NXP USA Inc. - P87C54X2FBD,157 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	33MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p87c54x2fbd-157

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

P80C3xX2; P80C5xX2; P87C5xX2

FEATURES

- 80C51 Central Processing Unit
- 4 kbytes ROM/EPROM (P80/P87C51X2)
- 8 kbytes ROM/EPROM (P80/P87C52X2)
- 16 kbytes ROM/EPROM (P80/P87C54X2)
- 32 kbytes ROM/EPROM (P80/P87C58X2)
- 128 byte RAM (P80/P87C51X2 and P80C31X2)
- 256 byte RAM (P80/P87C52/54X2/58X2 and P80C32X2)
- Boolean processor
- Fully static operation
- Low voltage (2.7 V to 5.5 V at 16 MHz) operation
- 12-clock operation with selectable 6-clock operation (via software or via parallel programmer)
- Memory addressing capability
 - Up to 64 kbytes ROM and 64 kbytes RAM
- Power control modes:
 - Clock can be stopped and resumed
 - Idle mode
 - Power-down mode
- CMOS and TTL compatible
- Two speed ranges at V_{CC} = 5 V
 - 0 to 30 MHz with 6-clock operation
- 0 to 33 MHz with 12-clock operation

- PLCC, DIP, TSSOP or LQFP packages
- Extended temperature ranges
- Dual Data Pointers
- Security bits:
- ROM (2 bits)
- OTP (3 bits)
- Encryption array 64 bytes
- Four interrupt priority levels
- Six interrupt sources
- Four 8-bit I/O ports
- Full-duplex enhanced UART
 - Framing error detection
 - Automatic address recognition
- Three 16-bit timers/counters T0, T1 (standard 80C51) and additional T2 (capture and compare)
- Programmable clock-out pin
- Asynchronous port reset
- Low EMI (inhibit ALE, slew rate controlled outputs, and 6-clock mode)
- Wake-up from Power Down by an external interrupt.

P80C3xX2; P80C5xX2; P87C5xX2

LOGIC SYMBOL

NOTE:

1. INT0/P3.2 and T1/P3.5 are absent in the TSSOP38 package.

PLASTIC DUAL IN-LINE PACKAGE PIN CONFIGURATIONS

P80C3xX2; P80C5xX2; P87C5xX2

OSCILLATOR CHARACTERISTICS

Using the oscillator

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator, as shown in the logic symbol.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. However, minimum and maximum high and low times specified in the data sheet must be observed.

Clock Control Register (CKCON)

This device provides control of the 6-clock/12-clock mode by both an SFR bit (bit X2 in register CKCON and an OTP bit (bit OX2). When X2 is 0, 12-clock mode is activated. By setting this bit to 1, the system is switching to 6-clock mode. Having this option implemented as SFR bit, it can be accessed anytime and changed to either value. Changing X2 from 0 to 1 will result in executing user code at twice the speed, since all system time intervals will be divided by 2. Changing back from 6-clock to 12-clock mode will slow down running code by a factor of 2.

The OTP clock control bit (OX2) activates the 6-clock mode when programmed using a parallel programmer, superceding the X2 bit (CKCON.0). Please also see Table 2 below.

Table 2.

OX2 clock mode bit (can only be set by parallel programmer)	X2 bit (CKCON.0)	CPU clock mode			
erased	0	12-clock mode (default)			
erased	1	6-clock mode			
programmed	Х	6-clock mode			

Programmable Clock-Out

A 50% duty cycle clock can be programmed to be output on P1.0. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed:

1. to input the external clock for Timer/Counter 2, or

 to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz at a 16 MHz operating frequency in 12-clock mode (122 Hz to 8 MHz in 6-clock mode).

To configure the Timer/Counter 2 as a clock generator, bit C/T_2 (in T2CON) must be cleared and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) also must be set to start the timer.

The Clock-Out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L) as shown in this equation:

```
\frac{\text{Oscillator Frequency}}{n \times (65536 - \text{RCAP2H}, \text{RCAP2L})}
```

Where:

n = 2 in 6-clock mode, 4 in 12-clock mode. (RCAP2H,RCAP2L) = the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

In the Clock-Out mode Timer 2 roll-overs will not generate an interrupt. This is similar to when it is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock

generator simultaneously. Note, however, that the baud-rate and the Clock-Out frequency will be the same.

RESET

A reset is accomplished by holding the RST pin HIGH for at least two machine cycles (24 oscillator periods in 12-clock and 12 oscillator periods in 6-clock mode), while the oscillator is running. To insure a reliable power-up reset, the RST pin must be high long enough to allow the oscillator time to start up (normally a few milliseconds) plus two machine cycles. After the reset, the part runs in 12-clock mode, unless it has been set to 6-clock operation using a parallel programmer.

