E·XFL

NXP USA Inc. - KMPC8540VTAQFB Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	-
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (1), 10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BFBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8540vtaqfb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- Buffer descriptors are backward compatible with MPC8260 and MPC860T 10/100 programming models
- 9.6-Kbyte jumbo frame support
- RMON statistics support
- 2-Kbyte internal transmit and receive FIFOs
- MII management interface for control and status
- Programmable CRC generation and checking
- Ability to force allocation of header information and buffer descriptors into L2 cache.
- OCeaN switch fabric
 - Four-port crossbar packet switch
 - Reorders packets from a source based on priorities
 - Reorders packets to bypass blocked packets
 - Implements starvation avoidance algorithms
 - Supports packets with payloads of up to 256 bytes
- Integrated DMA controller
 - Four-channel controller
 - All channels accessible by both the local and remote masters
 - Extended DMA functions (advanced chaining and striding capability)
 - Support for scatter and gather transfers
 - Misaligned transfer capability
 - Interrupt on completed segment, link, list, and error
 - Supports transfers to or from any local memory or I/O port
 - Selectable hardware-enforced coherency (snoop/no-snoop)
 - Ability to start and flow control each DMA channel from external 3-pin interface
 - Ability to launch DMA from single write transaction
- PCI/PCI-X controller
 - PCI 2.2 and PCI-X 1.0 compatible
 - 64- or 32-bit PCI port supports at 16 to 66 MHz
 - 64-bit PCI-X support up to 133 MHz
 - Host and agent mode support
 - 64-bit dual address cycle (DAC) support
 - PCI-X supports multiple split transactions
 - Supports PCI-to-memory and memory-to-PCI streaming
 - Memory prefetching of PCI read accesses
 - Supports posting of processor-to-PCI and PCI-to-memory writes
 - PCI 3.3-V compatible
 - Selectable hardware-enforced coherency

Electrical Characteristics

2.1 Overall DC Electrical Characteristics

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings ¹

Chara	cteristic	Symbol	Max Value	Unit	Notes
Core supply voltage For	devices rated at 667 and 833 MHz For devices rated at 1 GHz	V _{DD}	-0.3 to 1.32 -0.3 to 1.43	V	
PLL supply voltage For devices rated at 667 and 833 MHz For devices rated at 1 GHz		AV _{DD}	-0.3 to 1.32 -0.3 to 1.43	V	
DDR DRAM I/O voltage		${\sf GV}_{\sf DD}$	-0.3 to 3.63	V	
Three-speed Ethernet I/O voltage		LV _{DD}	-0.3 to 3.63 -0.3 to 2.75	V	
PCI/PCI-X, local bus, RapidIO, 10/100 Ethernet, MII management, DUART, system control and power management, I ² C, and JTAG I/O voltage		OV _{DD}	-0.3 to 3.63	V	3
Input voltage	DDR DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	Three-speed Ethernet signals	LV _{IN}	-0.3 to (LV _{DD} + 0.3)	V	4, 5
	Local bus, RapidIO, 10/100 Ethernet, DUART, SYSCLK, system control and power management, I ² C, and JTAG signals	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	5
	PCI/PCI-X	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	6
Storage temperature range		T _{STG}	-55 to 150	•C	

Notes:

- 1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. **Caution:** MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 3. **Caution:** OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. **Caution:** LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 5. (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- OV_{IN} on the PCI interface may overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

3 Power Characteristics

The estimated power dissipation on the V_{DD} supply for the MPC8540 is shown in Table 4.

CCB Frequency (MHz)	Core Frequency (MHz)	Typical Power ^{3,4}	Maximum Power ⁵	Unit
200	400	4.6	7.2	W
	500	4.9	7.5	
	600	5.3	7.9	
267	533	5.5	8.2	W
	667	5.9	8.7	
	800	6.4	10.2	
333	667	6.3	9.3	W
	833	6.9	10.9	
	1000 ⁶	11.3	15.9	

Table 4. MPC8540 V_{DD} Power Dissipation ^{1,2}

Notes:

- 1. The values do not include I/O supply power (OV_{DD} , LV_{DD} , GV_{DD}) or AV_{DD} .
- 2. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Any customer design must take these considerations into account to ensure the maximum 105 °C junction temperature is not exceeded on this device.
- 3. Typical Power is based on a nominal voltage of V_{DD} = 1.2 V, a nominal process, a junction temperature of T_i = 105 °C, and a Dhrystone 2.1 benchmark application.
- 4. Thermal solutions will likely need to design to a number higher than Typical Power based on the end application, T_A target, and I/O power.
- 5. Maximum power is based on a nominal voltage of V_{DD} = 1.2 V, worst case process, a junction temperature of T_i = 105 °C, and an artificial smoke test.
- 6. The nominal recommended V_{DD} is 1.3 V for this speed grade.

The estimated power dissipation on the AV_{DD} supplies for the MPC8540 PLLs is shown in Table 5.

AV _{DD} n	Typical ¹	Unit
AV _{DD} 1	0.007	W
AV _{DD} 2	0.014	W

Table 5. MPC8540 AV_{DD} Power Dissipation

Notes:

1. V_{DD} = 1.2 V (1.3 V for 1.0 GHz device), T_J = 105°C

MPC8540 Integrated Processor Hardware Specifications, Rev. 4.1

4.3 RapidIO Transmit Clock Input Timing

Table 9 provides the RapidIO transmit clock input (RIO_TX_CLK_IN) AC timing specifications for the MPC8540.

Table 9. RIO	_TX_CL	K_IN AC	Timing	Specifications
--------------	--------	---------	--------	----------------

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
RIO_TX_CLK_IN frequency	f _{RCLK}	125	—	—	MHz	
RIO_TX_CLK_IN cycle time	t _{RCLK}	—	—	8	ns	
RIO_TX_CLK_IN duty cycle	t _{RCLKH} /t _{RCLK}	48	—	52	%	1

Notes:

1. Requires ± 100 ppm long term frequency stability. Timing is guaranteed by design and characterization.

4.4 Real Time Clock Timing

Table 10 provides the real time clock (RTC) AC timing specifications for the MPC8540.

