E·XFL

NXP USA Inc. - KMPC8540CPX667JB Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	-
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (1), 10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BFBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8540cpx667jb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Electrical Characteristics

2.1 Overall DC Electrical Characteristics

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings ¹

Chara	cteristic	Symbol	Max Value	Unit	Notes
Core supply voltage For devices rated at 667 and 833 MHz For devices rated at 1 GHz		V _{DD}	-0.3 to 1.32 -0.3 to 1.43	V	
PLL supply voltage For devices rated at 667 and 833 MHz For devices rated at 1 GHz		AV _{DD}	-0.3 to 1.32 -0.3 to 1.43	V	
DDR DRAM I/O voltage		${\sf GV}_{\sf DD}$	-0.3 to 3.63	V	
Three-speed Ethernet I/O voltage		LV _{DD}	-0.3 to 3.63 -0.3 to 2.75	V	
PCI/PCI-X, local bus, RapidIO, 10/100 Ethernet, MII management, DUART, system control and power management, I ² C, and JTAG I/O voltage		OV _{DD}	-0.3 to 3.63	V	3
Input voltage	DDR DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	Three-speed Ethernet signals	LV _{IN}	-0.3 to (LV _{DD} + 0.3)	V	4, 5
	Local bus, RapidIO, 10/100 Ethernet, DUART, SYSCLK, system control and power management, I ² C, and JTAG signals	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	5
	PCI/PCI-X	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	6
Storage temperature range		T _{STG}	-55 to 150	•C	

Notes:

- 1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. **Caution:** MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 3. **Caution:** OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. **Caution:** LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 5. (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- OV_{IN} on the PCI interface may overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

Table 6 provides estimated I/O power numbers for each block: DDR, PCI, Local Bus, RapidIO, TSEC, and FEC.

Interface	Parameter	GV _{DD} (2.5 V)	OV _{DD} (3.3 V)	LV _{DD} (3.3 V)	LV _{DD} (2.5 V)	Units	Notes
DDR I/O	CCB = 200 MHz	0.46				W	1
	CCB = 266 MHz	0.59					
	CCB = 300 MHz	0.66					
	CCB = 333 MHz	0.73					
PCI/PCI-X I/O	32-bit, 33 MHz		0.04			W	2
	32-bit 66 MHz		0.07				
	64-bit, 66 MHz		0.14				
	64-bit, 133 MHz		0.25				
Local Bus I/O	32-bit, 33 MHz		0.07			W	3
	32-bit, 66 MHz		0.13				
	32-bit, 133 MHz		0.24				
	32-bit, 167 MHz		0.30				
RapidIO I/O	500 MHz data rate		0.96			W	4
TSEC I/O	MII			10		mW	5, 6
	GMII, TBI (2.5 V)				40		
	GMII, TBI (3.3 V)			70			
	RGMII, RTBI				40		
FEC I/O	MII		10			mW	7

Table 6. Estimated Typical I/O Power Consumption

Notes:

1. GV_{DD}=2.5, ECC enabled, 66% bus utilization, 33% write cycles, 10pF load on data, 10pF load on address/command, 10pF load on clock

2. OV_{DD}=3.3, 30pF load per pin, 54% bus utilization, 33% write cycles

3. OV_{DD}=3.3, 25pF load per pin, 5pF load on clock, 40% bus utilization, 33% write cycles

4. V_{DD}=1.2, OV_{DD}=3.3

5. LVDD=2.5/3.3, 15pF load per pin, 25% bus utilization

6. Power dissipation for one TSEC only

7. OV_{DD} =3.3, 20pF load per pin, 25% bus utilization

4 Clock Timing

4.1 System Clock Timing

Table 7 provides the system clock (SYSCLK) AC timing specifications for the MPC8540.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
SYSCLK frequency	f _{SYSCLK}			166	MHz	1
SYSCLK cycle time	t _{SYSCLK}	6.0	_	_	ns	
SYSCLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	1.2	ns	2
SYSCLK duty cycle	t _{KHKL} /t _{SYSCLK}	40	_	60	%	3
SYSCLK jitter				+/- 150	ps	4, 5

Table 7. SYSCLK AC Timing Specifications

Notes:

1.Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 15.2, "Platform/System PLL Ratio," and Section 15.3, "e500 Core PLL Ratio," for ratio settings.