LOW POWER MODES

Stop Clock Mode

The static design enables the clock speed to be reduced down to 0 MHz (stopped). When the oscillator is stopped, the RAM and Special Function Registers retain their values. This mode allows step-by-step utilization and permits reduced system power consumption by lowering the clock frequency down to any value. For lowest power consumption the Power Down mode is suggested.

Idle Mode

In idle mode (see Table 3), the CPU puts itself to sleep while all of the on-chip peripherals stay active. The instruction to invoke the idle mode is the last instruction executed in the normal operating mode before the idle mode is activated. The CPU contents, the on-chip RAM, and all of the special function registers remain intact during this mode. The idle mode can be terminated either by any enabled interrupt (at which time the process is picked up at the interrupt service routine and continued), or by a hardware reset which starts the processor in the same manner as a power-on reset.

Power-Down Mode

To save even more power, a Power Down mode (see Table 3) can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values down to 2.0 V and care must be taken to return V_{CC} to the minimum specified operating voltages before the Power Down Mode is terminated.

Either a hardware reset or external interrupt can be used to exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values. WUPD (AUXR1.3–Wakeup from Power Down) enables or disables the wakeup from power down with external interrupt. Where:

WUPD = 0: Disable WUPD = 1: Enable

To properly terminate Power Down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

To terminate Power Down with an external interrupt, INT0 or INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

P80C3xX2; P80C5xX2; P87C5xX2

TMOD Addr	ess = 8	9H								Re	set Value = 00H			
Not I	Bit Addr	essable	;											
			7	6	5	4	3	2	1	0				
			GATE	C/T	M1	MO	GATE	C/T	M1	MO				
										/]			
				ТІМІ	∽ ER 1			тімі	ER 0					
BIT TMOD.3, TMOD.7 TMOD.2/ TMOD.6	SYN GAT C/T	MBOL TE	FUNCTION Gating contr "TRn" contro Timer or Cou Set for Cour	INCTION ating control when set. Timer/Counter "n" is enabled only while "INTn" pin is high and Rn" control pin is set. when cleared Timer "n" is enabled whenever "TRn" control bit is set. ner or Counter Selector cleared for Timer operation (input from internal system clock.) et for Counter operation (input from "Tn" input pin).										
	M1	MO	OPERATING	3										
	0	0	8048 Timer:	"TLn" s	erves a	s 5-bit p	rescaler.							
	0 1 16-bit Timer/Counter: "THn" and "TLn" are cascaded; there is no prescaler.													
	1	0	8-bit auto-re into "TLn" ea	8-bit auto-reload Timer/Counter: "THn" holds a value which is to be reloaded into "TLn" each time it overflows.										
	1	1	(Timer 0) TL TH0 is an 8-	(Timer 0) TL0 is an 8-bit Timer/Counter controlled by the standard Timer 0 control bits. TH0 is an 8-bit timer only controlled by Timer 1 control bits.										
	1	1	(Timer 1) Tir	ner/Cou	unter 1 s	topped.								
											SU01580			

Figure 1. Timer/Counter 0/1 Mode Control (TMOD) Register

Figure 2. Timer/Counter 0/1 Mode 0: 13-Bit Timer/Counter

P80C3xX2; P80C5xX2; P87C5xX2

Figure 7. Timer 2 in Capture Mode

T2MOD	Addre	ess = 0C9H							Reset Va	lue = XXXX XX00B
	Not Bit	t Addressat								
		7	6	5	4	3	2	1	0	
		_	_	_	_	_	_	T2OE	DCEN	
Symbol	Posit	tion	F	unction ot implemer	nted, reserve	ed for future	use.*			
T2OE	T2MC	DD.1	Ti	imer 2 Outp	ut Enable bi	t.				
DCEN T2MOD.0 Down Count Enable bit. When set, this allows Timer 2 to be configured as an up/down counter. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.										
										SU01519

Figure 8. Timer 2 Mode (T2MOD) Control Register

P80C3xX2; P80C5xX2; P87C5xX2

Table 5. Timer 2 Generated Commonly Used Baud Rates

Baud	Rate		Timer 2				
12-clk mode	6-clk mode	Osc Freq	RCAP2H	RCAP2L			
375 K	750 K	12 MHz	FF	FF			
9.6 K	19.2 K	12 MHz	FF	D9			
4.8 K	9.6 K	12 MHz	FF	B2			
2.4 K	4.8 K	12 MHz	FF	64			
1.2 K	2.4 K	12 MHz	FE	C8			
300	600	12 MHz	FB	1E			
110	220	12 MHz	F2	AF			
300	600	6 MHz	FD	8F			
110	220	6 MHz	F9	57			