Table 10. RTC AC Timing Specifications

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
RTC clock high time	^t RTCH	2 x t _{CCB_CLK}	—	—	ns	
RTC clock low time	t _{RTCL}	2 х t _{CCB_CLK}	_	—	ns	

5 RESET Initialization

This section describes the AC electrical specifications for the RESET initialization timing requirements of the MPC8540. Table 7 provides the RESET initialization AC timing specifications for the MPC8540.

Parameter/Condition	Min	Мах	Unit	Notes
Required assertion time of HRESET	100	—	μS	
Minimum assertion time for SRESET	512	—	SYSCLKs	1
PLL input setup time with stable SYSCLK before HRESET negation	100	_	μS	
Input setup time for POR configs (other than PLL config) with respect to negation of HRESET	4	_	SYSCLKs	1
Input hold time for POR configs (including PLL config) with respect to negation of HRESET	2	_	SYSCLKs	1

Table 11. RESET Initialization Timing Specifications

Ethernet: Three-Speed, 10/100, MII Management

8.2.2.2 MII Receive AC Timing Specifications

Table 26 provides the MII receive AC timing specifications.

Table 26. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V ± 5%, or LV_{DD}=2.5V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period 10 Mbps	t _{MRX} ³	_	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}		40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	_	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	_	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise and fall time	t_{MRXR} , t_{MRXF} ^{2,3}	1.0	_	4.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)}

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3.Guaranteed by design.

Figure 11 shows the MII receive AC timing diagram.

Figure 11. MII Receive AC Timing Diagram

Ethernet: Three-Speed, 10/100, MII Management

Figure 16 shows the MII receive AC timing diagram.

Figure 16. MII Receive AC Timing Diagram

8.4 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (TSEC) (10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics."

8.4.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 33.

Parameter	Symbol	Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	3.13	3.47	V
Output high voltage (OV _{DD} = Min, I _{OH} = -1.0 mA)	V _{OH}	2.10	OV _{DD} + 0.3	V
Output low voltage (OV _{DD} = Min, I _{OL} = 1.0 mA)	V _{OL}	GND	0.50	V
Input high voltage	V _{IH}	1.70	_	V
Input low voltage	V _{IL}	—	0.90	V
Input high current (OV _{DD} = Max, V _{IN} ¹ = 2.1 V)	IIH	—	40	μΑ
Input low current (OV _{DD} = Max, V _{IN} = 0.5 V)	IIL	-600	_	μΑ

Table 33. MII Management DC Electrical Characteristics

Note:

1.Note that the symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

Local Bus

Figure 19 through Figure 24 show the local bus signals.

Figure 19. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)

Local Bus

Figure 21. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)

11.2 I²C AC Electrical Specifications

Table 40 provides the AC timing parameters for the I^2C interface of the MPC8540.

Table 40. I²C AC Electrical Specifications

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 39).

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL} ⁶	1.3	—	μS
High period of the SCL clock	t _{I2CH} ⁶	0.6	—	μS
Setup time for a repeated START condition	t _{I2SVKH} ⁶	0.6	—	μS
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL} ⁶	0.6	—	μS
Data setup time	t _{I2DVKH} ⁶	100	—	ns
Data hold time: CBUS compatible masters I ² C bus devices	t _{I2DXKL}	0 ²	0.9 ³	μS
Set-up time for STOP condition	t _{I2PVKH}	0.6	—	μS
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	—	μS
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	_	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times OV_{DD}$	_	V

Notes:

1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the low (L) state or hold time. Also, t_{12PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the storp condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.MPC8540 provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL.

3. The maximum t_{I2DVKH} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.

 $4.C_B$ = capacitance of one bus line in pF.

6.Guaranteed by design.

Figure 18 provides the AC test load for the I^2C .

Figure 30. I²C AC Test Load

MPC8540 Integrated Processor Hardware Specifications, Rev. 4.1

PCI/PCI-X

Figure 31 shows the AC timing diagram for the I^2C bus.

Figure 31. I²C Bus AC Timing Diagram

12 PCI/PCI-X

This section describes the DC and AC electrical specifications for the PCI/PCI-X bus of the MPC8540.

12.1 PCI/PCI-X DC Electrical Characteristics

Table 41 provides the DC electrical characteristics for the PCI/PCI-X interface of the MPC8540.

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current $(V_{IN}^2 = 0 V \text{ or } V_{IN} = V_{DD})$	I _{IN}	_	±5	μΑ
High-level output voltage (OV _{DD} = min, I _{OH} = −100 μA)	V _{OH}	OV _{DD} - 0.2	—	V
Low-level output voltage $(OV_{DD} = min, I_{OL} = 100 \mu A)$	V _{OL}	_	0.2	V

Table 41. PCI/PCI-X DC Electrical Characteristics ¹

Notes:

1.Ranges listed do not meet the full range of the DC specifications of the *PCI 2.2 Local Bus Specifications*. 2.Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

12.2 PCI/PCI-X AC Electrical Specifications

This section describes the general AC timing parameters of the PCI/PCI-X bus of the MPC8540. Note that the SYSCLK signal is used as the PCI input clock. Table 42 provides the PCI AC timing specifications at 66 MHz.

Parameter	Symbol ¹	Min	Max	Unit	Notes
SYSCLK to output valid	^t PCKHOV	_	6.0	ns	2
Output hold from SYSCLK	t _{PCKHOX}	2.0		ns	2, 9
SYSCLK to output high impedance	t _{PCKHOZ}	_	14	ns	2, 3, 10
Input setup to SYSCLK	t _{PCIVKH}	3.0		ns	2, 4, 9
Input hold from SYSCLK	t _{PCIXKH}	0	-	ns	2, 4, 9
REQ64 to HRESET ⁹ setup time	t _{PCRVRH}	$10 imes t_{SYS}$	_	clocks	5, 6, 10
HRESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	6, 10
HRESET high to first FRAME assertion	t _{PCRHFV}	10	_	clocks	7, 10

Table 42. PCI AC Timing Specifications at 66 MHz

Notes:

1.Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional}

block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI/PCI-X timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, t_{SYS} , reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI/PCI-X timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2.See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.

