 27 | ALE low to valid instruction in | - | 4 t _{CLCL} -55 | _ | 195 | ns | | t _{LLPL} | 27 | ALE low to PSEN low | t _{CLCL} -15 | - | 47.5 | _ | ns | | t _{PLPH} | 27 | PSEN pulse width | 3 t _{CLCL} -15 | _ | 172.5 | _ | ns | | t _{PLIV} | 27 | PSEN low to valid instruction in | - | 3 t _{CLCL} -55 | - | 132.5 | ns | | t _{PXIX} | 27 | Input instruction hold after PSEN | 0 | - | 0 | _ | ns | | t _{PXIZ} | 27 | Input instruction float after PSEN | _ | t _{CLCL} -10 | _ | 52.5 | ns | | t _{AVIV} | 27 | Address to valid instruction in | _ | 5 t _{CLCL} -50 | _ | 262.5 | ns | | t _{PLAZ} | 27 | PSEN low to address float | _ | 10 | _ | 10 | ns | | Data Men | nory | | | | | | | | t _{RLRH} | 28 | RD pulse width | 6 t _{CLCL} -25 | T- | 350 | _ | ns | | t _{WLWH} | 29 | WR pulse width | 6 t _{CLCL} –25 | 1- | 350 | _ | ns | | RLDV | 28 | RD low to valid data in | - | 5 t _{CLCL} -50 | 1_ | 262.5 | ns | | t _{RHDX} | 28 | Data hold after RD | 0 | - | 0 | _ | ns | | t _{RHDZ} | 28 | Data float after RD | _ | 2 t _{CLCL} -20 | _ | 105 | ns | | t _{LLDV} | 28 | ALE low to valid data in | _ | 8 t _{CLCL} –55 | 1_ | 445 | ns | | t _{AVDV} | 28 | Address to valid data in | _ | 9 t _{CLCL} -50 | - | 512.5 | ns | | t _{LLWL} | 28, 29 | ALE low to RD or WR low | 3 t _{CLCL} -20 | 3 t _{CLCL} +20 | 167.5 | 207.5 | ns | | t _{AVWL} | 28, 29 | Address valid to WR low or RD low | 4 t _{CLCL} -20 | - | 230 | _ | ns | | t _{QVWX} | 29 | Data valid to WR transition | t _{CLCL} –30 | _ | 32.5 | _ | ns | | t _{WHQX} | 29 | Data hold after WR | t _{CLCL} –20 | _ | 42.5 | _ | ns | | t _{QVWH} | 29 | Data valid to WR high | 7 t _{CLCL} –10 | _ | 427.5 | _ | ns | | t _{RLAZ} | 28 | RD low to address float | - | 0 | _ | 0 | ns | | t _{WHLH} | 28, 29 | RD or WR high to ALE high | t _{CLCL} –15 | t _{CLCL} +15 | 47.5 | 77.5 | ns | | External (| | in a community of the c | T-OLOL 15 | T-CLCL - 1-5 | 1 | 1111 | | | tchcx | 31 | High time | 0.32 t _{CLCL} | t _{CLCL} - t _{CLCX} | Ī- | _ | ns | | CLCX | 31 | Low time | 0.32 t _{CLCL} | t _{CLCL} - t _{CHCX} | - | _ | ns | | t _{CLCH} | 31 | Rise time | - | 5 | - | _ | ns | | CHCL | 31 | Fall time | _ | 5 | 1_ | _ | ns | | Shift regi | | 1 20 2002 | | 1 - | 1 | | | | t _{XLXL} | 30 | Serial port clock cycle time | 12 t _{CLCL} | T_ | 750 | 1_ | ns | | t _{QVXH} | 30 | Output data setup to clock rising edge | 10 t _{CLCL} –25 | | 600 | _ | ns | | t _{XHQX} | 30 | Output data hold after clock rising edge | 2 t _{CLCL} -15 | _ | 110 | _ | ns | | t _{XHDX} | 30 | Input data hold after clock rising edge | 0 | | 0 | _ | ns | | t _{XHDV} | 30 | Clock rising edge to input data valid | | 10 t _{CLCL} -133 | - | 492 | ns | - Parameters are valid over operating temperature range unless otherwise specified. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all outputs = 80 pF - 3. Interfacing the microcontroller to devices with float time up to 45 ns is permitted. This limited bus contention will not cause damage to port 0 4. Parts are guaranteed by design to operate down to 0 Hz. 2003 Jan 24 41 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 Figure 36. I_{CC} Test Condition, Active Mode All other pins are disconnected Figure 37. I_{CC} Test Condition, Idle Mode All other pins are disconnected Figure 38. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes $t_{CLCH} = t_{CHCL} = 5 ns$ Figure 39. I_{CC} Test Condition, Power Down Mode All other pins are disconnected. V_{CC} = 2 V to 5.5 V 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 #### **EPROM CHARACTERISTICS** The OTP devices described in this data sheet can be programmed by using a modified Improved Quick-Pulse Programming $^{\rm TM}$ algorithm. It differs from older methods in the value used for $V_{\mbox{\footnotesize{PP}}}$ (programming supply voltage) and in the width and number of the ALE/ $\mbox{\footnotesize{PROG}}$ pulses. The family contains two signature bytes that can be read and used by an EPROM programming system to identify the device. The signature bytes identify the device as being manufactured by Philips. Table 9 shows the logic levels for reading the signature byte, and for programming the program memory, the encryption table, and the security