

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	76
Program Memory Size	320KB (320K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	34К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2365b40f80laakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. This ordering code identifies:

- the derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the temperature range:
 - SAF-...: -40°C to 85°C
 - SAH-...: -40°C to 110°C
 - SAK-...: -40°C to 125°C
- the package and the type of delivery.

For ordering codes for the XC236xB please contact your sales representative or local distributor.

This document describes several derivatives of the XC236xB group:

Basic Device Types are readily available and **Special Device Types** are only available on request.

As this document refers to all of these derivatives, some descriptions may not apply to a specific product, in particular to the special device types.

For simplicity the term XC236xB is used for all derivatives throughout this document.

Summary of Features

1.3 Definition of Feature Variants

The XC236xB types are offered with several Flash memory sizes. **Table 3** and **Table 4** describe the location of the available Flash memory.

Table 3 Continuous Flash Memory Ranges

Total Flash Size	1st Range ¹⁾	2nd Range	3rd Range
320 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H C4'FFFF _H	n.a.
192 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H C1'FFFF _H	C4'0000 _H C4'FFFF _H

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

Table 4 Flash Memory Module Allocation (in Kbytes)

Total Flash Size	Flash 0 ¹⁾	Flash 1
320	256	64
192	128	64

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

The XC236xB types are offered with different interface options. **Table 5** lists the available channels for each option.

Total Number Available Channels / Message Objects 11 ADC0 channels CH0, CH2 ... CH5, CH8 ... CH11, CH13, CH15 4 ADC0 channels CH0. CH2 ... CH4 5 ADC1 channels CH0, CH2, CH4 ... CH6 4 ADC1 channels CH0, CH2, CH4, CH5 2 CAN nodes CAN0, CAN1 64 message objects 3 CAN nodes CANO, CAN1, CAN2 64 message objects 2 serial channels U0C0, U0C1 4 serial channels U0C0, U0C1, U1C0, U1C1 6 serial channels U0C0, U0C1, U1C0, U1C1, U2C0, U2C1

Table 5 Interface Channel Association

General Device Information

2.1 Pin Configuration and Definition

The pins of the XC236xB are described in detail in **Table 6**, which includes all alternate functions. For further explanations please refer to the footnotes at the end of the table. The following figure summarizes all pins, showing their locations on the four sides of the package.

Figure 3 XC236xB Pin Configuration (top view)

General Device Information

Tabl	Table 6 Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
53	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output	
	U1C0_DOUT	O1	St/B	USIC1 Channel 0 Shift Data Output	
	CCU61_CC6 0	O3	St/B	CCU61 Channel 0 IOutput	
	A0	OH	St/B	External Bus Interface Address Line 0	
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input	
	CCU61_CC6 0INA	I	St/B	CCU61 Channel 0 Input	
	ESR1_11	I	St/B	ESR1 Trigger Input 11	
54	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output	
	U0C1_SELO 0	01	St/B	USIC0 Channel 1 Select/Control 0 Output	
	U0C0_SELO 1	02	St/B	USIC0 Channel 0 Select/Control 1 Output	
	CC2_CC20	03/1	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.	
	A20	OH	St/B	External Bus Interface Address Line 20	
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input	
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input	
	ESR2_7	I	St/B	ESR2 Trigger Input 7	
55	P0.1	O0 / I	St/B	Bit 1 of Port 0, General Purpose Input/Output	
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output	
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output	
	CCU61_CC6 1	O3	St/B	CCU61 Channel 1 Output	
	A1	OH	St/B	External Bus Interface Address Line 1	
	U1C0_DX0B	I	St/B	USIC1 Channel 0 Shift Data Input	
	CCU61_CC6 1INA	I	St/B	CCU61 Channel 1 Input	
	U1C0_DX1A	I	St/B	USIC1 Channel 0 Shift Clock Input	

