
NXP USA Inc. - P87C54X2BBD,157 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

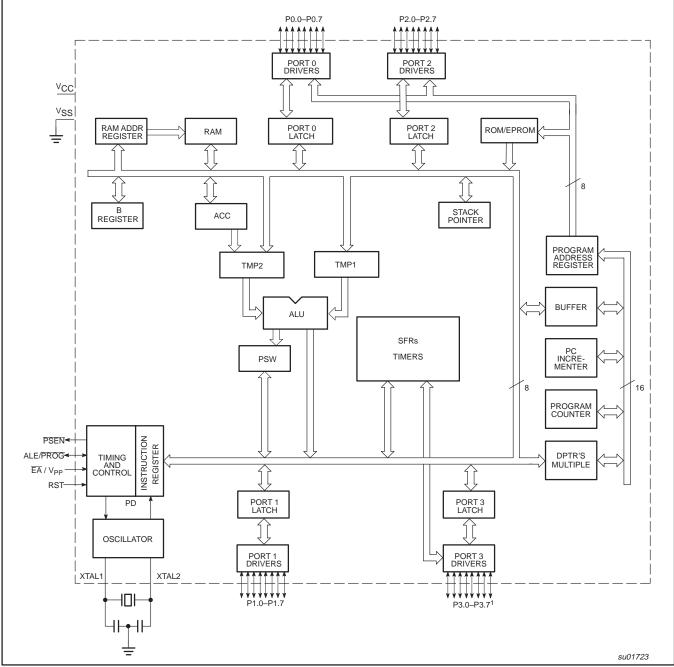
Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	33MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p87c54x2bbd-157

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

P80C3xX2; P80C5xX2; P87C5xX2


FEATURES

- 80C51 Central Processing Unit
- 4 kbytes ROM/EPROM (P80/P87C51X2)
- 8 kbytes ROM/EPROM (P80/P87C52X2)
- 16 kbytes ROM/EPROM (P80/P87C54X2)
- 32 kbytes ROM/EPROM (P80/P87C58X2)
- 128 byte RAM (P80/P87C51X2 and P80C31X2)
- 256 byte RAM (P80/P87C52/54X2/58X2 and P80C32X2)
- Boolean processor
- Fully static operation
- Low voltage (2.7 V to 5.5 V at 16 MHz) operation
- 12-clock operation with selectable 6-clock operation (via software or via parallel programmer)
- Memory addressing capability
 - Up to 64 kbytes ROM and 64 kbytes RAM
- Power control modes:
 - Clock can be stopped and resumed
 - Idle mode
 - Power-down mode
- CMOS and TTL compatible
- Two speed ranges at V_{CC} = 5 V
 - 0 to 30 MHz with 6-clock operation
- 0 to 33 MHz with 12-clock operation

- PLCC, DIP, TSSOP or LQFP packages
- Extended temperature ranges
- Dual Data Pointers
- Security bits:
- ROM (2 bits)
- OTP (3 bits)
- Encryption array 64 bytes
- Four interrupt priority levels
- Six interrupt sources
- Four 8-bit I/O ports
- Full-duplex enhanced UART
 - Framing error detection
 - Automatic address recognition
- Three 16-bit timers/counters T0, T1 (standard 80C51) and additional T2 (capture and compare)
- Programmable clock-out pin
- Asynchronous port reset
- Low EMI (inhibit ALE, slew rate controlled outputs, and 6-clock mode)
- Wake-up from Power Down by an external interrupt.

P80C3xX2; P80C5xX2; P87C5xX2

BLOCK DIAGRAM 2 (CPU-ORIENTED)

NOTE:

1. P3.2 and P3.5 absent in the TSSOP38 package.

Table 1. Special Function Registers

SYMBOL	DESCRIPTION	DIRECT ADDRESS	B MSB	IT ADDRE	SS, SYM	BOL, OR	ALTERNA	TIVE PO	RT FUNC	TION LSB	RESET VALUE
ACC*	Accumulator	E0H	E7	E6	E5	E4	E3	E2	E1	E0	00H
AUXR#	Auxiliary	8EH	-	-	-	-	-	-	-	AO	xxxxxxx0B
AUXR1#	Auxiliary 1	A2H	-	_	_	LPEP ²	WUPD	0	- 1	DPS	xxx000x0E
B*	B register	F0H	F7	F6	F5	F4	F3	F2	F1	F0	00H
CKCON	Clock Control Register	8FH	_	_	_	-	-	-	-	X2	xxx00000E
DPTR:	Data Pointer (2 bytes)										
DPH	Data Pointer High	83H									00H
DPL	Data Pointer Low	82H									00H
			AF	AE	AD	AC	AB	AA	A9	A8	
IE*	Interrupt Enable	A8H	ĒĀ	-	ET2	ES	ET1	EX1	ET0	EX0	0x000000
			BF	BE	BD	BC	BB	BA	B9	B8	1
IP*	Interrupt Priority	B8H	-	-	PT2	PS	PT1	PX1	PT0	PX0	xx000000E
IPH#	Interrupt Priority High	B7H	-	_	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	xx000000E
			87	86	85	84	83	82	81	80	1
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FFH
			97	96	95	94	93	92	91	90	1
P1*	Port 1	90H	-	-	-	-	-	-	T2EX	T2	FFH
			A7	A6	A5	A4	A3	A2	A1	A0	1
P2*	Port 2	A0H	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	FFH
			B7	B6	B5	B4	B3	B2	B1	B0	1
P3*	Port 3	B0H	RD	WR	T1	T0	INT1	INTO	TxD	RxD	FFH
PCON# ¹	Power Control	87H	SMOD1	SMOD0	_	POF	GF1	GF0	PD	IDL	00xx00001
		0/11	D7	D6	 D5	D4	D3	D2	D1	D0	
PSW*	Program Status Word	DOH	CY	AC	F0	RS1	RS0	OV	-	P	000000x01
RACAP2H#	Timer 2 Capture High	CBH	01	////	10		1100	0,			00H
RACAP2L#	Timer 2 Capture Low	CAH									00H
SADDR#	Slave Address	A9H									00H
SADEN#	Slave Address Mask	B9H									00H
SBUF	Serial Data Buffer	99H									XXXXXXXXB
			9F	9E	9D	9C	9B	9A	99	98	
SCON*	Serial Control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	00H
SP	Stack Pointer	81H									07H
			8F	8E	8D	8C	8B	8A	89	88	
TCON*	Timer Control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
			CF	CE	CD	CC	СВ	CA	C9	C8	1
T2CON*	Timer 2 Control	C8H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00H
T2MOD#	Timer 2 Mode Control	C9H	_	_	_	_	-	_	T2OE	DCEN	xxxxxx00E
TH0	Timer High 0	8CH									00H
TH1	Timer High 1	8DH									00H
TH2#	Timer High 2	CDH									00H
TL0	Timer Low 0	8AH									00H
TL1	Timer Low 1	8BH									00H
TL2#	Timer Low 2	ССН									00H
TMOD	Timer Mode	89H	GATE	C/T	M1	M0	GATE	C/T	M1	M0	00H