3.For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

- 4.Input timings are measured at the pin.
- 5. The timing parameter t_{SYS} indicates the minimum and maximum CLK cycle times for the various specified frequencies. The system clock period must be kept within the minimum and maximum defined ranges. For values see Section 15, "Clocking."

6.The setup and hold time is with respect to the rising edge of HRESET.

7. The timing parameter t_{PCRHFV} is a minimum of 10 clocks rather than the minimum of 5 clocks in the PCI 2.2 Local Bus Specifications.

8. The reset assertion timing requirement for $\overline{\text{HRESET}}$ is 100 µs.

9. Guaranteed by characterization.

10.Guaranteed by design.

- The peak differential signal of the transmitter output or receiver input, is A B volts.
- The peak-to-peak differential signal of the transmitter output or receiver input, is $2 \times (A B)$ volts.

Figure 36. Differential Peak-to-Peak Voltage of Transmitter or Receiver

To illustrate these definitions using numerical values, consider the case where a LVDS transmitter has a common mode voltage of 1.2 V and each signal has a swing that goes between 1.4 and 1.0 V. Using these values, the peak-to-peak voltage swing of the signals TD, TD, RD, and RD is 400 mV. The differential signal ranges between 400 and -400 mV. The peak differential signal is 400 mV, and the peak-to-peak differential signal is 800 mV.

A timing edge is the zero-crossing of a differential signal. Each skew timing parameter on a parallel bus is synchronously measured on two signals relative to each other in the same cycle, such as data to data, data to clock, or clock to clock. A skew timing parameter may be relative to the edge of a signal or to the middle of two sequential edges.

Static skew represents the timing difference between signals that does not vary over time regardless of system activity or data pattern. Path length differences are a primary source of static skew.

Dynamic skew represents the amount of timing difference between signals that is dependent on the activity of other signals and varies over time. Crosstalk between signals is a source of dynamic skew.

Eye diagrams and compliance masks are a useful way to visualize and specify driver and receiver performance. This technique is used in several serial bus specifications. An example compliance mask is shown in Figure 37. The key difference in the application of this technique for a parallel bus is that the data is source synchronous to its bus clock while serial data is referenced to its embedded clock. Eye diagrams reveal the quality (cleanness, openness, goodness) of a driver output or receiver input. An advantage of using an eye diagram and a compliance mask is that it allows specifying the quality of a signal without requiring separate specifications for effects such as rise time, duty cycle distortion, data dependent dynamic skew, random dynamic skew, etc. This allows the individual semiconductor manufacturer maximum flexibility to trade off various performance criteria while keeping the system performance constant.

In using the eye pattern and compliance mask approach, the quality of the signal is specified by the compliance mask. The mask specifies the maximum permissible magnitude of the signal and the minimum permissible eye opening. The eye diagram for the signal under test is generated according to the specification. Compliance is determined by whether the compliance mask can be positioned over the eye diagram such that the eye pattern falls entirely within the unshaded portion of the mask.

Serial specifications have clock encoded with the data, but the LP-LVDS physical layer defined by RapidIO is a source synchronous parallel port so additional specifications to include effects that are not found in serial links are required. Specifications for the effect of bit to bit timing differences caused by static skew have been added and the eye diagrams specified are measured relative to the associated clock in order to include clock to data effects. With the transmit output (or receiver input) eye diagram, the user can determine if the transmitter output (or receiver input) is compliant with an oscilloscope with the appropriate software.

RapidIO

enough that increasing the length of the sequence does not cause the resulting eye pattern to change from one that complies with the RapidIO receive mask to one that does not comply with the mask. The data carried by any given data signal in the interface may not be correlated with the data carried by any other data signal in the interface. The zero-crossings of the clock associated with a data signal shall be used as the timing reference for aligning the multiple recordings of the data signal when the recordings are overlaid.

While the method used to make the recordings and overlay them to form the eye pattern is not specified, the method used shall be demonstrably equivalent to the following method. The signal under test is repeatedly recorded with a digital oscilloscope in infinite persistence mode. Each recording is triggered by a zero-crossing of the clock associated with the data signal under test. Roughly half of the recordings are triggered by positive-going clock zero-crossings and roughly half are triggered by negative-going clock zero-crossings. Each recording is at least 1.9 UI in length (to ensure that at least one complete eye is formed) and begins 0.5 UI before the trigger point (0.5 UI before the associated clock zero-crossing). Depending on the length of the individual recordings used to generate the eye pattern, one or more complete eyes will be formed. Regardless of the number of eyes, the eye whose center is immediately to the right of the trigger point is the eye used for compliance testing.

An example of an eye pattern generated using the above method with recordings 3 UI in length is shown in Figure 41. In this example, there is no skew between the signal under test and the associated clock used to trigger the recordings. If skew was present, the eye pattern would be shifted to the left or right relative to the oscilloscope trigger point.

Figure 41. Example Receiver Input Eye Pattern

Package and Pin Listings

14 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions.

14.1 Package Parameters for the MPC8540 FC-PBGA

The package parameters are as provided in the following list. The package type is $29 \text{ mm} \times 29 \text{ mm}$, 783 flip chip plastic ball grid array (FC-PBGA).

