E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	256KB (256K × 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 29x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-FQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk20dx256vlk7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.1 Example

This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μA

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

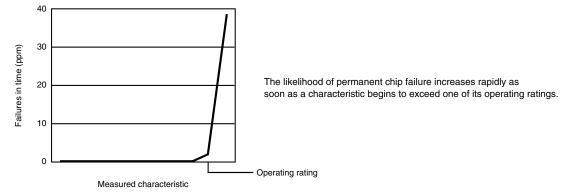
This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins		7	pF

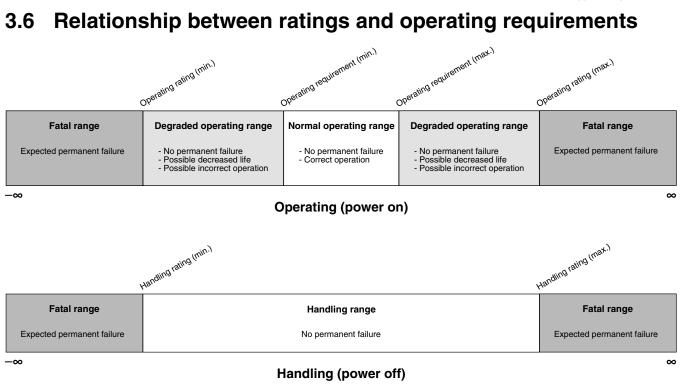
K20 Sub-Family Data Sheet, Rev. 3, 11/2012.

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:


- Operating ratings apply during operation of the chip.
- Handling ratings apply when the chip is not powered.

3.4.1 Example


This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

3.5 Result of exceeding a rating

Terminology and guidelines

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

5.2.3 Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -9mA	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -3mA	V _{DD} – 0.5	—	V	
	Output high voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{mA}$	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports		100	mA	
V _{OL}	Output low voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9mA		0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 3mA		0.5	v	
	Output low voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2mA		0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 0.6mA	_	0.5	V	
I _{OLT}	Output low current total for all ports		100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	—	1	μA	1
I _{IN}	Input leakage current (per pin) at 25°C	—	0.025	μA	1
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μA	
R _{PU}	Internal pullup resistors	20	50	kΩ	2
R _{PD}	Internal pulldown resistors	20	50	kΩ	3

 Table 4. Voltage and current operating behaviors

1. Measured at VDD=3.6V

2. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 72 MHz
- Bus clock = 36 MHz
- FlexBus clock = 36 MHz
- Flash clock = 24 MHz

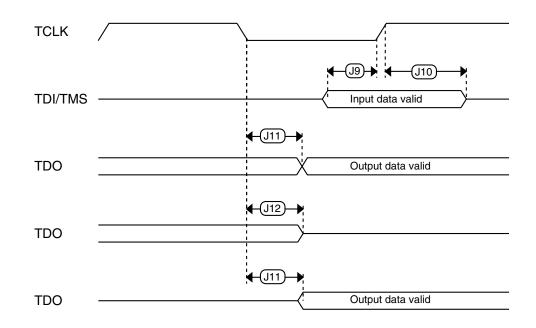
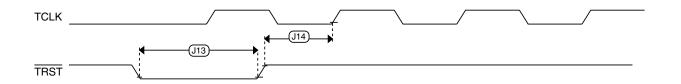