bits. The circuit configuration and waveforms for quick-pulse programming are shown in Figures 40 and 41. Figure 42 shows the circuit configuration for normal program memory verification. # **Quick-Pulse Programming** The setup for microcontroller quick-pulse programming is shown in Figure 40. Note that the device is running with a 4 to 6 MHz oscillator. The reason the oscillator needs to be running is that the device is executing internal address and program data transfers. The address of the EPROM location to be programmed is applied to ports 1 and 2, as shown in Figure 40. The code byte to be programmed into that location is applied to port 0. RST, PSEN and pins of ports 2 and 3 specified in Table 9 are held at the 'Program Code Data' levels indicated in Table 9. The ALE/PROG is pulsed low 5 times as shown in Figure 41. To program the encryption table, repeat the 5 pulse programming sequence for addresses 0 through 1FH, using the 'Pgm Encryption Table' levels. Do not forget that after the encryption table is programmed, verification cycles will produce only encrypted data. To program the security bits, repeat the 5 pulse programming sequence using the 'Pgm Security Bit' levels. After one security bit is programmed, further programming of the code memory and encryption table is disabled. However, the other security bits can still be programmed. Note that the \overline{EA}/V_{PP} pin must not be allowed to go above the maximum specified V_{PP} level for any amount of time. Even a narrow glitch above that voltage can cause permanent damage to the device. The $\ensuremath{\text{V}_{\text{PP}}}$ source should be well regulated and free of glitches and overshoot. # **Program Verification** If security bits 2 and 3 have not been programmed, the on-chip program memory can be read out for program verification. The address of the program memory locations to be read is applied to ports 1 and 2 as shown in Figure 42. The other pins are held at the 'Verify Code Data' levels indicated in Table 9. The contents of the address location will be emitted on port 0. External pull-ups are required on port 0 for this operation. If the 64 byte encryption table has been programmed, the data presented at port 0 will be the exclusive NOR of the program byte with one of the encryption bytes. The user will have to know the encryption table contents in order to correctly decode the verification data. The encryption table itself cannot be read out. #### Reading the Signature bytes The signature bytes are read by the same procedure as a normal verification of locations 030h and 031h, except that P3.6 and P3.7 need to be pulled to a logic low. The values are: (030h) = 15h; indicates manufacturer (Philips) (031h) = 92h/97h/BBh/BDh; indicates P87C51X2/52X2/54X2/ 58X2. # **Program/Verify Algorithms** Any algorithm in agreement with the conditions listed in Table 9, and which satisfies the timing specifications, is suitable. # **Security Bits** With none of the security bits programmed the code in the program memory can be verified. If the encryption table is programmed, the code will be encrypted when verified. When only security bit 1 (see Table 10) is programmed, MOVC instructions executed from external program memory are disabled from fetching code bytes from the internal memory, \overline{EA} is latched on Reset and all further programming of the EPROM is disabled. When security bits 1 and 2 are programmed, in addition to the above, verify mode is disabled. When all three security bits are programmed, all of the conditions above apply and all external program memory execution is disabled. # **Encryption Array** 64 bytes of encryption array are initially unprogrammed (all 1s). [™]Trademark phrase of Intel Corporation. 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 #### MASK ROM DEVICES # **Security Bits** With none of the security bits programmed the code in the program memory can be verified. If the encryption table is programmed, the code will be encrypted when verified. When only security bit 1 (see Table 11) is programmed, MOVC instructions executed from external program memory are disabled from fetching code bytes from the internal memory, \overline{EA} is latched on Reset and all further programming of the EPROM is disabled. When security bits 1 and 2 are programmed, in addition to the above, verify mode is disabled. # **Encryption Array** 64 bytes (87C51), or 32 bytes (87C52/4) of encryption array are initially unprogrammed (all 1s). **Table 11. Program Security Bits** | PROGRAM LOCK BITS ^{1, 2} | | BITS ^{1, 2} | | |-----------------------------------|-----|----------------------|--| | | SB1 | SB2 | PROTECTION DESCRIPTION | | 1 | U | | No Program Security features enabled. (Code verify will still be encrypted by the Encryption Array if