Summary Of Baud Rate Equations

Timer 2 is in baud rate generating mode. If Timer 2 is being clocked through pin T2(P1.0) the baud rate is:

Baud Rate = $\frac{\text{Timer 2 Overflow Rate}}{16}$

If Timer 2 is being clocked internally, the baud rate is:

Baud Rate =
$$\frac{f_{OSC}}{[n \times [65536 - (RCAP2H, RCAP2L)]]}$$

Where:

n = 16 in 6-clock mode, 32 in 12-clock mode.

f_{OSC}= Oscillator Frequency

To obtain the reload value for RCAP2H and RCAP2L, the above equation can be rewritten as:

$$\text{RCAP2H, RCAP2L} = 65536 - \left(\frac{f_{\text{OSC}}}{n \times \text{Baud Rate}}\right)$$

Timer/Counter 2 Set-up

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the timer on. See Table 6 for set-up of Timer 2 as a timer. Also see Table 7 for set-up of Timer 2 as a counter.

Table 6. Timer 2 as a Timer

	T2C	ON
MODE	INTERNAL CONTROL (Note 1)	EXTERNAL CONTROL (Note 2)
16-bit Auto-Reload	00H	08H
16-bit Capture	01H	09H
Baud rate generator receive and transmit same baud rate	34H	36H
Receive only	24H	26H
Transmit only	14H	16H

Table 7. Timer 2 as a Counter

	TMOD					
MODE	INTERNAL CONTROL (Note 1)	EXTERNAL CONTROL (Note 2)				
16-bit	02H	0AH				
Auto-Reload	03H	0BH				

NOTES:

- 1. Capture/reload occurs only on timer/counter overflow.
- Capture/reload occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate generator mode.

FULL-DUPLEX ENHANCED UART

Standard UART operation

The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the register. (However, if the first byte still hasn't been read by the time reception of the second byte is complete, one of the bytes will be lost.) The serial port receive and transmit registers are both accessed at Special Function Register SBUF. Writing to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register.

The serial port can operate in 4 modes:

- Mode 0: Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received (LSB first). The baud rate is fixed at 1/12 the oscillator frequency in 12-clock mode or 1/6 the oscillator frequency in 6-clock mode.
- Mode 1: 10 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in Special Function Register SCON. The baud rate is variable.
- Mode 2: 11 bits are transmitted (through TxD) or received (through RxD): start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On Transmit, the 9th data bit (TB8 in SCON) can be assigned the value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. On receive, the 9th data bit goes into RB8 in Special Function Register SCON, while the stop bit is ignored. The baud rate is programmable to either 1/32 or 1/64 the oscillator frequency in 12-clock mode or 1/16 or 1/32 the oscillator frequency in 6-clock mode.
- Mode 3: 11 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). In fact, Mode 3 is the same as Mode 2 in all respects except baud rate. The baud rate in Mode 3 is variable.

In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. Reception is initiated in the other modes by the incoming start bit if REN = 1.

Multiprocessor Communications

Modes 2 and 3 have a special provision for multiprocessor communications. In these modes, 9 data bits are received. The 9th one goes into RB8. Then comes a stop bit. The port can be programmed such that when the stop bit is received, the serial port interrupt will be activated only if RB8 = 1. This feature is enabled by setting bit SM2 in SCON. A way to use this feature in multiprocessor systems is as follows:

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no slave will be interrupted by a data byte. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that will be coming.

P80C3xX2; P80C5xX2; P87C5xX2

The slaves that weren't being addressed leave their SM2s set and go on about their business, ignoring the coming data bytes.

SM2 has no effect in Mode 0, and in Mode 1 can be used to check the validity of the stop bit. In a Mode 1 reception, if SM2 = 1, the receive interrupt will not be activated unless a valid stop bit is received.

Serial Port Control Register

The serial port control and status register is the Special Function Register SCON, shown in Figure 12. This register contains not only the mode selection bits, but also the 9th data bit for transmit and receive (TB8 and RB8), and the serial port interrupt bits (TI and RI).

Baud Rates

The baud rate in Mode 0 is fixed: Mode 0 Baud Rate = Oscillator Frequency / 12 (12-clock mode) or / 6 (6-clock mode). The baud rate in Mode 2 depends on the value of bit SMOD in Special Function Register PCON. If SMOD = 0 (which is the value on reset), and the port pins in 12-clock mode, the baud rate is 1/64 the oscillator frequency. If SMOD = 1, the baud rate is 1/32 the oscillator frequency. In 6-clock mode, the baud rate is 1/32 or 1/16 the oscillator frequency, respectively.