Figure 8. Test Access Port timing

6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

Peripheral operating requirements and behaviors

6.3.1 MCG specifications Table 14. MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference factory trimmed at	-	32.768	_	kHz		
f _{ints_t}	Internal reference trimmed	frequency (slow clock) — user	31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$		ned average DCO output voltage and temperature — d SCFTRIM	-	± 0.3	± 0.6	%f _{dco}	1
$\Delta f_{dco_res_t}$		ned average DCO output voltage and temperature — y	-	± 0.2	± 0.5	%f _{dco}	1
Δf_{dco_t}		rimmed average DCO output tage and temperature	-	+0.5/-0.7	—	%f _{dco}	1
Δf_{dco_t}		Total deviation of trimmed average DCO output frequency over fixed voltage and temperature			± 0.3	%f _{dco}	1
f _{intf_ft}	Internal reference factory trimmed at	-	4	—	MHz		
f _{intf_t}	Internal reference trimmed at nomina	3	_	5	MHz		
f _{loc_low}	Loss of external cl RANGE = 00	(3/5) x f _{ints_t}	_	—	kHz		
f _{loc_high}	Loss of external cl RANGE = 01, 10,	(16/5) x f _{ints_t}	_	—	kHz		
	•	F	LL				•
f _{fll_ref}	FLL reference free	uency range	31.25	_	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll ref}	20	20.97	25	MHz	2, 3
		Mid range (DRS=01) 1280 × f _{fll ref}	40	41.94	50	MHz	
		Mid-high range (DRS=10) 1920 × f _{fll ref}	60	62.91	75	MHz	-
		High range (DRS=11) 2560 × f _{fll_ref}	80	83.89	100	MHz	
dco_t_DMX32	DCO output frequency	Low range (DRS=00) 732 × f _{fll ref}	-	23.99	_	MHz	4, 5
		Mid range (DRS=01) 1464 × f _{fll_ref}	-	47.97	—	MHz	-
		Mid-high range (DRS=10) 2197 × f _{fll_ref}	-	71.99	—	MHz	
		High range (DRS=11)		95.98		MHz	

Table continues on the next page...

K20 Sub-Family Data Sheet, Rev. 3, 11/2012.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
J _{cyc_fll}	FLL period jitter		180	_	ps	
	 f_{VCO} = 48 MHz f_{VCO} = 98 MHz 	_	150	_		
t _{fll_acquire}	FLL target frequency acquisition time	—	—	1	ms	6
	P	LL				
f _{vco}	VCO operating frequency	48.0	_	100	MHz	
I _{pll}	PLL operating current • PLL @ 96 MHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = 2 MHz, VDIV multiplier = 48)	_	1060	_	μA	7
I _{pll}	PLL operating current • PLL @ 48 MHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = 2 MHz, VDIV multiplier = 24)	_	600	_	μA	7
f _{pll_ref}	PLL reference frequency range	2.0	—	4.0	MHz	
J _{cyc_pll}	PLL period jitter (RMS)					8
	• f _{vco} = 48 MHz	_	120		ps	
	• f _{vco} = 100 MHz	_	50	_	ps	
J _{acc_pll}	PLL accumulated jitter over 1µs (RMS)					8
	• f _{vco} = 48 MHz	_	1350		ps	
	• f _{vco} = 100 MHz	_	600	_	ps	
D _{lock}	Lock entry frequency tolerance	± 1.49		± 2.98	%	
D _{unl}	Lock exit frequency tolerance	± 4.47	—	± 5.97	%	
t _{pll_lock}	Lock detector detection time	_	—	150×10^{-6} + 1075(1/ f _{pll_ref})	S	9

Table 14. MCG specifications (continued)

1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).

- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco t}) over voltage and temperature should be considered.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

K20 Sub-Family Data Sheet, Rev. 3, 11/2012.

Peripheral operating requirements and behaviors

4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

6.3.3 32 kHz Oscillator Electrical Characteristics

This section describes the module electrical characteristics.

6.3.3.1 32 kHz oscillator DC electrical specifications Table 17. 32kHz oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	—	3.6	V
R _F	Internal feedback resistor	_	100	_	MΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32		5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation		0.6		V

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.3.2 32kHz oscillator frequency specifications Table 18. 32kHz oscillator frequency specifications

Symbol	Symbol Description		Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	—	32.768	—	kHz	
t _{start}	Crystal start-up time	_	1000	_	ms	1
V _{ec_extal32}	Externally provided input clock amplitude	700		V _{BAT}	mV	2, 3

1. Proper PC board layout procedures must be followed to achieve specifications.

2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.