- 2. Rise and fall times for SYSCLK are measured at 0.6 V and 2.7 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter—short term and long term—and is guaranteed by design.
- 5. For spread spectrum clocking, guidelines are +/-1% of the input frequency with a maximum of 60 kHz of modulation regardless of the input frequency.

4.2 **TSEC Gigabit Reference Clock Timing**

Table 7 provides the TSEC gigabit reference clock (EC_GTX_CLK125) AC timing specifications for the MPC8540.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
EC_GTX_CLK125 frequency	f _{G125}	—	125		MHz	
EC_GTX_CLK125 cycle time	t _{G125}	—	8	_	ns	
EC_GTX_CLK125 rise and fall time LV _{DD} =2.5 LV _{DD} =3.3	t _{G125R} , t _{G125F}	_	_	0.75 1	ns	2
EC_GTX_CLK125 duty cycle GMII, TBI RGMII, RTBI	t _{G125H} /t _{G125}	45 47	_	55 53	%	1,3

 Table 8. EC_GTX_CLK125 AC Timing Specifications

Notes:

1. Timing is guaranteed by design and characterization.

- 2. Rise and fall times for EC_GTX_CLK125 are measured from 0.5V and 2.0V for LV_{DD}=2.5V, and from 0.6 and 2.7V for LV_{DD}=3.3V.
- 3. EC_GTX_CLK125 is used to generate GTX clock for TSEC transmitter with 2% degradation EC_GTX_CLK125 duty cycle can be loosened from 47/53% as long as PHY device can tolerate the duty cycle generated by GTX_CLK of TSEC.

Table 11. RESET Initialization Timing Specifications (continued)

Parameter/Condition	Min	Мах	Unit	Notes
Maximum valid-to-high impedance time for actively driven POR configs with respect to negation of HRESET	—	5	SYSCLKs	1

Notes:

1.SYSCLK is identical to the PCI_CLK signal and is the primary clock input for the MPC8540. See the MPC8540 Integrated Processor Preliminary Reference Manual for more details.

Table 12 provides the PLL and DLL lock times.

Table 12. PLL and DLL Lock Times

Parameter/Condition	Min	Max	Unit	Notes
PLL lock times	—	100	μS	
DLL lock times	7680	122,880	CCB Clocks	1, 2

Notes:

1.DLL lock times are a function of the ratio between the output clock and the platform (or CCB) clock. A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.

2. The CCB clock is determined by the SYSCLK \times platform PLL ratio.

6 DDR SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8540.

6.1 DDR SDRAM DC Electrical Characteristics

Table 13 provides the recommended operating conditions for the DDR SDRAM component(s) of the MPC8540.

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	4
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	4
Output leakage current	I _{OZ}	-10	10	μA	5
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-15.2	—	mA	
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	—	mA	

 Table 13. DDR SDRAM DC Electrical Characteristics

Ethernet: Three-Speed, 10/100, MII Management

Figure 16 shows the MII receive AC timing diagram.

Figure 16. MII Receive AC Timing Diagram

8.4 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (TSEC) (10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics."

8.4.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 33.

Parameter	Symbol	Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	3.13	3.47	V
Output high voltage (OV _{DD} = Min, I _{OH} = -1.0 mA)	V _{OH}	2.10	OV _{DD} + 0.3	V
Output low voltage (OV _{DD} = Min, I _{OL} = 1.0 mA)	V _{OL}	GND	0.50	V
Input high voltage	V _{IH}	1.70	_	V
Input low voltage	V _{IL}	—	0.90	V
Input high current (OV _{DD} = Max, V _{IN} ¹ = 2.1 V)	IIH	—	40	μΑ
Input low current (OV _{DD} = Max, V _{IN} = 0.5 V)	IIL	-600	_	μΑ

Table 33. MII Management DC Electrical Characteristics

Note:

1.Note that the symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

Figure 22. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)

Figure 24. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 or 8 (DLL Bypass Mode)

11.2 I²C AC Electrical Specifications

Table 40 provides the AC timing parameters for the I^2C interface of the MPC8540.

Table 40. I²C AC Electrical Specifications

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 39).

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL} ⁶	1.3	—	μS
High period of the SCL clock	t _{I2CH} ⁶	0.6	—	μS
Setup time for a repeated START condition	t _{I2SVKH} ⁶	0.6	—	μS
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL} 6	0.6		μS
Data setup time	t _{I2DVKH} ⁶	100	—	ns
Data hold time: CBUS compatible masters I ² C bus devices	t _{I2DXKL}	0 ²	0.9 ³	μS
Set-up time for STOP condition	t _{I2PVKH}	0.6	—	μS
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	—	μS
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	_	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times OV_{DD}$	_	V

Notes:

1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the low (L) state or hold time. Also, t_{12PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the storp condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.MPC8540 provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL.