Die size	$12.2 \text{ mm} \times 9.5 \text{ mm}$
Package outline	$29 \text{ mm} \times 29 \text{ mm}$
Interconnects	783
Pitch	1 mm
Minimum module height	3.07 mm
Maximum module height	3.75 mm
Solder Balls	62 Sn/36 Pb/2 Ag
Ball diameter (typical)	0.5 mm

Signal	Package Pin Number	Pin Type Power Supply		Notes		
TSEC2_RX_CLK	E10	I	LV _{DD}			
	10/100 Ethernet (MII) Interface					
FEC_TXD[3:0]	M1, N1, N4, N5	0	OV _{DD}			
FEC_TX_EN	P11	0	OV _{DD}			
FEC_TX_ER	P10	0	OV_{DD}			
FEC_TX_CLK	V6	I	OV _{DD}			
FEC_CRS	N10	I	OV _{DD}			
FEC_COL	N11	I	OV _{DD}			
FEC_RXD[3:0]	N9, N8, N7, N6	I	OV _{DD}			
FEC_RX_DV	P8	I	OV _{DD}			
FEC_RX_ER	Р9	I	OV _{DD}			
FEC_RX_CLK	V9	I	OV _{DD}			
RapidIO Interface						
RIO_RCLK	Y25	Ι	OV _{DD}			
RIO_RCLK	Y24	I	OV _{DD}			
RIO_RD[0:7]	T25, U25, V25, W25, AA25, AB25, AC25, AD25	I	OV _{DD}			
RIO_RD[0:7]	T24, U24, V24, W24, AA24, AB24, AC24, AD24	I	OV _{DD}			
RIO_RFRAME	AE27	I	OV _{DD}			
RIO_RFRAME	AE26	I	OV _{DD}			
RIO_TCLK	AC20	0	OV _{DD}	11		
RIO_TCLK	AE21	0	OV _{DD}	11		
RIO_TD[0:7]	AE18, AC18, AD19, AE20, AD21, AE22, AC22, AD23	0	OV _{DD}			
RIO_TD[0:7]	AD18, AE19, AC19, AD20, AC21, AD22, AE23, AC23	0	OV _{DD}			
RIO_TFRAME	AE24	0	OV _{DD}			
RIO_TFRAME	AE25	0	OV _{DD}			
RIO_TX_CLK_IN	AF24	I	OV _{DD}			
RIO_TX_CLK_IN	AF25	I	OV _{DD}			
I ² C interface						
IIC_SDA	AH22	I/O	OV _{DD}	4, 20		
IIC_SCL	AH23	I/O	OV _{DD}	4, 20		

Table 53. MPC8540 Pinout Listing (continued)

```
Thermal
```

15.4 Frequency Options

Table 58 shows the expected frequency values for the platform frequency when using a CCB to SYSCLK ratio in comparison to the memory bus speed.

CCB to SYSCLK Ratio				S	YSCLK (Mł	łz)			
	16.67	25	33.33	41.63	66.67	83	100	111	133.33
				Platform/0	CCB Freque	ency (MHz)			
2							200	222	267
3					200	250	300	333	
4					267	333			-
5				208	333		<u>.</u>		
6			200	250		-			
8		200	267	333					
9		225	300		-				
10		250	333						
12	200	300		-					
16	267		-						

Table 58. Frequency Options with Respect to Memory Bus Speeds

16 Thermal

This section describes the thermal specifications of the MPC8540.

16.1 Thermal Characteristics

Table 59 provides the package thermal characteristics for the MPC8540.

 Table 59. Package Thermal Characteristics

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient Natural Convection on four layer board (2s2p)	$R_{ hetaJMA}$	16	°C/W	1, 2
Junction-to-ambient (@100 ft/min or 0.5 m/s) on four layer board (2s2p)	R_{\thetaJMA}	14	°C/W	1, 2
Junction-to-ambient (@200 ft/min or 1 m/s) on four layer board (2s2p)	R_{\thetaJMA}	12	•C/W	1, 2
Junction-to-board thermal	$R_{\theta JB}$	7.5	•C/W	3

Thermal

Figure 47 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.

(Note the internal versus external package resistance)

Figure 47. Package with Heat Sink Mounted to a Printed-Circuit Board

The heat sink removes most of the heat from the device. Heat generated on the active side of the chip is conducted through the silicon and through the lid, then through the heat sink attach material (or thermal interface material), and finally to the heat sink. The junction-to-case thermal resistance is low enough that the heat sink attach material and heat sink thermal resistance are the dominant terms.

16.2.3 Thermal Interface Materials

A thermal interface material is required at the package-to-heat sink interface to minimize the thermal contact resistance. For those applications where the heat sink is attached by spring clip mechanism, Figure 48 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure. The use of thermal grease significantly reduces the interface thermal resistance. The bare joint results in a thermal resistance approximately six times greater than the thermal grease joint.

Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see Figure 45). Therefore, the synthetic grease offers the best thermal performance, especially at the low interface pressure.

When removing the heat sink for re-work, it is preferable to slide the heat sink off slowly until the thermal interface material loses its grip. If the support fixture around the package prevents sliding off the heat sink, the heat sink should be slowly removed. Heating the heat sink to 40-50•C with an air gun can soften the interface material and make the removal easier. The use of an adhesive for heat sink attach is not recommended.

Figure 53. Driver Impedance Measurement

The output impedance of the RapidIO port drivers targets 200- Ω differential resistance. The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = 1/(1/R_1 + 1/R_2) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

Table 60 summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI/PCI-X	DDR DRAM	RapidIO	Symbol	Unit
R _N	43 Target	25 Target	20 Target	NA	Z ₀	W
R _P	43 Target	25 Target	20 Target	NA	Z ₀	W
Differential	NA	NA	NA	200 Target	Z _{DIFF}	W

Table 60. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_j = 105^{\circ}C$.

System Design Information

Notes:

- 1. The COP port and target board should be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown here.
- 2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.
- 3. The KEY location (pin 14) is not physically present on the COP header.
- 4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for improved signal integrity.
- This switch is included as a precaution for BSDL testing. The switch should be open during BSDL testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed or removed.
- 6. Asserting SRESET causes a machine check interrupt to the e500 core.