NOTE:

Unused register bits that are not defined should not be set by the user's program. If violated, the device could function incorrectly. * SFRs are bit addressable.

SFRs are modified from or added to the 80C51 SFRs.

- Reserved bits.

1. Reset value depends on reset source.

2. LPEP – Low Power EPROM operation (OTP only)

Low-Power EPROM operation (LPEP)

The EPROM array contains some analog circuits that are not required when V_{CC} is less than 4 V, but are required for a V_{CC} greater than 4 V. The LPEP bit (AUXR.4), when set, will powerdown these analog circuits resulting in a reduced supply current. This bit should be set ONLY for applications that operate at a V_{CC} less than 4 V.

Design Consideration

When the idle mode is terminated by a hardware reset, the device normally resumes program execution from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

P80C3xX2; P80C5xX2;

ONCE™ Mode

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems without the device having to be removed from the circuit. The ONCE Mode is invoked in the following way:

- 1. Pull ALE low while the device is in reset and PSEN is high;
- 2. Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 3. External Pin Status During Idle and Power-Down Mod	Table 3.	External Pin	Status During	d Idle and	Power-Down	Modes
---	----------	--------------	---------------	------------	------------	-------

MODE	PROGRAM MEMORY	ALE	PSEN	PORT 0	PORT 1	PORT 2	PORT 3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power-down	Internal	0	0	Data	Data	Data	Data
Power-down	External	0	0	Float	Data	Data	Data

TIMER 0 AND TIMER 1 OPERATION

Timer 0 and Timer 1

The "Timer" or "Counter" function is selected by control bits C/T in the Special Function Register TMOD. These two Timer/Counters have four operating modes, which are selected by bit-pairs (M1, M0) in TMOD. Modes 0, 1, and 2 are the same for both Timers/Counters. Mode 3 is different. The four operating modes are described in the following text.

Mode 0

Putting either Timer into Mode 0 makes it look like an 8048 Timer, which is an 8-bit Counter with a divide-by-32 prescaler. Figure 2 shows the Mode 0 operation.

In this mode, the Timer register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s, it sets the Timer interrupt flag TFn. The counted input is enabled to the Timer when TRn = 1 and either GATE = 0 or \overline{INTn} = 1. (Setting GATE = 1 allows the Timer to be controlled by external input \overline{INTn} , to facilitate pulse width measurements). TRn is a control bit in the Special Function Register TCON (Figure 3).

The 13-bit register consists of all 8 bits of THn and the lower 5 bits of TLn. The upper 3 bits of TLn are indeterminate and should be ignored. Setting the run flag (TRn) does not clear the registers.

Mode 0 operation is the same for Timer 0 as for Timer 1. There are two different GATE bits, one for Timer 1 (TMOD.7) and one for Timer 0 (TMOD.3).

Mode 1

Mode 1 is the same as Mode 0, except that the Timer register is being run with all 16 bits.

Mode 2

Mode 2 configures the Timer register as an 8-bit Counter (TLn) with automatic reload, as shown in Figure 4. Overflow from TLn not only sets TFn, but also reloads TLn with the contents of THn, which is preset by software. The reload leaves THn unchanged.

Mode 2 operation is the same for Timer 0 as for Timer 1.

Mode 3

Timer 1 in Mode 3 simply holds its count. The effect is the same as setting TR1 = 0.

Timer 0 in Mode 3 establishes TL0 and TH0 as two separate counters. The logic for Mode 3 on Timer 0 is shown in Figure 5. TL0 uses the Timer 0 control bits: C/T, GATE, TR0, and TF0 as well as pin INT0. TH0 is locked into a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from Timer 1. Thus, TH0 now controls the "Timer 1" interrupt.

Mode 3 is provided for applications requiring an extra 8-bit timer on the counter. With Timer 0 in Mode 3, an 80C51 can look like it has three Timer/Counters. When Timer 0 is in Mode 3, Timer 1 can be turned on and off by switching it out of and into its own Mode 3, or can still be used by the serial port as a baud rate generator, or in fact, in any application not requiring an interrupt.

