

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	76
Program Memory Size	320KB (320K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	34K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2364b40f80labkxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2014-06 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Summary of Features

- On-Chip Peripheral Modules
 - Two synchronizable A/D Converters with up to 16 channels, 10-bit resolution, conversion time below 1 μ s, optional data preprocessing (data reduction, range check), broken wire detection
 - 16-channel general purpose capture/compare unit (CC2)
 - Two capture/compare units for flexible PWM signal generation (CCU6x)
 - Multi-functional general purpose timer unit with 5 timers
 - Up to 6 serial interface channels to be used as UART, LIN, high-speed synchronous channel (SPI/QSPI), IIC bus interface (10-bit addressing, 400 kbit/s), IIS interface
 - On-chip MultiCAN interface (Rev. 2.0B active) with 64 message objects (Full CAN/Basic CAN) on up to 3 CAN nodes and gateway functionality
 - On-chip system timer and on-chip real time clock
- Up to 12 Mbytes external address space for code and data
 - Programmable external bus characteristics for different address ranges
 - Multiplexed or demultiplexed external address/data buses
 - Selectable address bus width
 - 16-bit or 8-bit data bus width
 - Four programmable chip-select signals
- Single power supply from 3.0 V to 5.5 V
- Power reduction and wake-up modes
- Programmable watchdog timer and oscillator watchdog
- Up to 76 general purpose I/O lines
- On-chip bootstrap loaders
- Supported by a full range of development tools including C compilers, macroassembler packages, emulators, evaluation boards, HLL debuggers, simulators, logic analyzer disassemblers, programming boards
- On-chip debug support via Device Access Port (DAP) or JTAG interface
- 100-pin Green LQFP package, 0.5 mm (19.7 mil) pitch

Tabl	Fin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
30	P5.8	1	In/A	Bit 8 of Port 5, General Purpose Input			
	ADC0_CH8	1	In/A	Analog Input Channel 8 for ADC0			
	ADC1_CH8	1	In/A	Analog Input Channel 8 for ADC1			
	CCU6x_T12H RC	I	In/A	External Run Control Input for T12 of CCU60/1			
	CCU6x_T13H RC	I	In/A	External Run Control Input for T13 of CCU60/1			
	U2C0_DX0F	1	In/A	USIC2 Channel 0 Shift Data Input			
31	P5.9	I	In/A	Bit 9 of Port 5, General Purpose Input			
	ADC0_CH9	1	In/A	Analog Input Channel 9 for ADC0			
	ADC1_CH9	I	In/A	Analog Input Channel 9 for ADC1			
	CC2_T7IN	1	In/A	CAPCOM2 Timer T7 Count Input			
32	P5.10	1	In/A	Bit 10 of Port 5, General Purpose Input			
	ADC0_CH10	I	In/A	Analog Input Channel 10 for ADC0			
	ADC1_CH10	I	In/A	Analog Input Channel 10 for ADC1			
	BRKIN_A	I	In/A	OCDS Break Signal Input			
	U2C1_DX0F	I	In/A	USIC2 Channel 1 Shift Data Input			
	CCU61_T13 HRA	I	In/A	External Run Control Input for T13 of CCU61			
33	P5.11	I	In/A	Bit 11 of Port 5, General Purpose Input			
	ADC0_CH11	I	In/A	Analog Input Channel 11 for ADC0			
	ADC1_CH11	1	In/A	Analog Input Channel 11 for ADC1			
34	P5.13	I	In/A	Bit 13 of Port 5, General Purpose Input			
	ADC0_CH13	I	In/A	Analog Input Channel 13 for ADC0			
35	P5.15	1	In/A	Bit 15 of Port 5, General Purpose Input			
	ADC0_CH15	I	In/A	Analog Input Channel 15 for ADC0			
	RxDC2F	1	In/A	CAN Node 2 Receive Data Input			