3. The parameter specified is a peak-to-peak value and V_{IH} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to V_{BAT} .

6.4 Memories and memory interfaces

6.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

Peripheral operating requirements and behaviors

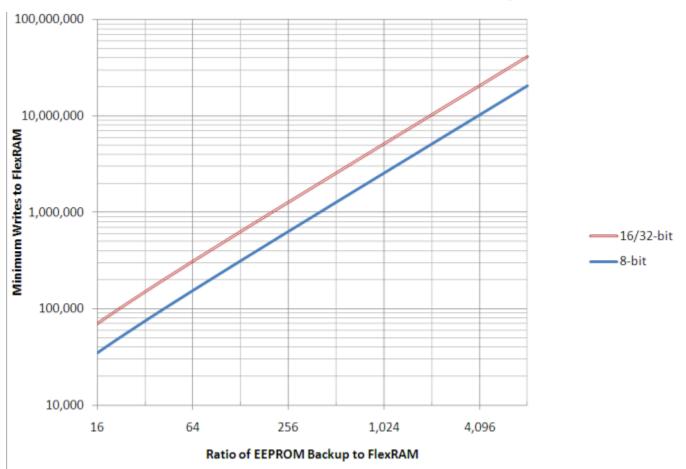
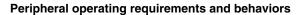



Figure 10. EEPROM backup writes to FlexRAM

6.4.2 EzPort Switching Specifications Table 23. EzPort switching specifications

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
EP1	EZP_CK frequency of operation (all commands except READ)	-	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)	_	f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}	—	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5		ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	5	_	ns
EP5	EZP_D input valid to EZP_CK high (setup)	2	—	ns
EP6	EZP_CK high to EZP_D input invalid (hold)	5	—	ns
EP7	EZP_CK low to EZP_Q output valid	_	16	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0	—	ns
EP9	EZP_CS negation to EZP_Q tri-state	_	12	ns