XC2361B, XC2363B, XC2364B, XC2365B XC2000 Family / Value Line

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
98	ESR1	O0 / I	St/B	External Service Request 1 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it.	
	RxDC0E	I	St/B	CAN Node 0 Receive Data Input	
	U1C0_DX0F	I	St/B	USIC1 Channel 0 Shift Data Input	
	U1C0_DX2C	I	St/B	USIC1 Channel 0 Shift Control Input	
	U1C1_DX0C	I	St/B	USIC1 Channel 1 Shift Data Input	
	U1C1_DX2B	I	St/B	USIC1 Channel 1 Shift Control Input	
	U2C1_DX2C	I	St/B	USIC2 Channel 1 Shift Control Input	
99	ESR0	O0 / I	St/B	External Service Request 0 After power-up, ESR0 operates as open-drain bidirectional reset with a weak pull-up.	
	U1C0_DX0E	I	St/B	USIC1 Channel 0 Shift Data Input	
	U1C0_DX2B	I	St/B	USIC1 Channel 0 Shift Control Input	
10	V _{DDIM}	-	PS/M	Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Data Sheet for details.	
38, 64, 88	V _{DDI1}	-	PS/1	Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Data Sheet for details. All V_{DDI1} pins must be connected to each other.	
14	V _{DDPA}	-	PS/A	Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins.	
				P15 are fed from supply voltage V_{DDPA} .	

General Device Information

2.2 Identification Registers

The identification registers describe the current version of the XC236xB and of its modules.

Table 7	XC236xB Identification Registers
---------	----------------------------------

Short Name	Value	Address	Notes
SCU_IDMANUF	1820 _H	00'F07E _H	
SCU_IDCHIP	3001 _H	00'F07C _H	marking EES-AA or ES-AA
	3002 _H	00'F07C _H	marking AA, AB
SCU_IDMEM	304F _H	00'F07A _H	
SCU_IDPROG	1313 _H	00'F078 _H	
JTAG_ID	0018'B083 _H		marking EES-AA or ES-AA
	1018'B083 _H		marking AA, AB

3 Functional Description

The architecture of the XC236xB combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a well-balanced design. On-chip memory blocks allow the design of compact systems-on-silicon with maximum performance suited for computing, control, and communication.

The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data SRAM) and the generic peripherals are connected to the CPU by separate high-speed buses. Another bus, the LXBus, connects additional on-chip resources and external resources. This bus structure enhances overall system performance by enabling the concurrent operation of several subsystems of the XC236xB.

The block diagram gives an overview of the on-chip components and the advanced internal bus structure of the XC236xB.

Figure 4 Block Diagram

Memory Content Protection

The contents of on-chip memories can be protected against soft errors (induced e.g. by radiation) by activating the parity mechanism or the Error Correction Code (ECC).

The parity mechanism can detect a single-bit error and prevent the software from using incorrect data or executing incorrect instructions.

The ECC mechanism can detect and automatically correct single-bit errors. This supports the stable operation of the system.

It is strongly recommended to activate the ECC mechanism wherever possible because this dramatically increases the robustness of an application against such soft errors.

3.3 Central Processing Unit (CPU)

The core of the CPU consists of a 5-stage execution pipeline with a 2-stage instructionfetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and accumulate unit (MAC), a register-file providing three register banks, and dedicated SFRs. The ALU features a multiply-and-divide unit, a bit-mask generator, and a barrel shifter.

Figure 5 CPU Block Diagram

3.4 Memory Protection Unit (MPU)

The XC236xB's Memory Protection Unit (MPU) protects user-specified memory areas from unauthorized read, write, or instruction fetch accesses. The MPU can protect the whole address space including the peripheral area. This completes established mechanisms such as the register security mechanism or stack overrun/underrun detection.

Four Protection Levels support flexible system programming where operating system, low level drivers, and applications run on separate levels. Each protection level permits different access restrictions for instructions and/or data.

Every access is checked (if the MPU is enabled) and an access violating the permission rules will be marked as invalid and leads to a protection trap.

A set of protection registers for each protection level specifies the address ranges and the access permissions. Applications requiring more than 4 protection levels can dynamically re-program the protection registers.

3.5 Memory Checker Module (MCHK)

The XC236xB's Memory Checker Module calculates a checksum (fractional polynomial division) on a block of data, often called Cyclic Redundancy Code (CRC). It is based on a 32-bit linear feedback shift register and may, therefore, also be used to generate pseudo-random numbers.

The Memory Checker Module is a 16-bit parallel input signature compression circuitry which enables error detection within a block of data stored in memory, registers, or communicated e.g. via serial communication lines. It reduces the probability of error masking due to repeated error patterns by calculating the signature of blocks of data.