3. The maximum t_{I2DVKH} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.

 $4.C_B$ = capacitance of one bus line in pF.

6.Guaranteed by design.

Figure 18 provides the AC test load for the I^2C .

Figure 30. I²C AC Test Load

PCI/PCI-X

Figure 31 shows the AC timing diagram for the I^2C bus.

Figure 31. I²C Bus AC Timing Diagram

12 PCI/PCI-X

This section describes the DC and AC electrical specifications for the PCI/PCI-X bus of the MPC8540.

12.1 PCI/PCI-X DC Electrical Characteristics

Table 41 provides the DC electrical characteristics for the PCI/PCI-X interface of the MPC8540.

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current $(V_{IN}^2 = 0 V \text{ or } V_{IN} = V_{DD})$	I _{IN}	_	±5	μΑ
High-level output voltage (OV _{DD} = min, I _{OH} = −100 μA)	V _{OH}	OV _{DD} - 0.2	—	V
Low-level output voltage $(OV_{DD} = min, I_{OL} = 100 \mu A)$	V _{OL}	_	0.2	V

Table 41. PCI/PCI-X DC Electrical Characteristics ¹

Notes:

1.Ranges listed do not meet the full range of the DC specifications of the *PCI 2.2 Local Bus Specifications*. 2.Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

RapidIO

Figure 35 shows the DC driver signal levels.

Figure 35. DC Driver Signal Levels

13.2 RapidIO AC Electrical Specifications

This section contains the AC electrical specifications for a RapidIO 8/16 LP-LVDS device. The interface defined is a parallel differential low-power high-speed signal interface. Note that the source of the transmit clock on the RapidIO interface is dependent on the settings of the LGPL[0:1] signals at reset. Note that the default setting makes the core complex bus (CCB) clock the source of the transmit clock. See Chapter 4 of the Reference Manual for more details on reset configuration settings.

13.3 RapidIO Concepts and Definitions

This section specifies signals using differential voltages. Figure 36 shows how the signals are defined. The figure shows waveforms for either a transmitter output (TD and TD) or a receiver input (RD and RD). Each signal swings between A volts and B volts where A > B. Using these waveforms, the definitions are as follows:

- The transmitter output and receiver input signals TD, TD, RD, and RD each have a peak-to-peak swing of A-B volts.
- The differential output signal of the transmitter, V_{OD} , is defined as $V_{TD} V_{\overline{TD}}$.
- The differential input signal of the receiver, V_{ID} , is defined as $V_{RD} V_{\overline{RD}}$.
- The differential output signal of the transmitter or input signal of the receiver, ranges from A B volts to -(A B) volts.

Package and Pin Listings

14 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions.

14.1 Package Parameters for the MPC8540 FC-PBGA

The package parameters are as provided in the following list. The package type is $29 \text{ mm} \times 29 \text{ mm}$, 783 flip chip plastic ball grid array (FC-PBGA).

Die size	$12.2 \text{ mm} \times 9.5 \text{ mm}$
Package outline	$29 \text{ mm} \times 29 \text{ mm}$
Interconnects	783
Pitch	1 mm
Minimum module height	3.07 mm
Maximum module height	3.75 mm
Solder Balls	62 Sn/36 Pb/2 Ag
Ball diameter (typical)	0.5 mm

Package and Pin Listings

14.2 Mechanical Dimensions of the MPC8540 FC-PBGA

Figure 44 the mechanical dimensions and bottom surface nomenclature of the MPC8540, 783 FC-PBGA package.

NOTES

- 1. All dimensions are in millimeters.
- 2. Dimensions and tolerances per ASME Y14.5M-1994.