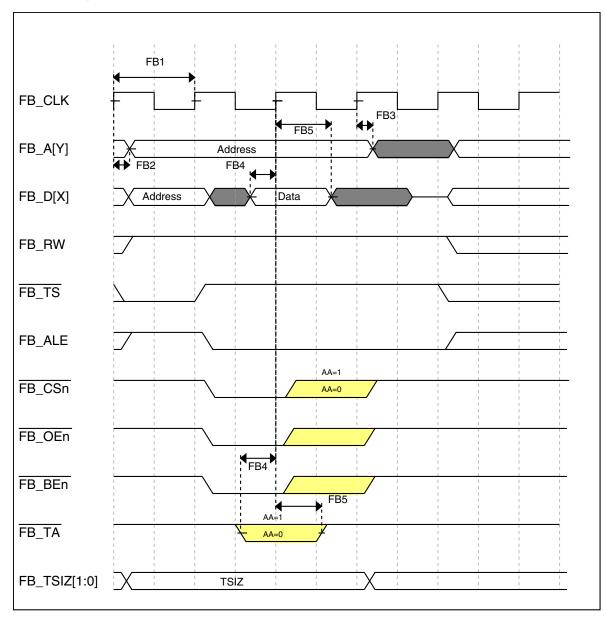


Figure 12. FlexBus read timing diagram

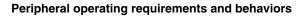
Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	asynchronous clock source DACK	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample t	limes			
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	—	±1.4	±2.1		
DNL	Differential non-	12-bit modes		±0.7	-1.1 to +1.9	LSB ⁴	5
	linearity				-0.3 to 0.5		
		 <12-bit modes 	—	±0.2			
INL	Integral non-	12-bit modes		±1.0	-2.7 to +1.9	LSB ⁴	5
	linearity				-0.7 to +0.5		
		 <12-bit modes 	—	±0.5			
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	V _{ADIN} =
		<12-bit modes	—	-1.4	-1.8		V _{DDA}
Eq	Quantization	16-bit modes		-1 to 0		LSB ⁴	5
à	error	• ≤13-bit modes	—	_	±0.5		
ENOB	Effective number	16-bit differential mode					6
	of bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	10.0	10.0		b 14 -	
		• Avg = 4	12.2	13.9	_	bits	
	Signal-to-noise	See ENOB	11.4	13.1	_	bits	
SINAD	plus distortion		6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode					7
	distortion	• Avg = 32	—	-94		dB	
		16-bit single-ended mode					
		• Avg = 32	—	-85	_	dB	
SFDR	Spurious free	16-bit differential mode					7
	dynamic range	• Avg = 32	82	95	_	dB	
		16-bit single-ended mode	70				
		• Avg = 32	78	90		dB	
	1						

Table 27. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Table continues on the next page ...

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion	≤ 13 bit modes	18.484	_	450	Ksps	7
	rate	No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					
		16 bit modes	37.037	_	250	Ksps	8
		No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					

Table 28. 16-bit ADC with PGA operating conditions (continued)


- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. ADC must be configured to use the internal voltage reference (VREF_OUT)
- 3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled.
- 4. For single ended configurations the input impedance of the driven input is R_{PGAD}/2
- 5. The analog source resistance (R_{AS}), external to MCU, should be kept as minimum as possible. Increased R_{AS} causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
- 6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock.
- 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
- 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1

6.6.1.4 16-bit ADC with PGA characteristics with Chop enabled (ADC PGA[PGACHPb] =0)

Table 29. 16-bit ADC with PGA characteristics

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
I _{DDA_PGA}	Supply current	Low power (ADC_PGA[PGALPb]=0)		420	644	μA	2
I _{DC_PGA}	Input DC current		$\frac{2}{R_{\rm PGAD}} \left(\frac{(V_{\rm REFPGA} \times 0.583) - V_{\rm CM}}{({\rm Gain} + 1)} \right)$			A	3
		Gain =1, V_{REFPGA} =1.2V, V_{CM} =0.5V	— 1.54 —		μA		
		Gain =64, V _{REFPGA} =1.2V, V _{CM} =0.1V		0.57		μA	

Table continues on the next page ...

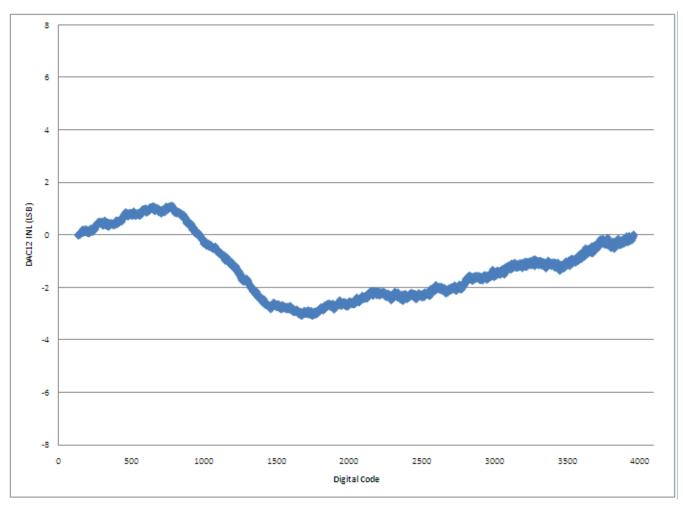
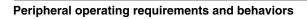