P87C5xX2

P87C5xX2

P80C3xX2; P80C5xX2;

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

Table 4. Timer 2 Operating Modes

RCLK + TCLK	CP/RL2	TR2	MODE			
0	0	1	16-bit Auto-reload			
0	1	1	16-bit Capture			
1	Х	1	Baud rate generator			
Х	Х	0	(off)			

	ddress = t Address							Г	Reset Value	= 00⊓		
		7	6	5	4	3	2	1	0			
		TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2			
Symbol	Positi	ion Na	me and Sig	nificance								
TF2	T2CO		Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK or TCLK = 1.									
EXF2	T2CO	EX	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).									
RCLK	T2CO		Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.									
TCLK	T2CO		Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.									
EXEN2	T2CO	tra	Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.									
TR2	T2CO	N.2 Sta	art/stop cont	ol for Time	2. A logic 1	starts the tir	mer.					
C/T2	T2CO	N.1 Tin	Start/stop control for Timer 2. A logic 1 starts the timer. Timer or counter select. (Timer 2) 0 = Internal timer (OSC/12 in 12-clock mode or OSC/6 in 6-clock mode) 1 = External event counter (falling edge triggered).									
CP/RE2	T2CO	cle EX	Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When cleared, auto-reloads will occur either with Timer 2 overflows or negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.									

Figure 6. Timer/Counter 2 (T2CON) Control Register

P80C3xX2; P80C5xX2; P87C5xX2

Table 5. Timer 2 Generated Commonly Used Baud Rates

Baud	Rate		Tim	er 2
12-clk mode	6-clk mode	Osc Freq	RCAP2H	RCAP2L
375 K	750 K	12 MHz	FF	FF
9.6 K	19.2 K	12 MHz	FF	D9
4.8 K	9.6 K	12 MHz	FF	B2
2.4 K	4.8 K	12 MHz	FF	64
1.2 K	2.4 K	12 MHz	FE	C8
300	600	12 MHz	FB	1E
110	220	12 MHz	F2	AF
300	600	6 MHz	FD	8F
110	220	6 MHz	F9	57

Summary Of Baud Rate Equations

Timer 2 is in baud rate generating mode. If Timer 2 is being clocked through pin T2(P1.0) the baud rate is:

Baud Rate = $\frac{\text{Timer 2 Overflow Rate}}{16}$

If Timer 2 is being clocked internally, the baud rate is:

Baud Rate =
$$\frac{f_{OSC}}{[n \times [65536 - (RCAP2H, RCAP2L)]]}$$

Where:

n = 16 in 6-clock mode, 32 in 12-clock mode.

f_{OSC}= Oscillator Frequency

To obtain the reload value for RCAP2H and RCAP2L, the above equation can be rewritten as:

$$\text{RCAP2H, RCAP2L} = 65536 - \left(\frac{f_{\text{OSC}}}{n \times \text{Baud Rate}}\right)$$

Timer/Counter 2 Set-up

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the timer on. See Table 6 for set-up of Timer 2 as a timer. Also see Table 7 for set-up of Timer 2 as a counter.

Table 6. Timer 2 as a Timer

	T20	ON
MODE	INTERNAL CONTROL (Note 1)	EXTERNAL CONTROL (Note 2)
16-bit Auto-Reload	00H	08H
16-bit Capture	01H	09H
Baud rate generator receive and transmit same baud rate	34H	36H
Receive only	24H	26H
Transmit only	14H	16H

Table 7. Timer 2 as a Counter

	TMOD					
MODE	INTERNAL CONTROL (Note 1)	EXTERNAL CONTROL (Note 2)				
16-bit	02H	0AH				
Auto-Reload	03H	0BH				

NOTES:

- 1. Capture/reload occurs only on timer/counter overflow.
- Capture/reload occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate generator mode.

S	CON	Addres	ss = 98H									Reset Value = 00H
		Bit Add	ressable	7	6	5	4	3	2	1	0	_
				SM0	SM1	SM2	REN	TB8	RB8	ΤI	RI	
Where	e SM0,	SM1 spe	cify the serial po	ort mode	e, as foll	ows:						
SM0	SM1	Mode	Description	E	Baud Ra	ate						
0	0	0	shift register		f _{OSC} /12	2 (12-clo	ock moc	le) or f _O	_{SC} /6 (6-	clock m	node)	
0	1	1	8-bit UART		variable	Э						
1	0	2	9-bit UART		f _{OSC} /64	1 or f _{OS}	_C /32 (12	2-clock r	node) o	r f _{OSC} /3	32 or f _{OS}	_{SC} /16 (6-clock mode)
1	1	3	9-bit UART		variable	Э						
SM2	acti	vated if th		data bit	(RB8) is						,	M2 is set to 1, then RI will not be tivated if a valid stop bit was not
REN	Ena	ables seri	al reception. Se	t by soft	ware to	enable	receptio	on. Clea	r by soft	tware to	disable	e reception.
TB8	The	e 9th data	bit that will be t	ransmitt	ed in M	odes 2	and 3. S	Set or cl	ear by s	oftware	as desi	ired.
RB8		/lodes 2 a 8 is not us		data bit	that wa	s receiv	red. In N	lode 1,	it SM2=	0, RB8	is the st	top bit that was received. In Mode 0,
ті			errupt flag. Set b ny serial transmi						e in Mo	de 0, or	at the b	beginning of the stop bit in the other
RI			rrupt flag. Set by ny serial reception								halfway	/ through the stop bit time in the other

SU01626

	Baud Rate		4	CHOD	Timer 1				
Mode	12-clock mode	6-clock mode	fosc	SMOD	С/Т	Mode	Reload Value		
Mode 0 Max	1.67 MHz	3.34 MHz	20 MHz	Х	Х	Х	Х		
Mode 2 Max	625 k	1250 k	20 MHz	1	X	Х	Х		
Mode 1, 3 Max	104.2 k	208.4 k	20 MHz	1	0	2	FFH		
Mode 1, 3	19.2 k	38.4 k	11.059 MHz	1	0	2	FDH		
,.	9.6 k	19.2 k	11.059 MHz	0	0	2	FDH		
	4.8 k	9.6 k	11.059 MHz	0	0	2	FAH		
	2.4 k	4.8 k	11.059 MHz	0	0	2	F4H		
	1.2 k	2.4 k	11.059 MHz	0	0	2	E8H		
	137.5	275	11.986 MHz	0	0	2	1DH		
	110	220	6 MHz	0	0	2	72H		
	110	220	12 MHz	0	0	1	FEEBH		

Figure 12. Serial Port Control (SCON) Register

Figure 13. Timer 1 Generated Commonly Used Baud Rates

More About Mode 0

Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed a 1/12 the oscillator frequency (12-clock mode) or 1/6 the oscillator frequency (6-clock mode).