Figure 55. JTAG Interface Connection

MPC8540 Integrated Processor Hardware Specifications, Rev. 4.1

 2.0 Section 1.1—Updated features list to coincide with latest version of the reference manual Table 1 and Table 2—Addition of SYSCLK to OV_{IN} Table 2—Addition of notes 1 and 2 Table 3—Addition of note 1 Table 5—New Section 4—New Table 13—Addition of IV_{REF} Removed Figure 4 DDR SRAM Input Timing Diagram Table 15—Modified maximum values for t_{DISKEW} Table 15—Modified maximum values for t_{DISKEW} Table 15—Modified maximum values for t_{DISKEW} Table 16—Added MSYNC_OUT to tMCKSKEW2 Figure 5.—New Section 6.2.1—Removed Figure 4, "DDR SDRAM Input Timing Diagram" Section 6.2.1—Removed Figure 4, "DDR SDRAM Input Timing Diagram" Section 8.1—Removed Figure 4, "DDR SDRAM Input Timing Diagram" Section 8.1—Removed references to 2.5 V from first paragraph Figure 8—New Table 22—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 27—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 27—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 30—VOH min and conditions; I_H and I_{LL} conditions Table 31—Min and max for I_{MTXR} and I_{MTXF} Table 32—Min and max for I_{MTXR} and I_{MTXF} Table 32—Min and max for I_{MTXR} and I_{MEXF} Figure 18—New Table 30—New (AC timing of PCLX at 66 MHz) Table 53—Addition of note 19 Figure 65—Addition of note 19 Figure 43—New (AC timing of PCLX at 66 MHz) Table 53—Addition of note 19 Figure 43—Modified first paragraph Figure 44—Modified First and second paragraphs 	Rev. No.	Substantive Change(s)
Table 1 and Table 2—Addition of SYSCLK to OV _{IN} Table 3—Addition of notes 1 and 2 Table 3—Addition of note 1 Table 5—New Section 4—New Table 13—Addition of I _{VREF} Removed Figure 4 DDR SRAM Input Timing Diagram Table 15—Modified maximum values for t _{DISKEW} Table 15—Modified maximum values for t _{DISKEW} Table 16—Added MSYNC_OUT to tMCKSKEW2 Figure 5—New Section 6.1.—Removed Figure 4, "DDR SDRAM Input Timing Diagram" Section 6.1.—Removed references to 2.5 V from first paragraph Figure 8—New Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 30—VOH min and conditions: I _H and I _{LL} conditions Table 33—Min and max for t _{MTXR} and t _{MTXF} Table 33—Min and max for t _{MTXR} and t _{MTXF} Table 33—New (AC timing of PCI-X at 66 MHz) Table 33—New (AC timing of PCI-X at 66 MHz) Table 53—Addition of note 19 Figure 45—Modified first par	2.0	Section 1.1—Updated features list to coincide with latest version of the reference manual
Table 2—Addition of notes 1 and 2 Table 3—Addition of notes 1 Table 5—New Section 4—New Table 13—Addition of I _{VREF} Removed Figure 4 DDR SRAM Input Timing Diagram Table 15—Modified maximum values for t _{DISKEW} Table 16—Added MSYNC_OUT to tMCKSKEW2 Figure 5—New Section 6.2.1—Removed Figure 4, "DDR SDRAM Input Timing Diagram" Section 6.1—Removed references to 2.5 V from first paragraph Figure 8—New Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 30—VOH min and conditions; I _H and I _{IL} conditions Table 30—Win and max for t _{MXXR} and t _{MXXF} Table 31—Min and max for t _{MXXR} and t _{MXXF} Table 32—New Table 33—Min and max bus freq for 2 core to 16c Section 16.2.1—Removed row for tLBKHOX3 Table 33—New (AC timing of PCI-X at 66 MHz) Table 33—New (AC timing of PCI-X at 66 MHz) Table 33—Addition of note 19 Figure 45—New Table 55—Additied first paragraph Figure 46—Modified first paragraph Figure 47—New		Table 1 and Table 2—Addition of SYSCLK to OVIN
Table 3—Addition of note 1 Table 5—New Section 4—New Table 13—Addition of I _{VREF} Removed Figure 4 DDR SRAM Input Timing Diagram Table 15—Modified maximum values for t _{DISKEW} Table 16—Added MSYNC_OUT to tMCKSKEW2 Figure 5—New Section 6.2.1—Removed Figure 4, "DDR SDRAM Input Timing Diagram" Section 8.1—Removed references to 2.5 V from first paragraph Figure 8—New Table 22 and Table 22—Modified "conditions" for I _{IH} and I _{IL} Table 23Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29Addition of min and max for GTX_CLK125 reference clock duty cycle Table 30WOH min and max for t _{MTXR} and t _{MTXF} Table 31Min and max for t _{MTXR} and t _{MTXF} Table 32Min and max for t _{MRXR} and t _{MTXF} Figure 18New Figure 18New Figure 18New Figure 55Addition of not 1LBKHOX3 Table 36Removed row for tLBKHOX3 Table 43New (AC timing of PCI-X at 66 MHz) Table 55-Changed max bus freq for 667 core to 166 Section 16.2.1Modified first par		Table 2—Addition of notes 1 and 2
Table 5—New Section 4—New Table 13—Addition of I _{VREF} Removed Figure 4 DDR SRAM Input Timing Diagram Table 15—Modified maximum values for t _{DISKEW} Table 16—Added MSYNC_OUT to tMCKSKEW2 Figure 5—New Section 8.2.1—Removed Figure 4, "DDR SDRAM Input Timing Diagram" Section 8.2.1—Removed references to 2.5 V from first paragraph Figure 8—New Table 21 and Table 22—Modified "conditions" for I _H and I I _{LL} Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 30—VOH min and conditions; I _H and I _{LL} conditions Table 30—VOH min and conditions; I _H and I _{LL} conditions Table 30—WOH min and max for GTX_CLK125 reference clock duty cycle Table 30—VOH min and conditions; I _H and I _{LL} conditions Table 32—Min and max for t _{MIXR} and t _{MIXF} Figure 18 New Figure 18—New Figure 18—New Table 53—Addition of note 19 Figure 55—Addition of note 19 Figure 55—Addition of note 19 Figure 43—New (AC timing of PCI-X at 66 MHz) Table 53—Addition of note 19 Figure 45—Addition of note 19 Fi		Table 3—Addition of note 1