The polynomial used for operation is configurable, so most of the commonly used polynomials may be used. Also, the block size for generating a CRC result is configurable via a local counter. An interrupt may be generated if testing the current data block reveals an error.

An autonomous CRC compare circuitry is included to enable redundant error detection, e.g. to enable higher safety integrity levels.

The Memory Checker Module provides enhanced fault detection (beyond parity or ECC) for data and instructions in volatile and non volatile memories. This is especially important for the safety and reliability of embedded systems.

XC2361B, XC2363B, XC2364B, XC2365B XC2000 Family / Value Line

Functional Description

Figure 7 CCU6 Block Diagram

Timer T12 can work in capture and/or compare mode for its three channels. The modes can also be combined. Timer T13 can work in compare mode only. The multi-channel control unit generates output patterns that can be modulated by timer T12 and/or timer T13. The modulation sources can be selected and combined for signal modulation.

3.11 Real Time Clock

The Real Time Clock (RTC) module of the XC236xB can be clocked with a clock signal selected from internal sources or external sources (pins).

The RTC basically consists of a chain of divider blocks:

- Selectable 32:1 and 8:1 dividers (on off)
- The reloadable 16-bit timer T14
- The 32-bit RTC timer block (accessible via registers RTCH and RTCL) consisting of: – a reloadable 10-bit timer
 - a reloadable 6-bit timer
 - a reloadable 6-bit timer
 - a reloadable 10-bit timer

All timers count up. Each timer can generate an interrupt request. All requests are combined to a common node request.

Figure 10 RTC Block Diagram

Note: The registers associated with the RTC are only affected by a power reset.

Table 11 Instruction Set Summary (cont d)						
Mnemonic	Description	Bytes				
ROL/ROR	Rotate left/right direct word GPR	2				
ASHR	Arithmetic (sign bit) shift right direct word GPR	2				
MOV(B)	Nove word (byte) data					
MOVBS/Z	Nove byte operand to word op. with sign/zero extension					
JMPA/I/R	Jump absolute/indirect/relative if condition is met	4				
JMPS	Jump absolute to a code segment	4				
JB(C)	Jump relative if direct bit is set (and clear bit)	4				
JNB(S)	Jump relative if direct bit is not set (and set bit)	4				
CALLA/I/R	Call absolute/indirect/relative subroutine if condition is met	4				
CALLS	Call absolute subroutine in any code segment	4				
PCALL	Push direct word register onto system stack and call absolute subroutine					
TRAP	Call interrupt service routine via immediate trap number	2				
PUSH/POP	Push/pop direct word register onto/from system stack					
SCXT	Push direct word register onto system stack and update register with word operand					
RET(P)	Return from intra-segment subroutine (and pop direct word register from system stack)					
RETS	Return from inter-segment subroutine	2				
RETI	Return from interrupt service subroutine	2				
SBRK	Software Break	2				
SRST	Software Reset	4				
IDLE	Enter Idle Mode	4				
PWRDN	Unused instruction ¹⁾	4				
SRVWDT	Service Watchdog Timer	4				
DISWDT/ENWDT	Disable/Enable Watchdog Timer	4				
EINIT	End-of-Initialization Register Lock	4				
ATOMIC	Begin ATOMIC sequence	2				
EXTR	Begin EXTended Register sequence	2				
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4				
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4				

Table 14 Instruction Cat Cummany (cont'd)

4.3.2 DC Parameters for Lower Voltage Area

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current $I_{\rm OV}$.

Note: Operating Conditions apply.

Table 17 is valid under the following conditions: $V_{\rm DDP} \ge 3.0$ V; $V_{\rm DDP}$ typ. 3.3 V; $V_{\rm DDP} \le 4.5$ V