Figure 14 shows a simplified functional diagram of the serial port in Mode 0, and associated timing.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal at S6P2 also loads a 1 into the 9th position of the transmit shift register and tells the TX Control block to commence a transmission. The internal timing is such that one full machine cycle will elapse between "write to SBUF" and activation of SEND.

SEND enables the output of the shift register to the alternate output function line of P3.0 and also enable SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK is low during S3, S4, and S5 of every machine cycle, and high during S6, S1, and S2. At

S6P2 of every machine cycle in which SEND is active, the contents of the transmit shift are shifted to the right one position.

As data bits shift out to the right, zeros come in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position, is just to the left of the MSB, and all positions to the left of that contain zeros. This condition flags the TX Control block to do one last shift and then deactivate SEND and set T1. Both of these actions occur at S1P1 of the 10th machine cycle after "write to SBUF."

Reception is initiated by the condition REN = 1 and R1 = 0. At S6P2 of the next machine cycle, the RX Control unit writes the bits 1111110 to the receive shift register, and in the next clock phase activates RECEIVE.

RECEIVE enable SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK makes transitions at S3P1 and S6P1 of every machine cycle. At S6P2 of every machine cycle in which RECEIVE is active, the contents of the receive shift register are

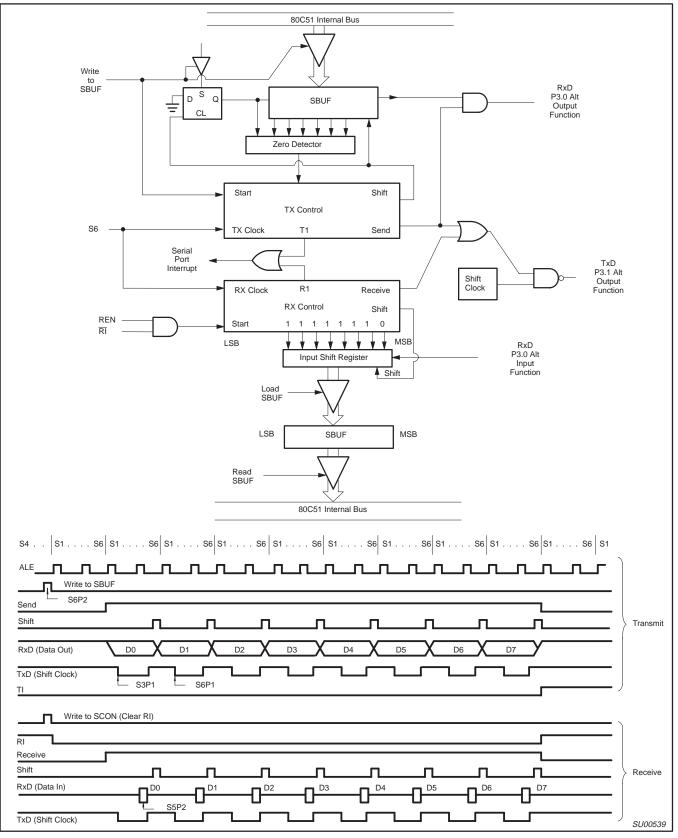
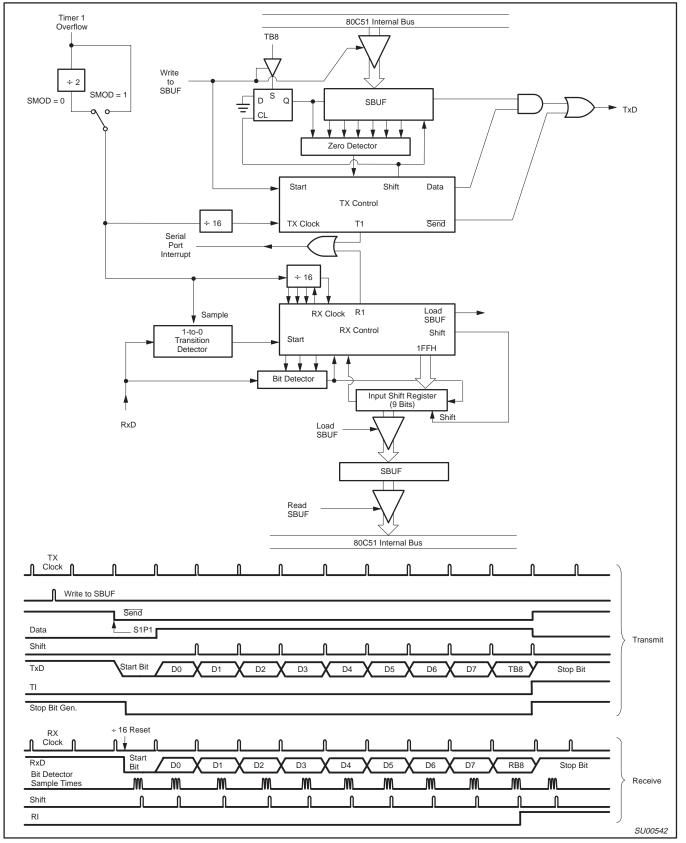
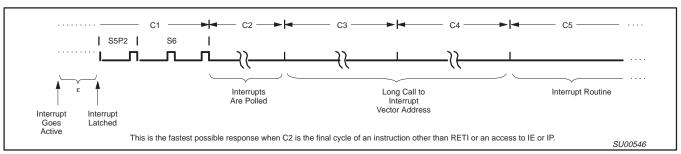