programmed.) | | 2 | Р | U | MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on Reset, and further programming of the EPROM is disabled. | #### NOTES: - 1. P programmed. U unprogrammed. - 2. Any other combination of the security bits is not defined. ### 80C51X2 ROM CODE SUBMISSION When submitting a ROM code for the 80C51X2, the following must be specified: - 1. 4 kbyte user ROM data - 2. 64 byte ROM encryption key - 3. ROM security bits. | ADDRESS | CONTENT | BIT(S) | COMMENT | |----------------|---------|--------|--------------------| | 0000H to 0FFFH | DATA | 7:0 | User ROM Data | | 1000H to 103FH | KEY | 7:0 | ROM Encryption Key | | 1040H | SEC | 0 | ROM Security Bit 1 | | 1040H | SEC | 1 | ROM Security Bit 2 | Security Bit 1: When programmed, this bit has two effects on masked ROM parts: - 1. External MOVC is disabled, and - 2. EA is latched on Reset. Security Bit 2: When programmed, this bit inhibits Verify User ROM. NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled. If the ROM Code file does not include the options, the following information must be included with the ROM code. For each of the following, check the appropriate box, and send to Philips along with the code: | Security Bit #1: | ☐ Enabled | ☐ Disabled | |------------------|-----------|-----------------------------------| | Security Bit #2: | ☐ Enabled | ☐ Disabled | | Encryption: | □ No | ☐ Yes If Yes, must send key file. | #### 80C52X2 ROM CODE SUBMISSION When submitting a ROM code for the 80C52X2, the following must be specified: - 1. 8 kbyte user ROM data - 2. 64 byte ROM encryption key - 3. ROM security bits. 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 ### 80C58X2 ROM CODE SUBMISSION When submitting a ROM code for the 80C58X2, the following must be specified: - 1. 32 kbyte user ROM data - 2. 64 byte ROM encryption key - 3. ROM security bits. | ADDRESS | CONTENT | BIT(S) | COMMENT | |----------------|---------|--------|---| | 0000H to 7FFFH | DATA | 7:0 | User ROM Data | | 8000H to 803FH | KEY | 7:0 | ROM Encryption Key
FFH = no encryption | | 8040H | SEC | 0 | ROM Security Bit 1
0 = enable security
1 = disable security | | 8040H | SEC | 1 | ROM Security Bit 2
0 = enable security
1 = disable security | Security Bit 1: When programmed, this bit has two effects on masked ROM parts: - 1. External MOVC is disabled, and - 2. EA is latched on Reset. Security Bit 2: When programmed, this bit inhibits Verify User ROM. NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled. If the ROM Code file does not include the options, the following information must be included with the ROM code. For each of the following, check the appropriate box, and send to Philips along with the code: | Security Bit #1: | ☐ Enabled | ☐ Disabled | |------------------|-----------|-----------------------------------| | Security Bit #2: | ☐ Enabled | ☐ Disabled | | Encryption: | □ No | ☐ Yes If Yes, must send key file. | 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) P80C3xX2; P80C5xX2; P87C5xX2 # **REVISION HISTORY** | Rev | Date | Description | |-----|----------|--| | _6 | 20030124 | Product data (9397 750 10995); ECN 853-2337 29260 of 06 December 2002 | | | | Modifications: | | | | Added TSSOP38 package details | | _5 | 20020912 | Product data (9397 750 10361); ECN 853-2337 28906 of 12 September 2002 | | _4 | 20020612 | Product data (9397 750 09969); ECN 853-2337 28427 of 12 June 2002 | | _3 | 20020422 | Product data (9397 750 09779); ECN 853-2337 28059 of 22 April 2002 | | _2 | 20020219 | Preliminary data (9397 750 09467) | | _1 | 20010924 | Preliminary data (9397 750 08895); initial release |