Section 4—New Table 13—Addition of I _{VREF} Removed Figure 4 DDR SRAM Input Timing Diagram Table 15—Modified maximum values for t _{DISKEW} Table 16—Added MSYNC_OUT to tMCKSKEW2 Figure 5—New Section 6.2.1—Removed Figure 4, "DDR SDRAM Input Timing Diagram" Section 8.1—Removed references to 2.5 V from first paragraph Figure 8—New Table 21 and Table 22—Modified "conditions" for I _{IH} and I _{IL} Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 27—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 32—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 32—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 33—VOH min and conditions; I _{IH} and I _{IL} conditions Table 31—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Figure 23 and Figure 24—Changed LSYNC_IN to Internal clock at top of each figure Figure 18—New Figure 18—New Table 36—Removed row for tLBKHOX3 Table 43—New (AC timing of PCI-X at 66 MHz) Table 53—Addition of jumper and note at top of diagram Table 55: Changed max bus freq for 667 core to 166 Section 16.2.1—Modified first paragraph Figure 46—Modified Figure 47—New Table 55—Modified thermal resistance data Section 16.2.4.2—Modified first and second paragraphs		Table 5—New
Table 13—Addition of I _{VREF} Removed Figure 4 DDR SRAM Input Timing Diagram Table 15—Modified maximum values for t _{DISKEW} Table 16—Added MSYNC_OUT to tMCKSKEW2 Figure 5—New Section 6.2.1—Removed Figure 4, "DDR SDRAM Input Timing Diagram" Section 8.1—Removed references to 2.5 V from first paragraph Figure 8—New Table 21 and Table 22—Modified "conditions" for I _{IH} and I IL Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 30—WOH min and conditions; I _{IH} and I IL conditions Table 30—WOH min and ref t _{MTXR} and t _{ILC} conditions Table 30—Win and max for t _{MTXR} and t _{ILC} conditions Table 30—Win and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Figure 18—New Figure 18—New Figure 18—New Figure 18—New (AC timing of PCI-X at 66 MHz) Table 35—Addition of jumper and note at top of diagram Table 55: Changed max bus freq for 667 core to 166 Section 16.2.1—Modified first paragraph Figure 46—Modified Figure 47—New Table 55—Modified thermal resistance data Section 16.2.4.2—Modified thermal resi		Section 4—New
Removed Figure 4 DDR SRAM Input Timing Diagram Table 15—Modified maximum values for t _{DISKEW} Table 16—Added MSYNC_OUT to tMCKSKEW2 Figure 5—New Section 6.2.1—Removed Figure 4, "DDR SDRAM Input Timing Diagram" Section 8.1—Removed references to 2.5 V from first paragraph Figure 8—New Table 21 and Table 22—Modified "conditions" for I _H and I _{IL} Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 30—VOH min and conditions; I _{IH} and I _{IL} conditions Table 31—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Figure 18—New Figure 18—New Figure 18—New Figure 18—New Table 36—Removed row for tLBKHOX3 Table 35—Addition of note 19 Figure 55—Addition of jumper and note at top of diagram Table 55: Changed max bus freq for 667 core to 166 Section 16.2.1—Modified first paragraph Figure 46—Modified Figure 47—New Table 55—Modified thermal resistance data Section 16.2.4.2—Modified thermal resistance data		Table 13—Addition of I _{VREF}
Table 15Modified maximum values for t _{DISKEW} Table 16Added MSYNC_OUT to tMCKSKEW2 Figure 5New Section 6.2.1Removed Figure 4, "DDR SDRAM Input Timing Diagram" Section 8.1Removed references to 2.5 V from first paragraph Figure 8New Table 21 and Table 22Modified "conditions" for I _{IH} and I IL Table 23		Removed Figure 4 DDR SRAM Input TIming Diagram
Table 16—Added MSYNC_OUT to tMCKSKEW2 Figure 5—New Section 6.2.1—Removed Figure 4, "DDR SDRAM Input Timing Diagram" Section 8.1—Removed references to 2.5 V from first paragraph Figure 8—New Table 21 and Table 22—Modified "conditions" for I _{IH} and I IL Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 30—VOH min and conditions; I _{IH} and I _{IL} conditions Table 31—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Figure 18—New Figure 18—New Figure 18—New Table 36—Removed row for tLBKHOX3 Table 33—Addition of note 19 Figure 55—Addition of jumper and note at top of diagram Table 55: Changed max bus freq for 667 core to 166 Section 16.2.1—Modified first paragraph Figure 47—New Table 59—Modified thermal resistance data Section 16.2.4.2—Modified first and second paragraphs		Table 15—Modified maximum values for t _{DISKEW}
Figure 5—New Section 6.2.1—Removed Figure 4, "DDR SDRAM Input Timing Diagram" Section 8.1—Removed references to 2.5 V from first paragraph Figure 8—New Table 21 and Table 22—Modified "conditions" for I _{IH} and I _{IL} Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 30—VOH min and conditions; I _{IH} and I _{IL} conditions Table 31—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} the time to the top of each figure Figure 18—New Table 36—Removed row for tLBKHOX3 Table 43—New (AC timing of PCI-X at 66 MHz) Table 55: Changed max bus freq for 667 core to 166 Section 16.2.1—Modified first paragraph Figure 46—Modified Figure 47—New Table 55: Changed max bus freq for 667 core to 166 Section 16.2.4.2—Modified first and second paragraphs		Table 16—Added MSYNC_OUT to tMCKSKEW2
Section 6.2.1—Removed Figure 4, "DDR SDRAM Input Timing Diagram" Section 8.1—Removed references to 2.5 V from first paragraph Figure 8—New Table 21 and Table 22—Modified "conditions" for I _{IH} and I _{IL} Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 30—VOH min and conditions; I _{IH} and I _{IL} conditions Table 31—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Figure 18—New Figure 18—New Figure 18—New Table 30—New (AC timing of PCI-X at 66 MHz) Table 53—Addition of note 19 Figure 48—New (AC timing of PCI-X at 66 MHz) Table 55: Changed max bus freq for 667 core to 166 Section 16.2.1—Modified first paragraph Figure 46—Modified Figure 47—New Table 59—Modified thermal resistance data Section 16.2.4.2—Modified first and second paragraphs		Figure 5—New