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	-	_	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	0.07 x V _{DDP}	-	-	V	R _S = 0 Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{OZ1} CC	-	10	200	nA	$V_{\rm IN}$ > $V_{\rm SS}$; $V_{\rm IN}$ < $V_{\rm DDP}$
Absolute input leakage current for all other pins. To be doubled for double	I _{OZ2} CC	-	0.2	2.5	μA	$\begin{array}{l} T_{\rm J} \!$
bond pins. ^{3) ()4)}		_	0.2	8	μA	$\begin{array}{l} T_{\rm J} \!$
Pull Level Force Current ⁵⁾	I _{PLF} SR	150	_	_	μA	
Pull Level Keep Current ⁶⁾	I _{PLK} SR	_	_	10	μΑ	
Input high voltage (all except XTAL1)	$V_{IH}SR$	$0.7 ext{ x}$ $V_{ ext{DDP}}$	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	V_{IL} SR	-0.3	_	$0.3 ext{ x}$ $V_{ ext{DDP}}$	V	

Table 17 DC Characteristics for Lower Voltage Range

XC2361B, XC2363B, XC2364B, XC2365B XC2000 Family / Value Line

Electrical Parameters

Note: Operating Conditions apply.

Table 19	Leakage	Power	Consumption
----------	---------	-------	-------------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Leakage supply current 1)	I _{LK1} CC	-	0.03	0.04	mA	$T_{\rm J}$ = 25 °C ¹⁾
		-	0.5	1.2	mA	$T_{\rm J}$ = 85 °C ¹⁾
		-	1.9	5.5	mA	$T_{\rm J}$ = 125 °C ¹⁾
		-	3.9	12.2	mA	$T_{\rm J}$ = 150 °C ¹⁾

 All inputs (including pins configured as inputs) are set at 0 V to 0.1 V or at V_{DDP} - 0.1 V to V_{DDP} and all outputs (including pins configured as outputs) are disconnected.

Coding of bit fields LEVxV in SWD Configuration Registers

After power-on the supply watch dog is preconfigured to operate in the lower voltage range.

Code	Voltage Level	Notes ¹⁾
0000 _B	-	out of valid operation range
0001 _B	3.0 V	LEV1V: reset request
0010 _B - 0101 _B	3.1 V- 3.4 V	step width is 0.1 V
0110 _B	3.6 V	
0111 _B	4.0 V	
1000 _B	4.2 V	
1001 _B	4.5 V	LEV2V: no request
1010 _B - 1110 _B	4.6 V - 5.0 V	step width is 0.1 V
1111 _B	5.5 V	

Table 23 Coding of bit fields LEVxV in Register SWDCON0

1) The indicated default levels for LEV1V and LEV2V are selected automatically after a power-on reset.

Coding of bit fields LEVxV in PVC Configuration Registers

The core voltages are controlled internally to the nominal value of 1.5 V; a variation of $\pm 10 \%$ is allowed. These operation conditions limit the possible PVC monitoring values to the predefined reset values shown in **Table 24**.

Table 24	Coding of bi	t fields LEVxV	in Reaisters	PVCvCONz

Code	Voltage Level	Notes ¹⁾
000 _B -011 _B	-	out of valid operation range
100 _B	1.35 V	LEV1V: reset request
101 _B	1.45 V	LEV2V: interrupt request ²⁾
110 _B - 111 _B	-	out of valid operation range

1) The indicated default levels for LEV1V and LEV2V are selected automatically after a power-on reset.

2) Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and the PVC levels, this interrupt can be triggered inadvertently, even though the core voltage is within the normal range. It is, therefore, recommended not to use this warning level.

- 1) The amplitude voltage V_{AX1} refers to the offset voltage V_{OFF} . This offset voltage must be stable during the operation and the resulting voltage peaks must remain within the limits defined by V_{IX1} .
- 2) Overload conditions must not occur on pin XTAL1.

Figure 21 External Clock Drive XTAL1

Note: For crystal or ceramic resonator operation, it is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimum parameters for oscillator operation.

The manufacturers of crystals and ceramic resonators offer an oscillator evaluation service. This evaluation checks the crystal/resonator specification limits to ensure a reliable oscillator operation.

Variable Memory Cycles

External bus cycles of the XC236xB are executed in five consecutive cycle phases (AB, C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to the respective external module (memory, peripheral, etc.).

The duration of the access phase can optionally be controlled by the external module using the READY handshake input.

This table provides a summary of the phases and the ranges for their length.