XC2361B, XC2363B, XC2364B, XC2365B XC2000 Family / Value Line

Table	able 6 Pin Definitions and Functions (cont'd)								
Pin	Symbol	Ctrl.	Туре	Function					
46	P2.5	O0 / I	St/B	Bit 5 of Port 2, General Purpose Input/Output					
	U0C0_SCLK OUT	O1	St/B	USIC0 Channel 0 Shift Clock Output					
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output					
	CC2_CC18	O3 / I	St/B	CAPCOM2 CC18IO Capture Inp./ Compare Out.					
	A18	ОН	St/B	External Bus Interface Address Line 18					
	U0C0_DX1D	I	St/B	USIC0 Channel 0 Shift Clock Input					
	ESR1_10	I	St/B	ESR1 Trigger Input 10					
47	P4.2	O0 / I	St/B	Bit 2 of Port 4, General Purpose Input/Output					
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output					
	CC2_CC26	O3 / I	St/B	CAPCOM2 CC26IO Capture Inp./ Compare Out.					
	CS2	ОН	St/B	External Bus Interface Chip Select 2 Output					
	T2INA	I	St/B	GPT12E Timer T2 Count/Gate Input					
48	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output					
	U0C0_SELO 0	O1	St/B	USIC0 Channel 0 Select/Control 0 Output					
	U0C1_SELO 1	O2	St/B	USIC0 Channel 1 Select/Control 1 Output					
	CC2_CC19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.					
	A19	OH	St/B	External Bus Interface Address Line 19					
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input					
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input					
	ESR2_6	I	St/B	ESR2 Trigger Input 6					
49	P4.3	O0 / I	St/B	Bit 3 of Port 4, General Purpose Input/Output					
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output					
	CC2_CC27	O3 / I	St/B	CAPCOM2 CC27IO Capture Inp./ Compare Out.					
	CS3	OH	St/B	External Bus Interface Chip Select 3 Output					
	RxDC2A	I	St/B	CAN Node 2 Receive Data Input					
	T2EUDA	I	St/B	GPT12E Timer T2 External Up/Down Control Input					

Tabl	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
53	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output			
	U1C0_DOUT	O1	St/B	USIC1 Channel 0 Shift Data Output			
	CCU61_CC6 0	O3	St/B	CCU61 Channel 0 IOutput			
	A0	OH	St/B	External Bus Interface Address Line 0			
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input			
	CCU61_CC6 0INA	I	St/B	CCU61 Channel 0 Input			
	ESR1_11	I	St/B	ESR1 Trigger Input 11			
54	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output			
	U0C1_SELO 0	01	St/B	USIC0 Channel 1 Select/Control 0 Output			
	U0C0_SELO 1	02	St/B	USIC0 Channel 0 Select/Control 1 Output			
	CC2_CC20	03/1	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.			
	A20	OH	St/B	External Bus Interface Address Line 20			
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input			
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input			
	ESR2_7	I	St/B	ESR2 Trigger Input 7			
55	P0.1	O0 / I	St/B	Bit 1 of Port 0, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output			
	CCU61_CC6 1	O3	St/B	CCU61 Channel 1 Output			
	A1	OH	St/B	External Bus Interface Address Line 1			
	U1C0_DX0B	I	St/B	USIC1 Channel 0 Shift Data Input			
	CCU61_CC6 1INA	I	St/B	CCU61 Channel 1 Input			
	U1C0_DX1A	I	St/B	USIC1 Channel 0 Shift Clock Input			

Table	Fin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
79	P10.8	O0 / I	St/B	Bit 8 of Port 10, General Purpose Input/Output				
	U0C0_MCLK OUT	01	St/B	USIC0 Channel 0 Master Clock Output				
	U0C1_SELO 0	02	St/B	USIC0 Channel 1 Select/Control 0 Output				
	U2C1_DOUT	O3	St/B	USIC2 Channel 1 Shift Data Output				
	AD8	OH / IH	St/B	External Bus Interface Address/Data Line 8				
	CCU60_CCP OS1A	I	St/B	CCU60 Position Input 1				
	U0C0_DX1C	I	St/B	USIC0 Channel 0 Shift Clock Input				
	BRKIN_B	I	St/B	OCDS Break Signal Input				
	T3EUDB	I	St/B	GPT12E Timer T3 External Up/Down Control Input				
80	P10.9	O0 / I	St/B	Bit 9 of Port 10, General Purpose Input/Output				
	U0C0_SELO 4	01	St/B	USIC0 Channel 0 Select/Control 4 Output				
	U0C1_MCLK OUT	02	St/B	USIC0 Channel 1 Master Clock Output				
	AD9	OH / IH	St/B	External Bus Interface Address/Data Line 9				
	CCU60_CCP OS2A	I	St/B	CCU60 Position Input 2				
	TCK_B	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.				
	T3INB	1	St/B	GPT12E Timer T3 Count/Gate Input				