Figure 14. Serial Port Mode 0




Figure 17. Serial Port Mode 3

P80C3xX2; P80C5xX2; P87C5xX2

		7	6	5	4	3	2	1	0	
		SM0/FE	SM1	SM2	REN	TB8	RB8	ТІ	RI]
	(S	MOD0 =	0/1)*	-						-
Symbol	Positi	on	Function	ı						
FE	SCON	.7	cleared b		ames but sho					ected. The FE bit is not ust be set to enable
SM0	SCON	.7	Serial Po	rt Mode E	Bit 0, (SMOD	0 must = 0 to	access bit	SM0)		
SM1	SCON	.6	Serial Po	rt Mode E	Bit 1					
			SM0	SM1	Mode	Description	Bau	d Rate**		
			0	0	0	shift register	fosc	/12 (12-clk r	mode) or f _O	_{SC} /6 (6-clk mode)
			0	1	1	8-bit UART	varia			
			1	0	2	9-bit UART	fosc	/32 (12-cloc		16 (6-clock mode) or
			1	1	3	9-bit UART	varia	ble		
SM2	SCON	.5	unless th Broadcas	e receive st Address	d 9th data bit s. In Mode 1,	(RB8) is 1, ir if SM2 = 1 th	ndicating a en RI will r	n address, a lot be activa	and the rece ated unless	1 then RI will not be set eived byte is a Given or a valid stop bit was SM2 should be 0.
REN	SCON	.4	Enables	serial rece	eption. Set by	/ software to	enable rec	eption. Clea	ar by softwa	re to disable reception.
TB8	SCON	.3	The 9th o	data bit the	at will be trar	smitted in Mo	des 2 and	3. Set or cl	ear by softw	vare as desired.
RB8	SCON	.2	was rece	ived.	the 9th data not used.	bit that was re	eceived. In	Mode 1, if	SM2 = 0, R	B8 is the stop bit that
TI	SCON	.1				ardware at th in any serial				0, or at the beginning of software.
RI	SCON	.0		me in the), or halfway through the st be cleared by
					other modes	s, in any seria	l reception	(except see	e SM2). Mu	st be cleared by

Figure 18. SCON: Serial Port Control Register

P80C3xX2; P80C5xX2; P87C5xX2

Figure 25. Interrupt Response Timing Diagram

The polling cycle/LCALL sequence is illustrated in Figure 25.

Note that if an interrupt of higher priority level goes active prior to S5P2 of the machine cycle labeled C3 in Figure 25, then in accordance with the above rules it will be vectored to during C5 and C6, without any instruction of the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the appropriate servicing routine. In some cases it also clears the flag that generated the interrupt, and in other cases it doesn't. It never clears the Serial Port flag. This has to be done in the user's software. It clears an external interrupt flag (IE0 or IE1) only if it was transition-activated. The

hardware-generated LCALL pushes the contents of the Program Counter on to the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as shown in Table 8.

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the Program Counter. Execution of the interrupted program continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking an interrupt was still in progress, making future interrupts impossible.

External Interrupts

The external sources can be programmed to be level-activated or transition-activated by setting or clearing bit IT1 or IT0 in Register TCON. If ITx = 0, external interrupt x is triggered by a detected low at the \overline{INTx} pin. If ITx = 1, external interrupt x is edge triggered. In this mode if successive samples of the \overline{INTx} pin show a high in one cycle and a low in the next cycle, interrupt request flag IEx in TCON is set. Flag bit IEx then requests the interrupt.

Since the external interrupt pins are sampled once each machine cycle, an input high or low should hold for at least 12 oscillator periods to ensure sampling. If the external interrupt is transition-activated, the external source has to hold the request pin high for at least one cycle, and then hold it low for at least one cycle. This is done to ensure that the transition is seen so that interrupt request flag IEx will be set. IEx will be automatically cleared by the CPU when the service routine is called.

If the external interrupt is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is completed, or else another interrupt will be generated.

Response Time

The INTO and INTT levels are inverted and latched into IEO and IE1 at S5P2 of every machine cycle. The values are not actually polled by the circuitry until the next machine cycle. If a request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The call itself takes two cycles. Thus, a minimum of three complete machine cycles elapse between activation of an external interrupt request and the beginning of execution of the first instruction of the service routine. Figure 25 shows interrupt response timings.

A longer response time would result if the request is blocked by one of the 3 previously listed conditions. If an interrupt of equal or higher priority level is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine. If the instruction in progress is not in its final cycle, the additional wait time cannot be more the 3 cycles, since the longest instructions (MUL and DIV) are only 4 cycles long, and if the instruction in progress is RETI or an access to IE or IP, the additional wait time cannot be more than 5 cycles (a maximum of one more cycle to complete the instruction in progress, plus 4 cycles to complete the next instruction if the instruction is MUL or DIV).

Thus, in a single-interrupt system, the response time is always more than 3 cycles and less than 9 cycles.

As previously mentioned, the derivatives described in this data sheet have a four-level interrupt structure. The corresponding registers are IE, IP and IPH. (See Figures 22, 23, and 24.) The IPH (Interrupt Priority High) register makes the four-level interrupt structure possible.