Table 31	Programmable Bus C	Cycle Phases	(see timing diagrams)

Bus Cycle Phase	Parameter	Valid Values	Unit
Address setup phase, the standard duration of this phase (1 \dots 2 TCS) can be extended by 0 \dots 3 TCS if the address window is changed	tpAB	1 2 (5)	TCS
Command delay phase	tpC	03	TCS
Write Data setup/MUX Tristate phase	tpD	0 1	TCS
Access phase	tpE	1 32	TCS
Address/Write Data hold phase	tpF	03	TCS

Note: The bandwidth of a parameter (from minimum to maximum value) covers the whole operating range (temperature, voltage) as well as process variations. Within a given device, however, this bandwidth is smaller than the specified range. This is also due to interdependencies between certain parameters. Some of these interdependencies are described in additional notes (see standard timing).

Note: Operating Conditions apply.

Table 32 is valid under the following conditions: C_L = 20 pF; voltage_range= upper; voltage_range= upper

Table 32	External Bus	Timing for	Upper Voltage	e Range
	Exconnan Bao		oppor ronag	o nango

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Output valid delay for \overline{RD} , $\overline{WR}(L/\overline{H})$	<i>t</i> ₁₀ CC	-	7	13	ns	
Output valid delay for BHE, ALE	<i>t</i> ₁₁ CC	-	7	14	ns	
Address output valid delay for A23 A0	<i>t</i> ₁₂ CC	-	8	14	ns	

Table 33 External Bus Timing for Lower Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	-	Test Condition
$\frac{\text{Output valid delay for } \overline{\text{RD}},}{\text{WR}(L/H)}$	<i>t</i> ₁₀ CC	-	11	20	ns	
Output valid delay for BHE, ALE	<i>t</i> ₁₁ CC	-	10	21	ns	
Address output valid delay for A23 A0	<i>t</i> ₁₂ CC	-	11	22	ns	
Address output valid delay for AD15 AD0 (MUX mode)	<i>t</i> ₁₃ CC	-	10	22	ns	
Output valid delay for CS	<i>t</i> ₁₄ CC	-	10	13	ns	
Data output valid delay for AD15 AD0 (write data, MUX mode)	<i>t</i> ₁₅ CC	-	10	22	ns	
Data output valid delay for D15 D0 (write data, DEMUX mode)	<i>t</i> ₁₆ CC	-	10	22	ns	
$\frac{\text{Output hold time for } \overline{\text{RD}},}{\text{WR}(L/H)}$	<i>t</i> ₂₀ CC	-2	8	10	ns	
Output hold time for BHE, ALE	<i>t</i> ₂₁ CC	-2	8	10	ns	
Address output hold time for AD15 AD0	<i>t</i> ₂₃ CC	-3	8	10	ns	
Output hold time for CS	t ₂₄ CC	-3	8	11	ns	
Data output hold time for D15 D0 and AD15 AD0	<i>t</i> ₂₅ CC	-3	8	10	ns	
Input setup time for READY, D15 D0, AD15 AD0	<i>t</i> ₃₀ SR	29	17	-	ns	
Input hold time READY, D15 D0, AD15 AD0 ¹⁾	<i>t</i> ₃₁ SR	0	-9	-	ns	

 Read data are latched with the same internal clock edge that triggers the address change and the rising edge of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can change after the rising edge of RD.

Package and Reliability

5 Package and Reliability

The XC2000 Family devices use the package type PG-LQFP (Plastic Green - Low Profile Quad Flat Package). The following specifications must be regarded to ensure proper integration of the XC236xB in its target environment.

5.1 Packaging

These parameters specify the packaging rather than the silicon.

Parameter	Symbol	Lim	it Values	Unit	Notes
		Min.	Max.		
Exposed Pad Dimension	$E x \times E y$	_	5.2×5.2	mm	-
Power Dissipation	P _{DISS}	-	0.8	W	-
Thermal resistance	$R_{\Theta JA}$	-	54	K/W	No thermal via ¹⁾
Junction-Ambient			49	K/W	4-layer, no pad ²⁾
			27	K/W	4-layer, pad ³⁾

Table 42 Package Parameters (PG-LQFP-100-8/-15)

1) Device mounted on a 4-layer board without thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered to the board.

Note: To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground, independent of the thermal requirements. Board layout examples are given in an application note.

Package Compatibility Considerations

The XC236xB is a member of the XC2000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Pad (if present) may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.