XC2361B, XC2363B, XC2364B, XC2365B XC2000 Family / Value Line

Table	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
98	ESR1	O0 / I	St/B	External Service Request 1 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it.			
	RxDC0E	I	St/B	CAN Node 0 Receive Data Input			
	U1C0_DX0F	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX2C	I	St/B	USIC1 Channel 0 Shift Control Input			
	U1C1_DX0C	I	St/B	USIC1 Channel 1 Shift Data Input			
	U1C1_DX2B	I	St/B	USIC1 Channel 1 Shift Control Input			
	U2C1_DX2C	I	St/B	USIC2 Channel 1 Shift Control Input			
99	ESR0	O0 / I	St/B	External Service Request 0 After power-up, ESR0 operates as open-drain bidirectional reset with a weak pull-up.			
	U1C0_DX0E	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX2B	I	St/B	USIC1 Channel 0 Shift Control Input			
10	V _{DDIM}	-	PS/M	Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Data Sheet for details.			
38, 64, 88	V _{DDI1}	-	PS/1	Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Data Sheet for details. All V_{DDI1} pins must be connected to each other.			
14	V _{DDPA}	-	PS/A	Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins.			
				P15 are fed from supply voltage V_{DDPA} .			

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)								
Pin	Symbol	Ctrl.	Туре	Function					
2, 25, 27,	V _{DDPB}	-	PS/B	Digital Pad Supply Voltage for Domain B Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins					
50, 52, 75, 77, 100				Note: The on-chip voltage regulators and all port except P5, P6 and P15 are fed from supply voltage V _{DDPB} .					
1, 26, 51,	V _{SS}	-	PS/	Digital Ground All V_{SS} pins must be connected to the ground-line or ground-plane.					
76				Note: Also the exposed pad is connected internally to V_{SS} . To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.					

1) To generate the reference clock output for bus timing measurement, f_{SYS} must be selected as source for EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This configuration is referred to as reference clock output signal CLKOUT.

Functional Description

Memory Content Protection

The contents of on-chip memories can be protected against soft errors (induced e.g. by radiation) by activating the parity mechanism or the Error Correction Code (ECC).

The parity mechanism can detect a single-bit error and prevent the software from using incorrect data or executing incorrect instructions.

The ECC mechanism can detect and automatically correct single-bit errors. This supports the stable operation of the system.

It is strongly recommended to activate the ECC mechanism wherever possible because this dramatically increases the robustness of an application against such soft errors.

Functional Description

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 9Compare Modes (cont'd)

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the compare mode selected.

XC2361B, XC2363B, XC2364B, XC2365B XC2000 Family / Value Line

Functional Description

Figure 7 CCU6 Block Diagram

Timer T12 can work in capture and/or compare mode for its three channels. The modes can also be combined. Timer T13 can work in compare mode only. The multi-channel control unit generates output patterns that can be modulated by timer T12 and/or timer T13. The modulation sources can be selected and combined for signal modulation.

Functional Description

3.17 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XC236xB from a number of external or internal clock sources:

- External clock signals with pad voltage or core voltage levels
- External crystal or resonator using the on-chip oscillator
- On-chip clock source for operation without crystal/resonator
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals, a clock input signal, or from the on-chip clock source. See also **Section 4.7.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

Functional Description

3.19 Instruction Set Summary

Table 11 lists the instructions of the XC236xB.

The addressing modes that can be used with a specific instruction, the function of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "**Instruction Set Manual**".

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16- \times 16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise exclusive OR, (word/byte operands)	2/4
BCLR/BSET	Clear/Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND/BOR/BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/BFLDL	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL/SHR	Shift left/right direct word GPR	2

Table 11 Instruction Set Summary

4.3.1 DC Parameters for Upper Voltage Area

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

Note: Operating Conditions apply.