The function of the IPH SFR is simple and when combined with the IP SFR determines the priority of each interrupt. The priority of each interrupt is determined as shown in the following table:

PRIORITY BITS		
IPH.x	IP.x	
0	0	Level 0 (lowest priority)
0	1	Level 1
1	0	Level 2
1	1	Level 3 (highest priority)

P80C3xX2; P80C5xX2; P87C5xX2

AC ELECTRICAL CHARACTERISTICS (6-CLOCK MODE, 5 V \pm 10% OPERATION)

 $T_{amb} = 0 \circ C \text{ to } +70 \circ C \text{ or } -40 \circ C \text{ to } +85 \circ C \text{ ; } V_{CC} = 5 \text{ V} \pm 10\%, \text{ V}_{SS} = 0 \text{ V}^{1,2,3,4,5}$

Symbol	Figure	Parameter	Limits		16 MHz Clock		Unit
			MIN MAX		MIN MAX		
I/t _{CLCL}	31	Oscillator frequency	0	30	-	-	MHz
LHLL	27	ALE pulse width	t _{CLCL} -8	-	54.5	-	ns
AVLL	27	Address valid to ALE low	0.5 t _{CLCL} –13	-	18.25	-	ns
LLAX	27	Address hold after ALE low	0.5 t _{CLCL} –20	-	11.25	-	ns
LLIV	27	ALE low to valid instruction in	-	2 t _{CLCL} –35	-	90	ns
LLPL	27	ALE low to PSEN low	0.5 t _{CLCL} –10	-	21.25	-	ns
PLPH	27	PSEN pulse width	1.5 t _{CLCL} –10	-	83.75	-	ns
PLIV	27	PSEN low to valid instruction in	-	1.5 t _{CLCL} –35	-	58.75	ns
PXIX	27	Input instruction hold after PSEN	0	-	0	-	ns
PXIZ	27	Input instruction float after PSEN	-	0.5 t _{CLCL} –10	-	21.25	ns
t _{AVIV}	27	Address to valid instruction in	_	2.5 t _{CLCL} -35	-	121.25	ns
PLAZ	27	PSEN low to address float	-	10	-	10	ns
Data Men	nory				_		
t _{RLRH}	28	RD pulse width	3 t _{CLCL} –20	-	167.5	-	ns
twlwh	29	WR pulse width	3 t _{CLCL} –20	-	167.5	-	ns
RLDV	28	RD low to valid data in	-	2.5 t _{CLCL} –35	-	121.25	ns
RHDX	28	Data hold after RD	0	-	0	-	ns
RHDZ	28	Data float after RD	-	t _{CLCL} -10	-	52.5	ns
LLDV	28	ALE low to valid data in	-	4 t _{CLCL} –35	-	215	ns
AVDV	28	Address to valid data in	-	4.5 t _{CLCL} –35	-	246.25	ns
LLWL	28, 29	ALE low to RD or WR low	1.5 t _{CLCL} –15	1.5 t _{CLCL} +15	78.75	108.75	ns
AVWL	28, 29	Address valid to WR low or RD low	2 t _{CLCL} –15	-	110	-	ns
QVWX	29	Data valid to WR transition	0.5 t _{CLCL} –25	-	6.25	-	ns
WHQX	29	Data hold after WR	0.5 t _{CLCL} –15	-	16.25	-	ns
QVWH	29	Data valid to WR high	3.5 t _{CLCL} –5	-	213.75	-	ns
RLAZ	28	RD low to address float	-	0	-	0	ns
twhlh	28, 29	RD or WR high to ALE high	0.5 t _{CLCL} –10	0.5 t _{CLCL} +10	21.25	41.25	ns
External	Clock						
tснсх	31	High time	0.4 t _{CLCL}	t _{CLCL} - t _{CLCX}	-	-	ns
CLCX	31	Low time	0.4 t _{CLCL}			-	ns
CLCH	31	Rise time	-	5	-	-	ns
CHCL	31	Fall time	-	5	-	-	ns
Shift regi	ster	·	•	•	•		
XLXL	30 Serial port clock cycle time		6 t _{CLCL}	-	375	-	ns
QVXH	30	Output data setup to clock rising edge	5 t _{CLCL} –25	-	287.5	-	ns
XHQX	30	Output data hold after clock rising edge	t _{CLCL} –15	-	47.5	-	ns
XHDX	30	Input data hold after clock rising edge	0	-	0	-	ns
t _{XHDV}	30	Clock rising edge to input data valid	_	5 t _{CLCL} –133	-	179.5	ns

NOTES:

1. Parameters are valid over operating temperature range unless otherwise specified.

2. Load capacitance for port 0, ALE, and PSEN=100 pF, load capacitance for all outputs = 80 pF

3. Interfacing the microcontroller to devices with float time up to 45ns is permitted. This limited bus contention will not cause damage to port 0 drivers.

4. Parts are guaranteed by design to operate down to 0 Hz.

5. Data shown in the table are the best mathematical models for the set of measured values obtained in tests. If a particular parameter calculated at a customer specified frequency has a negative value, it should be considered equal to zero.

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has five characters. The first character is always 't' (= time). The other characters, depending on their positions, indicate the name of a signal or the logical status of that signal. The designations are:

- A Address
- $\mathsf{C}-\,\mathsf{Clock}$
- D Input data
- H Logic level high
- I Instruction (program memory contents)
- L Logic level low, or ALE

- P PSEN
- Q Output data
- R RD signal
- t Time
- V Valid
- W- WR signal
- X No longer a valid logic level
- Z Float
- $\label{eq:tauples} \begin{array}{l} \mbox{Examples: } t_{AVLL} = \mbox{Time for address valid to ALE low.} \\ t_{LLPL} = \mbox{Time for ALE low to } \overline{\mbox{PSEN}} \mbox{ low.} \end{array}$