Figure 19. Typical INL error vs. digital code

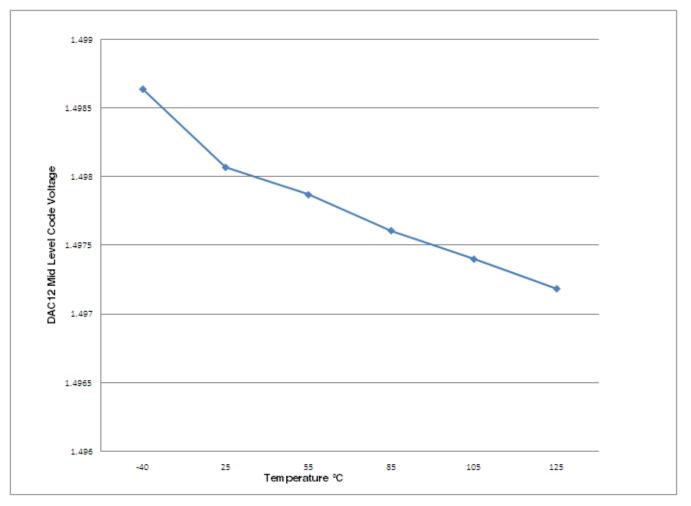


Figure 20. Offset at half scale vs. temperature

6.6.4 Voltage reference electrical specifications

Table 33.	VREF full-range	operating	requirements
-----------	-----------------	-----------	--------------

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	Operating t range of t		°C	
CL	Output load capacitance	1(00	nF	1, 2

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1915	1.195	1.1977	V	
V _{out}	Voltage reference output — factory trim	1.1584	—	1.2376	V	
V _{out}	Voltage reference output — user trim	1.193	—	1.197	V	
V _{step}	Voltage reference trim step	_	0.5	—	mV	
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_	_	80	mV	
I _{bg}	Bandgap only current	_	_	80	μA	1
I _{lp}	Low-power buffer current	_	—	360	uA	1
I _{hp}	High-power buffer current	_	—	1	mA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	_	200	_		
T _{stup}	Buffer startup time			100	μs	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	_	2	—	mV	1

Table 34. VREF full-range operating behaviors

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 35. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 36. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

6.7 Timers

See General switching specifications.

6.8 Communication interfaces

6.8.6 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	—	12.5	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	—	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-4.5	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	20.5	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

 Table 41. Master mode DSPI timing (full voltage range)

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

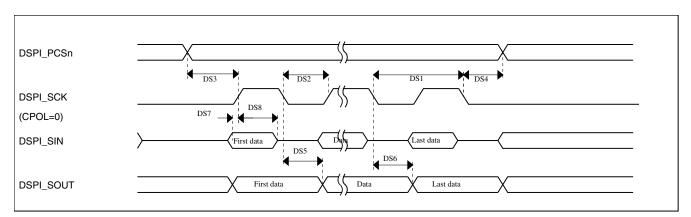


Figure 23. DSPI classic SPI timing — master mode

Table 42. Slave mode DSPI timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation		6.25	MHz

Table continues on the next page...

K20 Sub-Family Data Sheet, Rev. 3, 11/2012.