Table 16 is valid under the following conditions: $V_{\text{DDP}} \le 5.5 \text{ V}$; V_{DDP} typ. 5 V; $V_{\text{DDP}} \ge 4.5 \text{ V}$

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	_	-	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	0.11 x V _{DDP}	-	-	V	R _S = 0 Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{OZ1} CC	-	10	200	nA	$V_{\rm IN}$ > $V_{\rm SS}$; $V_{\rm IN}$ < $V_{\rm DDP}$
Absolute input leakage current for all other pins. To be doubled for double	I _{OZ2} CC	-	0.2	5	μA	$\begin{array}{l} T_{\rm J} \!$
bond pins. ³⁾¹⁾⁴⁾		_	0.2	15	μA	$\begin{array}{l} T_{\rm J} \!$
Pull Level Force Current ⁵⁾	I _{PLF} SR	250	_	_	μA	$ \begin{array}{l} V_{\rm IN} \geq V_{\rm IHmin}(pull \\ down_enabled); \\ V_{\rm IN} \leq V_{\rm ILmax}(pull \\ up_enabled) \end{array} $
Pull Level Keep Current ⁶⁾	I _{PLK} SR	_	_	30	μA	$ \begin{array}{l} V_{\rm IN} \geq V_{\rm IHmin}(pull \\ up_enabled); \\ V_{\rm IN} \leq V_{\rm ILmax}(pull \\ down_enabled) \end{array} $
Input high voltage (all except XTAL1)	$V_{\rm IH}{\rm SR}$	0.7 x V_{DDP}	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{IL} SR$	-0.3	-	0.3 x V_{DDP}	V	

 Table 16
 DC Characteristics for Upper Voltage Range

4.3.3 Power Consumption

The power consumed by the XC236xB depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current I_{LK} depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to Section 5.2, Thermal Considerations.

Note: Operating Conditions apply.

Parameter	Symbol		Values	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Broken wire detection delay against VAGND ²⁾	t _{BWG} CC	-	-	50 ³⁾		
Broken wire detection delay against VAREF ²⁾	t _{BWR} CC	-	_	50 ⁴⁾		
Conversion time for 8-bit result ²⁾	t _{c8} CC	$(11+S)$ $TC) \times t_{ADCI} + 2 \times t_{SYS}$	-	-		
Conversion time for 10-bit result ²⁾	<i>t</i> _{c10} CC	$(13+S)$ $TC) \times$ $t_{ADCI} +$ $2 \times$ t_{SVS}	-	-		
Total Unadjusted Error	TUE CC	-	1	2	LSB	5)
Wakeup time from analog powerdown, fast mode	t _{WAF} CC	-	-	4	μS	
Wakeup time from analog powerdown, slow mode	t _{WAS} CC	-	_	15	μS	
Analog reference ground	$V_{ m AGND}$ SR	V _{SS} - 0.05	_	1.5	V	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	$V_{\rm AGND}$	-	V_{AREF}	V	6)
Analog reference voltage	V _{AREF} SR	V _{AGND} + 1.0	-	V _{DDPA} + 0.05	V	

Table 20ADC Parameters (cont'd)

 These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) typical values can be used for calculation. At room temperature and nominal supply voltage the following typical values can be used: C_{AINTtyp} = 12 pF, C_{AINStyp} = 5 pF, R_{AINtyp} = 1.0 kOhm, C_{AREFTtyp} = 15 pF, C_{AREFStyp} = 10 pF, R_{AREFStyp} = 1.0 kOhm.

2) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock t_{ADCI} depend on programming.

 The broken wire detection delay against V_{AGND} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 500 μs. Result below 10% (66_H)