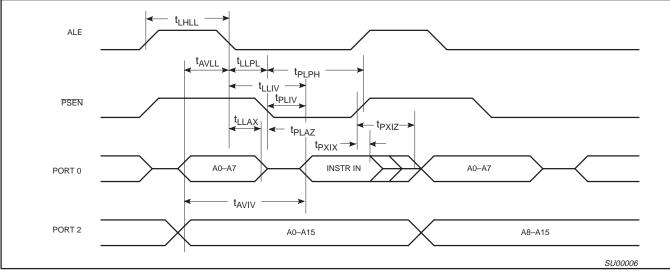


Figure 27. External Program Memory Read Cycle

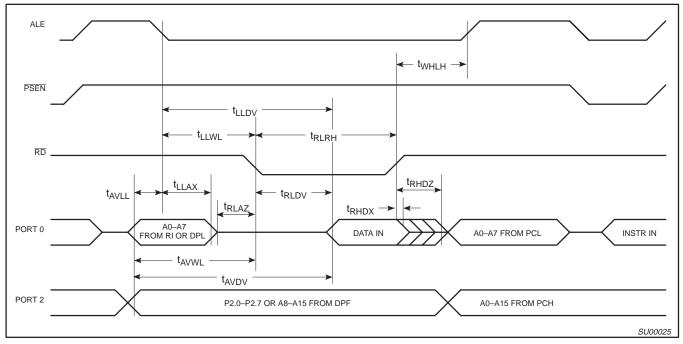


Figure 28. External Data Memory Read Cycle

*/"

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

/* ## as31 version V2.10 / *js* / ## ## source file: idd_ljmp1.asm list file: idd_ljmp1.lst created Fri Apr 20 15:51:40 2001 # AUXR equ 08Eh # CKCON equ 08Fh # # # org 0 # # LJMP_LABEL: AUXR,#001h ; turn off ALE LJMP_LABEL ; jump to end of address space MOV # # LJMP NOP # # # org Offfdh # # LJMP_LABEL:

SU01499

Figure 35. Source code used in measuring I_{DD} operational

P87C5xX2

P80C3xX2; P80C5xX2;

#0000 #0000 #0000 0000 /75;/8E;/01; 0003 /02;/FF;/FD; 0005 /00; #FFFD # FFFD /02;/FD;FF; # LJMP LJMP_LABEL # ; NOP #

P80C3xX2; P80C5xX2; P87C5xX2

EPROM CHARACTERISTICS

The OTP devices described in this data sheet can be programmed by using a modified Improved Quick-Pulse ProgrammingTM algorithm. It differs from older methods in the value used for V_{PP} (programming supply voltage) and in the width and number of the ALE/PROG pulses.

The family contains two signature bytes that can be read and used by an EPROM programming system to identify the device. The signature bytes identify the device as being manufactured by Philips.

Table 9 shows the logic levels for reading the signature byte, and for programming the program memory, the encryption table, and the security bits. The circuit configuration and waveforms for quick-pulse programming are shown in Figures 40 and 41. Figure 42 shows the circuit configuration for normal program memory verification.

Quick-Pulse Programming

The setup for microcontroller quick-pulse programming is shown in Figure 40. Note that the device is running with a 4 to 6 MHz oscillator. The reason the oscillator needs to be running is that the device is executing internal address and program data transfers.

The address of the EPROM location to be programmed is applied to ports 1 and 2, as shown in Figure 40. The code byte to be programmed into that location is applied to port 0. RST, PSEN and pins of ports 2 and 3 specified in Table 9 are held at the 'Program Code Data' levels indicated in Table 9. The ALE/PROG is pulsed low 5 times as shown in Figure 41.

To program the encryption table, repeat the 5 pulse programming sequence for addresses 0 through 1FH, using the 'Pgm Encryption Table' levels. Do not forget that after the encryption table is programmed, verification cycles will produce only encrypted data.

To program the security bits, repeat the 5 pulse programming sequence using the 'Pgm Security Bit' levels. After one security bit is programmed, further programming of the code memory and encryption table is disabled. However, the other security bits can still be programmed.

Note that the \overline{EA}/V_{PP} pin must not be allowed to go above the maximum specified V_{PP} level for any amount of time. Even a narrow glitch above that voltage can cause permanent damage to the

device. The V_{PP} source should be well regulated and free of glitches and overshoot.

Program Verification

If security bits 2 and 3 have not been programmed, the on-chip program memory can be read out for program verification. The address of the program memory locations to be read is applied to ports 1 and 2 as shown in Figure 42. The other pins are held at the 'Verify Code Data' levels indicated in Table 9. The contents of the address location will be emitted on port 0. External pull-ups are required on port 0 for this operation.

If the 64 byte encryption table has been programmed, the data presented at port 0 will be the exclusive NOR of the program byte with one of the encryption bytes. The user will have to know the encryption table contents in order to correctly decode the verification data. The encryption table itself cannot be read out.

Reading the Signature bytes

The signature bytes are read by the same procedure as a normal verification of locations 030h and 031h, except that P3.6 and P3.7 need to be pulled to a logic low. The values are:

- (030h) = 15h; indicates manufacturer (Philips)
- (031h) = 92h/97h/BBh/BDh; indicates P87C51X2/52X2/54X2/ 58X2.

Program/Verify Algorithms

Any algorithm in agreement with the conditions listed in Table 9, and which satisfies the timing specifications, is suitable.

Security Bits

With none of the security bits programmed the code in the program memory can be verified. If the encryption table is programmed, the code will be encrypted when verified. When only security bit 1 (see Table 10) is programmed, MOVC instructions executed from external program memory are disabled from fetching code bytes from the internal memory, \overline{EA} is latched on Reset and all further programmed, in addition to the above, verify mode is disabled. When all three security bits are programmed, all of the conditions above apply and all external program memory execution is disabled.

Encryption Array

64 bytes of encryption array are initially unprogrammed (all 1s).

[™]Trademark phrase of Intel Corporation.