Section 8.1—Removed references to 2.5 V from first paragraph Figure 8—New Table 21 and Table 22—Modified "conditions" for I _{IH} and I _{IL} Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 27 —Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 30—VOH min and conditions; I _{IH} and I _{IL} conditions Table 30—VOH min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Figure 23 and Figure 24—Changed LSYNC_IN to Internal clock at top of each figure Figure 18—New Figure 18—New Table 36—Removed row for tLBKHOX3 Table 33—Addition of note 19 Figure 55—Addition of note 19 Figure 55—Addition of jumper and note at top of diagram Table 55: Changed max bus freq for 667 core to 166 Section 16.2.1—Modified first paragraph Figure 46—Modified Figure 47—New Table 59—Modified thermal resistance data Section 16.2.4.2—Modified thermal resistance data Section 16.2.4.2—Modified first and second paragraphs		Section 6.2.1—Removed Figure 4, "DDR SDRAM Input Timing Diagram"
Figure 8—New Table 21 and Table 22—Modified "conditions" for I _{IH} and I _{IL} Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 27 —Addition of min and max for GTX_CLK125 reference clock duty cycle Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle Table 30—VOH min and conditions; I _{IH} and I _{IL} conditions Table 30—VOH min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MEXR} and t _{MEXF} Figure 23 and Figure 24—Changed LSYNC_IN to Internal clock at top of each figure Figure 18—New Figure 18—New Table 36—Removed row for tLBKHOX3 Table 43—New (AC timing of PCI-X at 66 MHz) Table 53—Addition of nute 19 Figure 55—Changed max bus freq for 667 core to 166 Section 16.2.1—Modified first paragraph Figure 46—Modified Figure 47—New Table 59—Modified thermal resistance data Section 16.2.4.2—Modified first and second paragraphs		Section 8.1—Removed references to 2.5 V from first paragraph
Table 21 and Table 22—Modified "conditions" for I _{IH} and I _{IL} Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycleTable 27—Addition of min and max for GTX_CLK125 reference clock duty cycleTable 29—Addition of min and max for GTX_CLK125 reference clock duty cycleTable 30—VOH min and conditions; I _{IH} and I _{IL} conditionsTable 31—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Figure 23 and Figure 24—Changed LSYNC_IN to Internal clock at top of each figureFigure 18—NewFigure 18—NewTable 36—Removed row for tLBKHOX3Table 43—New (AC timing of PCI-X at 66 MHz)Table 55: Changed max bus freq for 667 core to 166Section 16.2.1—Modified first paragraphFigure 46—ModifiedFigure 47—NewTable 59—Modified first and second paragraphs		Figure 8—New
Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycleTable 27 —Addition of min and max for GTX_CLK125 reference clock duty cycleTable 29—Addition of min and max for GTX_CLK125 reference clock duty cycleTable 30—VOH min and conditions; I _{IH} and I _{IL} conditionsTable 31—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Figure 23 and Figure 24—Changed LSYNC_IN to Internal clock at top of each figureFigure 18—NewFigure 18—NewTable 36—Removed row for tLBKHOX3Table 35—Addition of note 19Figure 55—Addition of jumper and note at top of diagramTable 55: Changed max bus freq for 667 core to 166Section 16.2.1—Modified first paragraphFigure 46—ModifiedFigure 47—NewTable 59—Modified thermal resistance dataSection 16.2.4.2—Modified first and second paragraphs		Table 21 and Table 22—Modified "conditions" for I _{IH} and I _{IL}
Table 27 —Addition of min and max for GTX_CLK125 reference clock duty cycleTable 29—Addition of min and max for GTX_CLK125 reference clock duty cycleTable 30—VOH min and conditions; I _{IH} and I _{IL} conditionsTable 31—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MTXR} and t _{MTXF} Figure 23 and Figure 24—Changed LSYNC_IN to Internal clock at top of each figureFigure 18—NewFigure 18—NewTable 36—Removed row for tLBKHOX3Table 53—Addition of note 19Figure 55—Addition of jumper and note at top of diagramTable 55: Changed max bus freq for 667 core to 166Section 16.2.1—Modified first paragraphFigure 46—ModifiedFigure 47—NewTable 59—Modified thermal resistance dataSection 16.2.4.2—Modified first and second paragraphs		Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle
Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycleTable 30—VOH min and conditions; I _{IH} and I _{IL} conditionsTable 31—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MRXR} and t _{MRXF} Figure 23 and Figure 24—Changed LSYNC_IN to Internal clock at top of each figureFigure 18—NewFigure 18—NewTable 36—Removed row for tLBKHOX3Table 36—Removed row for tLBKHOX3Table 53—Addition of note 19Figure 55—Addition of jumper and note at top of diagramTable 55: Changed max bus freq for 667 core to 166Section 16.2.1—Modified first paragraphFigure 47—NewTable 59—Modified thermal resistance dataSection 16.2.4.2—Modified first and second paragraphs		Table 27 — Addition of min and max for GTX_CLK125 reference clock duty cycle