Mode 2 Baud Rate =

 $\frac{2^{\text{SMOD}}}{n} \times (\text{Oscillator Frequency})$

Where:

n = 64 in 12-clock mode, 32 in 6-clock mode

The baud rates in Modes 1 and 3 are determined by the Timer 1 or Timer 2 overflow rate.

Using Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator (T2CON.RCLK = 0, T2CON.TCLK = 0), the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 Baud Rate =

$$\frac{2^{\text{SMOD}}}{n} \times$$
 (Timer 1 Overflow Rate)

Where:

n = 32 in 12-clock mode, 16 in 6-clock mode

The Timer 1 interrupt should be disabled in this application. The Timer itself can be configured for either "timer" or "counter" operation, and in any of its 3 running modes. In the most typical applications, it is configured for "timer" operation, in the auto-reload mode (high nibble of TMOD = 0010B). In that case the baud rate is given by the formula:

Mode 1, 3 Baud Rate =

$$\frac{2^{\text{SMOD}}}{n} \times \frac{\text{Oscillator Frequency}}{12 \times [256-(\text{TH1})]}$$

Where:

n = 32 in 12-clock mode, 16 in 6-clock mode

One can achieve very low baud rates with Timer 1 by leaving the Timer 1 interrupt enabled, and configuring the Timer to run as a 16-bit timer (high nibble of TMOD = 0001B), and using the Timer 1 interrupt to do a 16-bit software reload. Figure 13 lists various commonly used baud rates and how they can be obtained from Timer 1.

Figure 16. Serial Port Mode 2

P80C3xX2; P80C5xX2; P87C5xX2

Figure 17. Serial Port Mode 3

P80C3xX2; P80C5xX2; P87C5xX2

SCON Add	ress = 98H							R	Reset Value = 0000 0000B	
Bit A	ddressable									
	7	6	5	4	3	2	1	0		
	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI		
	(SMOD0 =	= 0/1)*								
Symbol	Position	Function	1							
FE	SCON.7	Framing I cleared b access to	Error bit. Th y valid fram the FE bit.	is bit is set l es but shou	by the receiv Ild be cleare	ver when d by soft	an invalid sto ware. The SN	p bit is dete 10D0 bit m	ected. The FE bit is not ust be set to enable	
SM0	SCON.7	Serial Po	rt Mode Bit	0, (SMOD0	must = 0 to	access b	it SM0)			
SM1	SCON.6	Serial Po	rt Mode Bit	1						
		SM0	SM1	Mode	Descriptior	a Ba	ud Rate**			
		0	0	0	shift register	fos	_C /12 (12-clk r	mode) or f _C	_{OSC} /6 (6-clk mode)	
		0	1	1	8-bit UART	var	iable	00 (
		1	0	2	9-bit UAR I	t _{OS}	$f_{OSC}/64$ or $f_{OSC}/32$ or $f_{OSC}/16$ (6-clock mode) or f_{OSC}/32 (12-clock mode)			
		1	1	3	9-bit UART	var	iable			
SM2	SCON.5	Enables to unless the Broadcas received,	he Automat e received s it Address. I and the rec	ic Address 9th data bit (n Mode 1, i eived byte i	Recognition (RB8) is 1, ir f SM2 = 1 th is a Given o	feature in ndicating en RI will r Broadca	n Modes 2 or an address, a not be activa ast Address. I	3. If SM2 = and the rec ated unless n Mode 0, 3	- 1 then RI will not be set eived byte is a Given or a valid stop bit was SM2 should be 0.	
REN	SCON.4	Enables s	serial recept	ion. Set by	software to	enable re	ception. Clea	ar by softwa	re to disable reception.	
TB8	SCON.3	The 9th d	lata bit that	will be trans	smitted in Mo	odes 2 an	d 3. Set or cl	ear by soft	ware as desired.	
RB8	SCON.2	In modes was recei In Mode (2 and 3, the ived.), RB8 is no	e 9th data b t used.	it that was r	eceived.	In Mode 1, if a	SM2 = 0, R	B8 is the stop bit that	
ΤI	SCON.1	Transmit the stop b	interrupt fla bit in the oth	g. Set by ha er modes, i	ardware at th n any serial	e end of transmiss	the 8th bit tim sion. Must be	ne in Mode cleared by	0, or at the beginning of software.	
RI	SCON.0	Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or halfway through the stop bit time in the other modes, in any serial reception (except see SM2). Must be cleared by software.								
*SMOD0 is located **f _{OSC} = oscillator	d at PCON.6. frequency								SU01628	