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
TSEC2_RX_CLK	E10	I	LV _{DD}			
10/100 Ethernet (MII) Interface						
FEC_TXD[3:0]	C_TXD[3:0] M1, N1, N4, N5					
FEC_TX_EN	P11	0	OV _{DD}			
FEC_TX_ER	P10	0	OV_{DD}			
FEC_TX_CLK	V6	I	OV _{DD}			
FEC_CRS	N10	I	OV _{DD}			
FEC_COL	N11	I	OV _{DD}			
FEC_RXD[3:0]	N9, N8, N7, N6	I	OV _{DD}			
FEC_RX_DV	P8	I	OV _{DD}			
FEC_RX_ER	Р9	I	OV _{DD}			
FEC_RX_CLK	V9	I	OV _{DD}			
RapidIO Interface						
RIO_RCLK	Y25	I	OV _{DD}			
RIO_RCLK	Y24	I	OV _{DD}			
RIO_RD[0:7]	T25, U25, V25, W25, AA25, AB25, AC25, AD25	I	OV _{DD}			
RIO_RD[0:7]	T24, U24, V24, W24, AA24, AB24, AC24, AD24	I	OV _{DD}			
RIO_RFRAME)_RFRAME AE27		OV _{DD}			
RIO_RFRAME	RFRAME AE26		OV _{DD}			
RIO_TCLK	_TCLK AC20		OV _{DD}	11		
RIO_TCLK	AE21		OV _{DD}	11		
RIO_TD[0:7]	AE18, AC18, AD19, AE20, AD21, AE22, AC22, AD23	0	OV _{DD}			
RIO_TD[0:7]	_TD[0:7] AD18, AE19, AC19, AD20, AC21, AD22, AE23, AC23		OV _{DD}			
RIO_TFRAME	AE24	0	OV _{DD}			
RIO_TFRAME	AE25	0	OV _{DD}			
RIO_TX_CLK_IN	AF24	I	OV _{DD}			
RIO_TX_CLK_IN	AF25	I	OV _{DD}			
I ² C interface						
IIC_SDA	AH22	I/O	OV _{DD}	4, 20		
IIC_SCL	IIC_SCL AH23			4, 20		

Table 53. MPC8540 Pinout Listing (continued)

Package and Pin Listings

Table 53. MPC8540	Pinout L	.isting (continued)
-------------------	----------	-----------	------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
	System Control					
HRESET	AH16	I	OV_{DD}			
HRESET_REQ	AG20	0	OV_{DD}			
SRESET	AF20	I	OV _{DD}			
CKSTP_IN	M11	I	OV _{DD}			
CKSTP_OUT	G1	0	OV _{DD}	2, 4		
	Debug					
TRIG_IN	N12	I	OV _{DD}			
TRIG_OUT/READY	G2	0	OV _{DD}	6, 9, 19		
MSRCID[0:1]	J9, G3	0	OV _{DD}	5, 6, 9		
MSRCID[2:4]	F3, F5, F2	0	OV _{DD}	6		
MDVAL	F4	0	OV _{DD}	6		
	Clock					
SYSCLK	AH21	I	OV _{DD}			
RTC	AB23	I	OV _{DD}			
CLK_OUT	AF22	0	OV _{DD}	11		
	JTAG					
тск	AF21	I	OV _{DD}			
TDI	AG21	I	OV _{DD}	12		
TDO	AF19	0	OV _{DD}	11		
TMS	AF23	I	OV _{DD}	12		
TRST	AG23	I	OV _{DD}	12		
DFT						
LSSD_MODE	AG19	I	OV _{DD}	21		
L1_TSTCLK	AB22	I	OV _{DD}	21		
L2_TSTCLK	AG22	I	OV _{DD}	21		
TEST_SEL	AH20	I	OV _{DD}	3		
Thermal Management						
THERM0	AG2	l	_	14		
THERM1	АНЗ	I	-	14		

Figure 46. MPC8540 Thermal Model

16.2.2 Internal Package Conduction Resistance

For the packaging technology, shown in Table 59, the intrinsic internal conduction thermal resistance paths are as follows:

- The die junction-to-case thermal resistance
- The die junction-to-board thermal resistance

Thermal

Figure 47 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.

(Note the internal versus external package resistance)

Figure 47. Package with Heat Sink Mounted to a Printed-Circuit Board

The heat sink removes most of the heat from the device. Heat generated on the active side of the chip is conducted through the silicon and through the lid, then through the heat sink attach material (or thermal interface material), and finally to the heat sink. The junction-to-case thermal resistance is low enough that the heat sink attach material and heat sink thermal resistance are the dominant terms.

16.2.3 Thermal Interface Materials

A thermal interface material is required at the package-to-heat sink interface to minimize the thermal contact resistance. For those applications where the heat sink is attached by spring clip mechanism, Figure 48 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure. The use of thermal grease significantly reduces the interface thermal resistance. The bare joint results in a thermal resistance approximately six times greater than the thermal grease joint.

Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see Figure 45). Therefore, the synthetic grease offers the best thermal performance, especially at the low interface pressure.

When removing the heat sink for re-work, it is preferable to slide the heat sink off slowly until the thermal interface material loses its grip. If the support fixture around the package prevents sliding off the heat sink, the heat sink should be slowly removed. Heating the heat sink to 40-50•C with an air gun can soften the interface material and make the removal easier. The use of an adhesive for heat sink attach is not recommended.

The system board designer can choose between several types of thermal interface. There are several commercially-available thermal interfaces provided by the following vendors:

Chomerics, Inc.	781-935-4850
77 Dragon Ct.	
Woburn, MA 01888-4014	
Internet: www.chomerics.com	
Dow-Corning Corporation	800-248-2481
Dow-Corning Electronic Materials	
2200 W. Salzburg Rd.	
Midland, MI 48686-0997	
Internet: www.dowcorning.com	
Shin-Etsu MicroSi, Inc.	888-642-7674
10028 S. 51st St.	
Phoenix, AZ 85044	
Internet: www.microsi.com	
The Bergquist Company	800-347-4572
18930 West 78 th St.	
Chanhassen, MN 55317	
Internet: www.bergquistcompany.com	

17 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8540.

17.1 System Clocking

The MPC8540includes two PLLs.

- 1. The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in Section 15.2, "Platform/System PLL Ratio."
- 2. The e500 Core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e500 core clock and the platform clock is selected using the e500 PLL ratio configuration bits as described in Section 15.3, "e500 Core PLL Ratio."

17.2 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins (AV_{DD}) and AV_{DD} , respectively). The AV_{DD} level should always be equivalent to V_{DD} , and preferably these voltages will be derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide three independent filter circuits as illustrated in Figure 52, one to each of the three AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of the 783 FC-PBGA footprint, without the inductance of vias.

Figure 52 shows the PLL power supply filter circuit.

Figure 52. PLL Power Supply Filter Circuit

Figure 54. COP Connector Physical Pinout

17.8.1 Termination of Unused Signals

If the JTAG interface and COP header will not be used, Freescale recommends the following connections:

- TRST should be tied to HRESET through a 0 k Ω isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 55. If this is not possible, the isolation resistor will allow future access to TRST in case a JTAG interface may need to be wired onto the system in future debug situations.
- Tie TCK to OV_{DD} through a 10 k Ω resistor. This will prevent TCK from changing state and reading incorrect data into the device.
- No connection is required for TDI, TMS, or TDO.

19 Device Nomenclature

Ordering information for the parts fully covered by this specification document is provided in Section 19.1, "Nomenclature of Parts Fully Addressed by this Document."

19.1 Nomenclature of Parts Fully Addressed by this Document

Table 62 provides the Freescale part numbering nomenclature for the MPC8540. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier which may specify special application conditions. Each part number also contains a revision code which refers to the die mask revision number.

MPC	nnnn	t	рр	ff(f)	С	r
Product Code	Part Identifier	Temperature Range ¹	Package ²	Processor Frequency ^{3, 4}	Platform Frequency	Revision Level
MPC	8540	Blank = 0 to 105°C C = -40 to 105°C	PX = FC-PBGA VT = FC-PBGA (Pb-free)	833 = 833 MHz 667 = 667 MHz	L = 333 MHz J = 266 MHz	B = Rev. 2.0 (SVR = 0x80300020) C = Rev. 2.1 (SVR = 0x80300021)
MPC	8540	Blank = 0 to 105°C C = -40 to 105°C	PX = FC-PBGA VT = FC-PBGA (Pb-free)	AQ = 1.0 GHz	F = 333 MHz	B = Rev. 2.0 (SVR = 0x80300020) C = Rev. 2.1 (SVR = 0x80300021)

Table 62. Part Numbering Nomenclature

Notes:

1.For Temperature Range=C, Processor Frequency is limited to 667 MHz.

2.See Section 14, "Package and Pin Listings," for more information on available package types.

- 3.Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. The core must be clocked at a minimum frequency of 400MHz. A device must not be used beyond the core frequency or platform frequency indicated on the device.
- 4.Designers should use the maximum power value corresponding to the core and platform frequency grades indicated on the device. A lower maximum power value should not be assumed for design purposes even when running at a lower frequency.