4.5 System Parameters

The following parameters specify several aspects which are important when integrating the XC236xB into an application system.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Short-term deviation of internal clock source frequency ¹⁾	$\Delta f_{\sf INT} \sf CC$	-1	-	1	%	$\Delta T_{J} \leq 10^{\circ}C$
Internal clock source frequency	$f_{INT}CC$	4.8	5.0	5.2	MHz	
Wakeup clock source	$f_{\rm WU}{ m CC}$	400	-	700	kHz	FREQSEL= 00
frequency ²⁾		210	-	390	kHz	FREQSEL= 01
		140	-	260	kHz	FREQSEL= 10
		110	-	200	kHz	FREQSEL= 11
Startup time from power- on with code execution from Flash	t _{SPO} CC	1.5	2.0	2.4	ms	$f_{\rm WU}$ = 500 kHz
Startup time from stopover mode with code execution from PSRAM	t _{SSO} CC	11 / f _{WU} ³⁾	-	12 / f _{WU} ³⁾	μs	
Core voltage (PVC) supervision level	$V_{\rm PVC}{ m CC}$	V _{LV} - 0.03	$V_{\rm LV}$	V _{LV} + 0.07 ⁴⁾	V	5)
Supply watchdog (SWD) supervision level	V _{SWD} CC	V _{LV} - 0.10 ⁶⁾	$V_{\rm LV}$	V _{LV} + 0.15	V	voltage_range= lower 5)
		V _{LV} - 0.15	$V_{\rm LV}$	V _{LV} + 0.15	V	voltage_range= upper ⁵⁾
		V _{LV} - 0.30	$V_{\rm LV}$	V _{LV} + 0.30	V	$V_{\rm LV}$ = 5.5 V ⁵⁾

Table 22Various System Parameters

 The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for re-triggering a LIN synchronization.

4.7.2 Definition of Internal Timing

The internal operation of the XC236xB is controlled by the internal system clock f_{SYS} .

Because the system clock signal $f_{\rm SYS}$ can be generated from a number of internal and external sources using different mechanisms, the duration of the system clock periods (TCSs) and their variation (as well as the derived external timing) depend on the mechanism used to generate $f_{\rm SYS}$. This must be considered when calculating the timing for the XC236xB.

Figure 19 Generation Mechanisms for the System Clock

Note: The example of PLL operation shown in **Figure 19** uses a PLL factor of 1:4; the example of prescaler operation uses a divider factor of 2:1.

The specification of the external timing (AC Characteristics) depends on the period of the system clock (TCS).

The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances.

The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or oscillator), the accumulated jitter is limited. This means that the relative deviation for periods of more than one TCS is lower than for a single TCS (see formulas and Figure 20).

This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler K2 to generate the system clock signal f_{SYS} . The number of VCO cycles is K2 × **T**, where **T** is the number of consecutive f_{SYS} cycles (TCS).

The maximum accumulated jitter (long-term jitter) D_{Tmax} is defined by:

 D_{Tmax} [ns] = ±(220 / (K2 × f_{SYS}) + 4.3)

This maximum value is applicable, if either the number of clock cycles T > ($f_{SYS} / 1.2$) or the prescaler value K2 > 17.

In all other cases for a timeframe of $\mathbf{T} \times TCS$ the accumulated jitter D_T is determined by:

 D_{T} [ns] = $D_{Tmax} \times [(1 - 0.058 \times K2) \times (T - 1) / (0.83 \times f_{SYS} - 1) + 0.058 \times K2]$

 f_{SYS} in [MHz] in all formulas.

Example, for a period of 3 TCSs @ 33 MHz and K2 = 4:

 D_{max} = $\pm(220$ / (4 \times 33) + 4.3) = 5.97 ns (Not applicable directly in this case!)

 $D_3 = 5.97 \times [(1 - 0.058 \times 4) \times (3 - 1) / (0.83 \times 33 - 1) + 0.058 \times 4]$

= 5.97 × [0.768 × 2 / 26.39 + 0.232]

Example, for a period of 3 TCSs @ 33 MHz and K2 = 2:

 $D_{max} = \pm (220 / (2 \times 33) + 4.3) = 7.63$ ns (Not applicable directly in this case!)

 $\mathsf{D}_3 = 7.63 \times [(1 - 0.058 \times 2) \times (3 - 1) / (0.83 \times 33 - 1) + 0.058 \times 2]$ = 7.63 \times [0.884 \times 2 / 26.39 + 0.116]

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	-	Test Condition
Rise and Fall times (10% - 90%)	t _{RF} CC	-	-	23 + 0.6 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Medium
		-	-	11.6 + 0.22 x <i>C</i> _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Medium
		-	-	4.2 + 0.14 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Sharp
		-	-	20.6 + 0.22 x <i>C</i> _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Slow
		_	-	212 + 1.9 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Weak

Table 28 Standard Pad Parameters for Upper Voltage Range (cont'd)

1) An output current above $|I_{OXnom}|$ may be drawn from up to three pins at the same time. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and $\Sigma - I_{OH}$) must remain below 50 mA.