Figure 18. SCON: Serial Port Control Register

P80C3xX2; P80C5xX2; P87C5xX2

Figure 19. UART Framing Error Detection

Figure 20. UART Multiprocessor Communication, Automatic Address Recognition

P87C5xX2

P80C3xX2; P80C5xX2;

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

IE		Address = 0A8H								R	eset Value = 0X000000B
		Bit Addressable	7	6	5	4	3	2	1	0	_
			EA	—	ET2	ES	ET1	EX1	ET0	EX0	
			Enable Enable	Bit = 1 en Bit = 0 dis	ables the i ables it.	nterrupt.					
	BIT	SYMBOL	FUNC	TION							
	IE.7	EA	Globa enable	l disable b ed or disal	oit. If EA =	0, all inte	rrupts are	disabled.	If EA = 1,	each inte	rrupt can be individually
	IE.6	_	Not in	plemente	d. Reserv	ed for futu	ire use.				
	IE.5	ET2	Timer	2 interrup	t enable b	it.					
	IE.4	ES	Serial	Port inter	rupt enabl	e bit.					
	IE.3	ET1	Timer	1 interrup	t enable b	it.					
	IE.2	EX1	Exterr	nal interru	ot 1 enable	e bit.					
	IE.1	ET0	Timer	0 interrup	t enable b	it.					
	IE.0	EX0	Exterr	nal interru	ot 0 enable	e bit.					
											SU01522

IP	Add	lress = 0B8H								Re	eset Value = xx000000B	
	Bit /	Addressable										
			7	6	5	4	3	2	1	0		
			—	—	PT2	PS	PT1	PX1	PT0	PX0		
	Priority Bit = 1 assigns higher priority Priority Bit = 0 assigns lower priority											
	BIT	SYMBOL	FUNC	TION								
	IP.7	_	Not im	Not implemented, reserved for future use.								
	IP.6		Not im	plemente	d, reserve	d for futur	e use.					
	IP.5	PT2	Timer	2 interrup	t priority b	it.						
	IP.4	PS	Serial	Port interi	upt priorit	y bit.						
	IP.3	PT1	Timer	Timer 1 interrupt priority bit.								
	IP.2	PX1	Exterr	External interrupt 1 priority bit.								
	IP.1	PT0	Timer	Timer 0 interrupt priority bit.								
	IP.0	PX0	Exterr	nal interrup	ot 0 priority	y bit.				SU01523		

	Figure 23.	Interrupt	Priority ((IP)	Register
--	------------	-----------	------------	------	----------

IPH	Address = B7H									Res	set Value = xx000000B	
	Bit Add	ressable	7	6	5	4	3	2	1	0		
				_	PT2H	PSH	PT1H	PX1H	PT0H	PX0H		
	Priority Bit = 1 assigns higher priority Priority Bit = 0 assigns lower priority										1	
	BIT	SYMBOL	FUNC	TION								
	IPH.7	_	Not im	Not implemented, reserved for future use.								
	IPH.6	_	Not im	plemente	d, reserve							
	IPH.5	PT2H	Timer	Timer 2 interrupt priority bit high.								
	IPH.4	PSH	Serial	Serial Port interrupt priority bit high.								
	IPH.3	PT1H	Timer	Timer 1 interrupt priority bit high.								
	IPH.2	PX1H	Exterr	External interrupt 1 priority bit high.								
	IPH.1	PT0H	Timer	Timer 0 interrupt priority bit high.								
	IPH.0	PX0H	Exterr	al interru	ot 0 priority	/ bit high.				SU015	524	

Figure 24. Interrupt Priority HIGH (IPH) Register

P80C3xX2; P80C5xX2; P87C5xX2

Figure 25. Interrupt Response Timing Diagram

The polling cycle/LCALL sequence is illustrated in Figure 25.

Note that if an interrupt of higher priority level goes active prior to S5P2 of the machine cycle labeled C3 in Figure 25, then in accordance with the above rules it will be vectored to during C5 and C6, without any instruction of the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the appropriate servicing routine. In some cases it also clears the flag that generated the interrupt, and in other cases it doesn't. It never clears the Serial Port flag. This has to be done in the user's software. It clears an external interrupt flag (IE0 or IE1) only if it was transition-activated. The

hardware-generated LCALL pushes the contents of the Program Counter on to the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as shown in Table 8.

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the Program Counter. Execution of the interrupted program continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking an interrupt was still in progress, making future interrupts impossible.

External Interrupts

The external sources can be programmed to be level-activated or transition-activated by setting or clearing bit IT1 or IT0 in Register TCON. If ITx = 0, external interrupt x is triggered by a detected low at the \overline{INTx} pin. If ITx = 1, external interrupt x is edge triggered. In this mode if successive samples of the \overline{INTx} pin show a high in one cycle and a low in the next cycle, interrupt request flag IEx in TCON is set. Flag bit IEx then requests the interrupt.