Table 30—VOH min and conditions; I _{IH} and I _{IL} conditionsTable 31—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MRXR} and t _{MRXF} Figure 23 and Figure 24—Changed LSYNC_IN to Internal clock at top of each figureFigure 18—NewFigure 18—NewTable 36—Removed row for tLBKHOX3Table 43—New (AC timing of PCI-X at 66 MHz)Table 53—Addition of note 19Figure 55—Addition of jumper and note at top of diagramTable 55: Changed max bus freq for 667 core to 166Section 16.2.1—Modified first paragraphFigure 46—ModifiedFigure 47—NewTable 59—Modified thermal resistance dataSection 16.2.4.2—Modified first and second paragraphs		Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle
Table 31—Min and max for t _{MTXR} and t _{MTXF} Table 32—Min and max for t _{MRXR} and t _{MRXF} Figure 23 and Figure 24—Changed LSYNC_IN to Internal clock at top of each figureFigure 18—NewFigure 18—NewTable 36—Removed row for tLBKHOX3Table 36—Removed row for tLBKHOX3Table 53—Addition of note 19Figure 55—Addition of jumper and note at top of diagramTable 55: Changed max bus freq for 667 core to 166Section 16.2.1—Modified first paragraphFigure 47—NewTable 59—Modified thermal resistance dataSection 16.2.4.2—Modified first and second paragraphs		Table 30—VOH min and conditions; I _{IH} and I _{IL} conditions
Table 32—Min and max for t _{MRXR} and t _{MRXF} Figure 23 and Figure 24—Changed LSYNC_IN to Internal clock at top of each figureFigure 18—NewFigure 18—NewTable 36—Removed row for tLBKHOX3Table 43—New (AC timing of PCI-X at 66 MHz)Table 53—Addition of note 19Figure 55—Addition of jumper and note at top of diagramTable 55: Changed max bus freq for 667 core to 166Section 16.2.1—Modified first paragraphFigure 46—ModifiedFigure 47—NewTable 59—Modified thermal resistance dataSection 16.2.4.2—Modified first and second paragraphs		Table 31—Min and max for t _{MTXR} and t _{MTXF}
Figure 23 and Figure 24—Changed LSYNC_IN to Internal clock at top of each figure Figure 18—New Figure 18—New Table 36—Removed row for tLBKHOX3 Table 43—New (AC timing of PCI-X at 66 MHz) Table 53—Addition of note 19 Figure 55—Addition of jumper and note at top of diagram Table 55: Changed max bus freq for 667 core to 166 Section 16.2.1—Modified first paragraph Figure 46—Modified Figure 47—New Table 59—Modified thermal resistance data Section 16.2.4.2—Modified first and second paragraphs		Table 32—Min and max for t _{MRXR} and t _{MRXF}
Figure 18—New Figure 18—New Table 36—Removed row for tLBKHOX3 Table 43—New (AC timing of PCI-X at 66 MHz) Table 53—Addition of note 19 Figure 55—Addition of jumper and note at top of diagram Table 55: Changed max bus freq for 667 core to 166 Section 16.2.1—Modified first paragraph Figure 46—Modified Figure 47—New Table 59—Modified thermal resistance data Section 16.2.4.2—Modified first and second paragraphs		Figure 23 and Figure 24—Changed LSYNC_IN to Internal clock at top of each figure
Figure 18—New Table 36—Removed row for tLBKHOX3 Table 43—New (AC timing of PCI-X at 66 MHz) Table 53—Addition of note 19 Figure 55—Addition of jumper and note at top of diagram Table 55: Changed max bus freq for 667 core to 166 Section 16.2.1—Modified first paragraph Figure 46—Modified Figure 47—New Table 59—Modified thermal resistance data Section 16.2.4.2—Modified first and second paragraphs		Figure 18—New
Table 36—Removed row for tLBKHOX3Table 43—New (AC timing of PCI-X at 66 MHz)Table 53—Addition of note 19Figure 55—Addition of jumper and note at top of diagramTable 55: Changed max bus freq for 667 core to 166Section 16.2.1—Modified first paragraphFigure 46—ModifiedFigure 47—NewTable 59—Modified thermal resistance dataSection 16.2.4.2—Modified first and second paragraphs		Figure 18—New
Table 43—New (AC timing of PCI-X at 66 MHz)Table 53—Addition of note 19Figure 55—Addition of jumper and note at top of diagramTable 55: Changed max bus freq for 667 core to 166Section 16.2.1—Modified first paragraphFigure 46—ModifiedFigure 47—NewTable 59—Modified thermal resistance dataSection 16.2.4.2—Modified first and second paragraphs		Table 36—Removed row for tLBKHOX3
Table 53—Addition of note 19Figure 55—Addition of jumper and note at top of diagramTable 55: Changed max bus freq for 667 core to 166Section 16.2.1—Modified first paragraphFigure 46—ModifiedFigure 47—NewTable 59—Modified thermal resistance dataSection 16.2.4.2—Modified first and second paragraphs		Table 43—New (AC timing of PCI-X at 66 MHz)
Figure 55—Addition of jumper and note at top of diagram Table 55: Changed max bus freq for 667 core to 166 Section 16.2.1—Modified first paragraph Figure 46—Modified Figure 47—New Table 59—Modified thermal resistance data Section 16.2.4.2—Modified first and second paragraphs		Table 53—Addition of note 19
Table 55: Changed max bus freq for 667 core to 166Section 16.2.1—Modified first paragraphFigure 46—ModifiedFigure 47—NewTable 59—Modified thermal resistance dataSection 16.2.4.2—Modified first and second paragraphs		Figure 55—Addition of jumper and note at top of diagram
Section 16.2.1—Modified first paragraph Figure 46—Modified Figure 47—New Table 59—Modified thermal resistance data Section 16.2.4.2—Modified first and second paragraphs		Table 55: Changed max bus freq for 667 core to 166
Figure 46—Modified Figure 47—New Table 59—Modified thermal resistance data Section 16.2.4.2—Modified first and second paragraphs		Section 16.2.1—Modified first paragraph
Figure 47—New Table 59—Modified thermal resistance data Section 16.2.4.2—Modified first and second paragraphs		Figure 46—Modified
Table 59—Modified thermal resistance data Section 16.2.4.2—Modified first and second paragraphs		Figure 47—New
Section 16.2.4.2—Modified first and second paragraphs		Table 59—Modified thermal resistance data
		Section 16.2.4.2—Modified first and second paragraphs

Table 61. Document Revision History (continued)