80C54X2 ROM CODE SUBMISSION

When submitting a ROM code for the 80C54X2, the following must be specified:

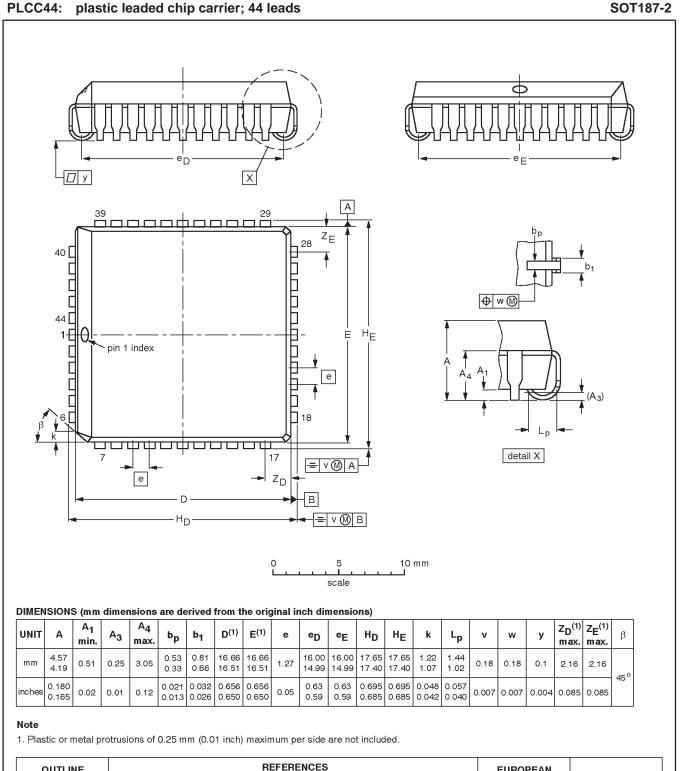
- 1. 16 kbyte user ROM data
- 2. 64 byte ROM encryption key
- 3. ROM security bits.

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 3FFFH	DATA	7:0	User ROM Data
4000H to 403FH	KEY	7:0	ROM Encryption Key FFH = no encryption
4040H	SEC	0	ROM Security Bit 1 0 = enable security 1 = disable security
4040H	SEC	1	ROM Security Bit 2 0 = enable security 1 = disable security

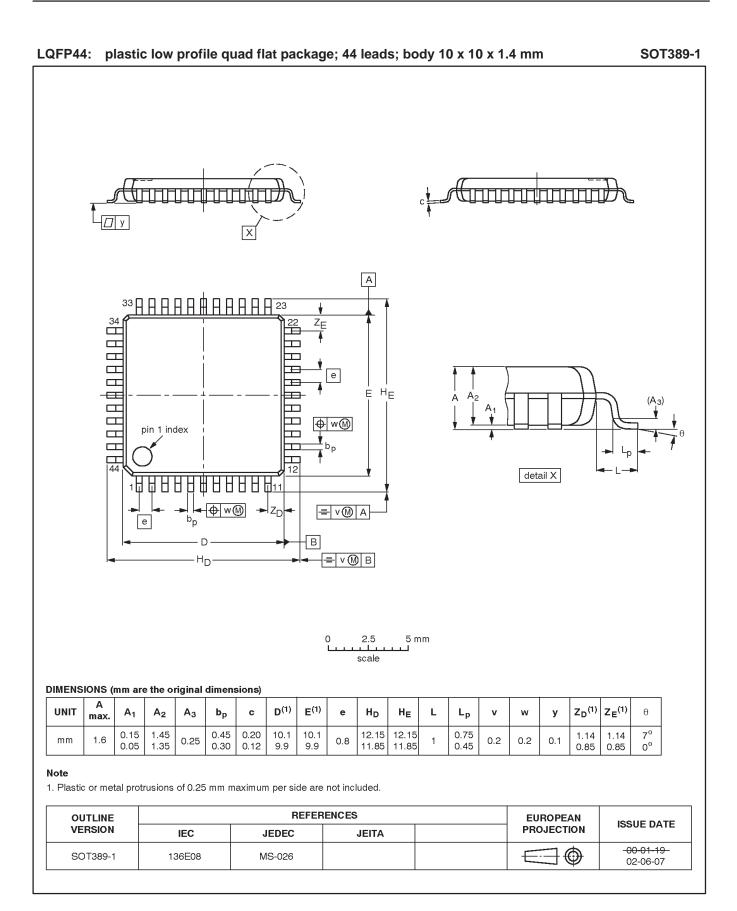
Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. \overline{EA} is latched on Reset.


Security Bit 2: When programmed, this bit inhibits Verify User ROM.

NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.


If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	Enabled	□ Disabled	
Security Bit #2:	Enabled	Disabled	

OUTLINE	OUTLINE REFERENCES				EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT187-2	112E10	MS-018	EDR-7319			-99-12-27- 01-11-14	

P80C3xX2; P80C5xX2; P87C5xX2

REVISION HISTORY

Rev	Date	Description
_6	20030124	Product data (9397 750 10995); ECN 853-2337 29260 of 06 December 2002
		Modifications:
		Added TSSOP38 package details
_5	20020912	Product data (9397 750 10361); ECN 853-2337 28906 of 12 September 2002
_4	20020612	Product data (9397 750 09969); ECN 853-2337 28427 of 12 June 2002
_3	20020422	Product data (9397 750 09779); ECN 853-2337 28059 of 22 April 2002
_2	20020219	Preliminary data (9397 750 09467)
_1	20010924	Preliminary data (9397 750 08895); initial release

P80C3xX2; P80C5xX2; P87C5xX2

Data sheet status

Data of					
Level	Data sheet status ^[1]	Product status ^{[2] [3]}	Definitions		
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.		
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.		
111	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).		

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax:

Fax: +31 40 27 24825

© Koninklijke Philips Electronics N.V. 2003 All rights reserved. Printed in U.S.A.

Date of release: 01-03

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

Document order number:

Let's make things better.