Since the external interrupt pins are sampled once each machine cycle, an input high or low should hold for at least 12 oscillator periods to ensure sampling. If the external interrupt is transition-activated, the external source has to hold the request pin high for at least one cycle, and then hold it low for at least one cycle. This is done to ensure that the transition is seen so that interrupt request flag IEx will be set. IEx will be automatically cleared by the CPU when the service routine is called.

If the external interrupt is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is completed, or else another interrupt will be generated.

Response Time

The INTO and INT1 levels are inverted and latched into IEO and IE1 at S5P2 of every machine cycle. The values are not actually polled by the circuitry until the next machine cycle. If a request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The call itself takes two cycles. Thus, a minimum of three complete machine cycles elapse between activation of an external interrupt request and the beginning of execution of the first instruction of the service routine. Figure 25 shows interrupt response timings.

A longer response time would result if the request is blocked by one of the 3 previously listed conditions. If an interrupt of equal or higher priority level is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine. If the instruction in progress is not in its final cycle, the additional wait time cannot be more the 3 cycles, since the longest instructions (MUL and DIV) are only 4 cycles long, and if the instruction in progress is RETI or an access to IE or IP, the additional wait time cannot be more than 5 cycles (a maximum of one more cycle to complete the instruction in progress, plus 4 cycles to complete the next instruction if the instruction is MUL or DIV).

Thus, in a single-interrupt system, the response time is always more than 3 cycles and less than 9 cycles.

As previously mentioned, the derivatives described in this data sheet have a four-level interrupt structure. The corresponding registers are IE, IP and IPH. (See Figures 22, 23, and 24.) The IPH (Interrupt Priority High) register makes the four-level interrupt structure possible.

The function of the IPH SFR is simple and when combined with the IP SFR determines the priority of each interrupt. The priority of each interrupt is determined as shown in the following table:

PRIORITY BITS			
IPH.x	IP.x		
0	0	Level 0 (lowest priority)	
0	1	Level 1	
1	0	Level 2	
1	1	Level 3 (highest priority)	

P80C3xX2; P80C5xX2; P87C5xX2

AC ELECTRICAL CHARACTERISTICS (6-CLOCK MODE, 2.7 V TO 5.5 V OPERATION)

 $T_{amb} = 0 \degree C$ to +70 $\degree C$ or -40 $\degree C$ to +85 $\degree C$; V_{CC} =2.7 V to 5.5 V, $V_{SS} = 0 V^{1,2,3,4,5}$