Peripheral operating requirements and behaviors

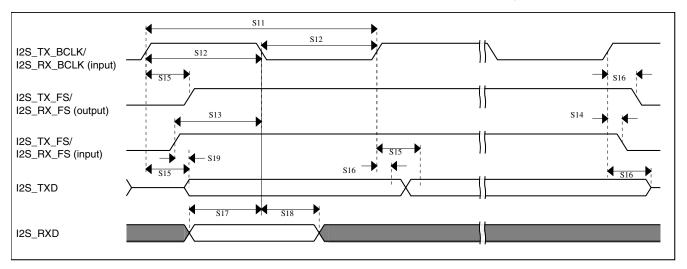
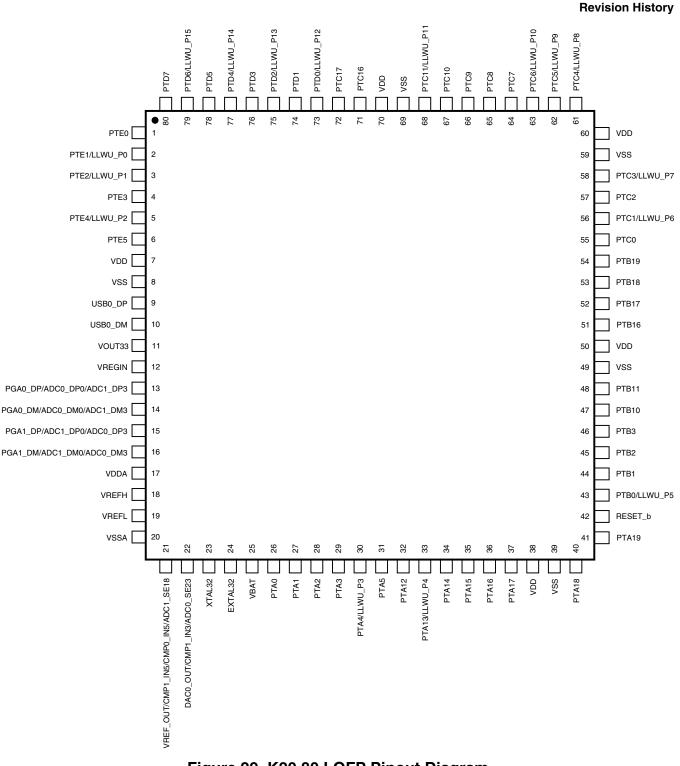


Figure 28. I2S/SAI timing — slave modes

6.9 Human-machine interfaces (HMI)

6.9.1 TSI electrical specifications


Table 47. TSI electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DDTSI}	Operating voltage	1.71		3.6	V	
C _{ELE}	Target electrode capacitance range	1	20	500	pF	1
f _{REFmax}	Reference oscillator frequency	_	8	15	MHz	2, 3
f _{ELEmax}	Electrode oscillator frequency	_	1	1.8	MHz	2, 4
C _{REF}	Internal reference capacitor	_	1	—	pF	
V _{DELTA}	Oscillator delta voltage	_	500	—	mV	2, 5
I _{REF}	Reference oscillator current source base current • 2 μA setting (REFCHRG = 0)	_	2	3	μΑ	2, 6
	 32 µA setting (REFCHRG = 15) 	_	36	50		
I _{ELE}	Electrode oscillator current source base current • 2 μA setting (EXTCHRG = 0)	_	2	3	μA	2, 7
	 32 µA setting (EXTCHRG = 15) 	—	36	50		
Pres5	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	8
Pres20	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	9
Pres100	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	10
MaxSens	Maximum sensitivity	0.008	1.46	—	fF/count	11
Res	Resolution	_	_	16	bits	
T _{Con20}	Response time @ 20 pF	8	15	25	μs	12
I _{TSI_RUN}	Current added in run mode	_	55	—	μA	
I _{TSI_LP}	Low power mode current adder		1.3	2.5	μA	13

80 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
78	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI0_PCS2	UART0_CTS_ b/ UART0_COL_b	FTM0_CH5	FB_AD1	EWM_OUT_b		
79	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI0_PCS3	UART0_RX	FTM0_CH6	FB_AD0	FTM0_FLT0		
80	PTD7	DISABLED		PTD7	CMT_IRO	UART0_TX	FTM0_CH7		FTM0_FLT1		

8.2 K20 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

Figure 29. K20 80 LQFP Pinout Diagram

9 Revision History

The following table provides a revision history for this document.

Revision History

Rev. No.	Date	Substantial Changes
1	3/2012	Initial public release
2	4/2012	 Replaced TBDs throughout. Updated "Power consumption operating behaviors" table. Updated "ADC electrical specifications" section. Updated "VREF full-range operating behaviors" table. Updated "I2S/SAI Switching Specifications" section. Updated "TSI electrical specifications" table.
3	11/2012	 Updated orderable part numbers. Updated the maximum input voltage (V_{ADIN}) specification in the "16-bit ADC operating conditions" section. Updated the maximum I_{DDstby} specification in the "USB VREG electrical specifications" section.