Symbol Figure		Parameter	Limits	Limits			Unit
			MIN	MAX	MIN	MAX	1
1/t _{CLCL}	31	Oscillator frequency	0	16	-	-	MHz
t _{LHLL}	27	ALE pulse width	t _{CLCL} -10	-	52.5	-	ns
t _{AVLL}	27	Address valid to ALE low	0.5 t _{CLCL} –15	-	16.25	-	ns
t _{LLAX}	27	Address hold after ALE low	0.5 t _{CLCL} –25	-	6.25	-	ns
t _{LLIV}	27	ALE low to valid instruction in	-	2 t _{CLCL} –55	-	70	ns
t _{LLPL}	27	ALE low to PSEN low	0.5 t _{CLCL} –15	-	16.25	-	ns
t _{PLPH}	27	PSEN pulse width	1.5 t _{CLCL} –15	-	78.75	-	ns
t _{PLIV}	27	PSEN low to valid instruction in	-	1.5 t _{CLCL} –55	-	38.75	ns
t _{PXIX}	27	Input instruction hold after PSEN	0	-	0	-	ns
t _{PXIZ}	27	Input instruction float after PSEN	-	0.5 t _{CLCL} –10	-	21.25	ns
t _{AVIV}	27	Address to valid instruction in	-	2.5 t _{CLCL} –50	-	101.25	ns
t _{PLAZ}	27	PSEN low to address float	-	10	-	10	ns
Data Men	nory	-		•			
t _{RLRH}	28	RD pulse width	3 t _{CLCL} –25	-	162.5	-	ns
t _{WLWH}	29	WR pulse width	3 t _{CLCL} –25	-	162.5	-	ns
t _{RLDV}	28	RD low to valid data in	-	2.5 t _{CLCL} –50	-	106.25	ns
t _{RHDX}	28	Data hold after RD	0	-	0	-	ns
t _{RHDZ}	28	Data float after RD	-	t _{CLCL} –20	-	42.5	ns
t _{LLDV}	28	ALE low to valid data in	-	4 t _{CLCL} –55	-	195	ns
t _{AVDV}	28	Address to valid data in	-	4.5 t _{CLCL} –50	-	231.25	ns
t _{LLWL}	28, 29	ALE low to RD or WR low	1.5 t _{CLCL} –20	1.5 t _{CLCL} +20	73.75	113.75	ns
t _{AVWL}	28, 29	Address valid to \overline{WR} low or \overline{RD} low	2 t _{CLCL} –20	-	105	-	ns
t _{QVWX}	29	Data valid to WR transition	0.5 t _{CLCL} –30	-	1.25	-	ns
t _{WHQX}	29	Data hold after WR	0.5 t _{CLCL} –20	-	11.25	-	ns
t _{QVWH}	29	Data valid to WR high	3.5 t _{CLCL} –10	-	208.75	-	ns
t _{RLAZ}	28	RD low to address float	-	0	-	0	ns
t _{WHLH}	28, 29	RD or WR high to ALE high	0.5 t _{CLCL} –15	0.5 t _{CLCL} +15	16.25	46.25	ns
External	Clock	1					
t _{CHCX}	31	High time	0.4 t _{CLCL}	t _{CLCL} - t _{CLCX}	-	-	ns
t _{CLCX}	31	Low time	0.4 t _{CLCL}	t _{CLCL} – t _{CHCX}	-	-	ns
t _{CLCH}	31	Rise time	-	5	-	-	ns
t _{CHCL}	31	Fall time	-	5	-	-	ns
Shift regi	ster		1	1			
t _{XLXL}	30	Serial port clock cycle time	6 t _{CLCL}	-	375	-	ns
t _{QVXH}	30	Output data setup to clock rising edge	5 t _{CLCL} –25	-	287.5	-	ns
t _{XHQX}	30	Output data hold after clock rising edge	t _{CLCL} –15	-	47.5	-	ns
t _{XHDX}	30	Input data hold after clock rising edge	0	-	0	-	ns
t _{XHDV}	30	Clock rising edge to input data valid	-	5 t _{CLCL} –133	-	179.5	ns

NOTES:

1. Parameters are valid over operating temperature range unless otherwise specified.

2. Load capacitance for port 0, ALE, and PSEN=100 pF, load capacitance for all outputs = 80 pF

3. Interfacing the microcontroller to devices with float time up to 45ns is permitted. This limited bus contention will not cause damage to port 0 drivers.

4. Parts are guaranteed by design to operate down to 0 Hz.

5. Data shown in the table are the best mathematical models for the set of measured values obtained in tests. If a particular parameter calculated at a customer specified frequency has a negative value, it should be considered equal to zero.

P80C3xX2; P80C5xX2; P87C5xX2

Figure 29. External Data Memory Write Cycle

Figure 30. Shift Register Mode Timing

Figure 31. External Clock Drive

*/"

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

/* ## as31 version V2.10 / *js* / ## ## source file: idd_ljmp1.asm list file: idd_ljmp1.lst created Fri Apr 20 15:51:40 2001 # AUXR equ 08Eh # CKCON equ 08Fh # # # org 0 # # LJMP_LABEL: AUXR,#001h ; turn off ALE LJMP_LABEL ; jump to end of address space MOV # # LJMP NOP # # # org Offfdh # # LJMP_LABEL:

SU01499

Figure 35. Source code used in measuring I_{DD} operational

P87C5xX2

P80C3xX2; P80C5xX2;

***** #0000 #0000 #0000 0000 /75;/8E;/01; 0003 /02;/FF;/FD; 0005 /00; #FFFD # FFFD /02;/FD;FF; # LJMP LJMP_LABEL # ; NOP #

P80C3xX2; P80C5xX2; P87C5xX2

Table 9. EPROM Programming Modes

MODE	RST	PSEN	ALE/PROG	EA/V _{PP}	P2.7	P2.6	P3.7	P3.6	P3.3
Read signature	1	0	1	1	0	0	0	0	Х
Program code data	1	0	0*	V _{PP}	1	0	1	1	Х
Verify code data	1	0	1	1	0	0	1	1	Х
Pgm encryption table	1	0	0*	V _{PP}	1	0	1	0	Х
Pgm security bit 1	1	0	0*	V _{PP}	1	1	1	1	Х
Pgm security bit 2	1	0	0*	V _{PP}	1	1	0	0	Х
Pgm security bit 3	1	0	0*	V _{PP}	0	1	0	1	Х
Program to 6-clock mode	1	0	0*	V _{PP}	0	0	1	0	0
Verify 6-clock ⁴	1	0	1	1	е	0	0	1	1
Verify security bits ⁵	1	0	1	1	е	0	1	0	Х

NOTES:

1. '0' =Valid low for that pin, '1' =valid high for that pin.

2. V_{PP} = 12.75 V ±0.25 V.

3. $V_{CC} = 5 V \pm 10\%$ during programming and verification. 4. Bit is output on P0.4 (1 = 12x, 0 = 6x).

5. Security bit one is output on P0.7.

Security bit two is output on P0.6.

Security bit three is output on P0.3.

* ALE/PROG receives 5 programming pulses for code data (also for user array; 5 pulses for encryption or security bits) while VPP is held at 12.75 V. Each programming pulse is low for 100 μ s (±10 μ s) and high for a minimum of 10 μ s.

Table 10. Program Security Bits for EPROM Devices

PROGRAM LOCK BITS ^{1, 2}		31, 2		
	SB1	SB2	SB3	PROTECTION DESCRIPTION
1	U	U	U	No Program Security features enabled. (Code verify will still be encrypted by the Encryption Array if programmed.)
2	Р	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on Reset, and further programming of the EPROM is disabled.
3	Р	Р	U	Same as 2, also verify is disabled.
4	Р	Р	Р	Same as 3, external execution is disabled. Internal data RAM is not accessible.

NOTES:

1. P - programmed. U - unprogrammed.

2. Any other combination of the security bits is not defined.

P80C3xX2; P80C5xX2; P87C5xX2

Product data

MASK ROM DEVICES

Security Bits

With none of the security bits programmed the code in the program memory can be verified. If the encryption table is programmed, the code will be encrypted when verified. When only security bit 1 (see Table 11) is programmed, MOVC instructions executed from external program memory are disabled from fetching code bytes from the internal memory, \overline{EA} is latched on Reset and all further programming

of the EPROM is disabled. When security bits 1 and 2 are programmed, in addition to the above, verify mode is disabled.

Encryption Array

64 bytes (87C51), or 32 bytes (87C52/4) of encryption array are initially unprogrammed (all 1s).

Table 11. Program Security Bits

PROGRAM LOCK BITS ^{1, 2}		BITS ^{1, 2}	
	SB1	SB2	PROTECTION DESCRIPTION
1	U	U	No Program Security features enabled. (Code verify will still be encrypted by the Encryption Array if programmed.)
2	Р	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on Reset, and further programming of the EPROM is disabled.
NOTEO		-	-

NOTES:

1. P – programmed. U – unprogrammed.

2. Any other combination of the security bits is not defined.

80C51X2 ROM CODE SUBMISSION

When submitting a ROM code for the 80C51X2, the following must be specified:

- 1. 4 kbyte user ROM data
- 2. 64 byte ROM encryption key
- 3. ROM security bits.

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 0FFFH	DATA	7:0	User ROM Data
1000H to 103FH	KEY	7:0	ROM Encryption Key
1040H	SEC	0	ROM Security Bit 1
1040H	SEC	1	ROM Security Bit 2

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. \overline{EA} is latched on Reset.

Security Bit 2: When programmed, this bit inhibits Verify User ROM.

NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.

If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	Enabled	Disabl	ed
Security Bit #2:	□ Enabled	Disable	ed
Encryption:	🗆 No	□ Yes	If Yes, must send key file.

80C52X2 ROM CODE SUBMISSION

When submitting a ROM code for the 80C52X2, the following must be specified:

- 1. 8 kbyte user ROM data
- 2. 64 byte ROM encryption key
- 3. ROM security bits.

Product data

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 1FFFH	DATA	7:0	User ROM Data
2000H to 203FH	KEY	7:0	ROM Encryption Key
2040H	SEC	0	ROM Security Bit 1
2040H	SEC	1	ROM Security Bit 2

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. $\overline{\text{EA}}$ is latched on Reset.

Security Bit 2: When programmed, this bit inhibits Verify User ROM.

NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.

If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	Enabled	Disabled	
Security Bit #2:	Enabled	Disabled	

P80C3xX2; P80C5xX2; P87C5xX2

REVISION HISTORY

Rev	Date	Description
_6	20030124	Product data (9397 750 10995); ECN 853-2337 29260 of 06 December 2002
		Modifications:
		Added TSSOP38 package details
_5	20020912	Product data (9397 750 10361); ECN 853-2337 28906 of 12 September 2002
_4	20020612	Product data (9397 750 09969); ECN 853-2337 28427 of 12 June 2002
_3	20020422	Product data (9397 750 09779); ECN 853-2337 28059 of 22 April 2002
_2	20020219	Preliminary data (9397 750 09467)
_1	20010924	Preliminary data (9397 750 08895); initial release