E·XFL

NXP USA Inc. - MPC8540VT667LB Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	-
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (1), 10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BFBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8540vt667lb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Overview

The following section provides a high-level overview of the MPC8540 features. Figure 1 shows the major functional units within the MPC8540.

Figure 1. MPC8540 Block Diagram

1.1 Key Features

The following lists an overview of the MPC8540 feature set.

- High-performance, 32-bit Book E-enhanced core that implements the Power Architecture
 - 32-Kbyte L1 instruction cache and 32-Kbyte L1 data cache with parity protection. Caches can be locked entirely or on a per-line basis. Separate locking for instructions and data
 - Memory management unit (MMU) especially designed for embedded applications
 - Enhanced hardware and software debug support
 - Performance monitor facility (similar to but different from the MPC8540 performance monitor described in Chapter 18, "Performance Monitor."

2.1.2 Power Sequencing

The MPC8540 requires its power rails to be applied in a specific sequence in order to ensure proper device operation. These requirements are as follows for power up:

- 1. V_{DD} , AV_{DD}
- 2. GV_{DD} , LV_{DD} , OV_{DD} (I/O supplies)

Items on the same line have no ordering requirement with respect to one another. Items on separate lines must be ordered sequentially such that voltage rails on a previous step must reach 90 percent of their value before the voltage rails on the current step reach 10 percent of theirs.

NOTE

If the items on line 2 must precede items on line 1, please ensure that the delay will not exceed 500 ms and the power sequence is not done greater than once per day in production environment.

NOTE

From a system standpoint, if the I/O power supplies ramp prior to the V_{DD} core supply, the I/Os on the MPC8540 may drive a logic one or zero during power-up.

2.1.3 Recommended Operating Conditions

Table 2 provides the recommended operating conditions for the MPC8540. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

Characteristic		Recommended Value	Unit
Core supply voltage For devices rated at 667 and 833 MHz For devices rated at 1 GHz	V _{DD}	1.2 V ± 60 mV 1.3 V ± 50 mV	V
PLL supply voltage For devices rated at 667 and 833 MHz For devices rated at 1 GHz	AV _{DD}	1.2 V ± 60 mV 1.3 V ± 50 mV	V
DDR DRAM I/O voltage	GV _{DD}	2.5 V ± 125 mV	V
Three-speed Ethernet I/O voltage	LV _{DD}	3.3 V ± 165 mV 2.5 V ± 125 mV	V
PCI/PCI-X, local bus, RapidIO, 10/100 Ethernet, MII management, DUART, system control and power management, I ² C, and JTAG I/O voltage	OV _{DD}	3.3 V ± 165 mV	V

Table 2. Recommended Operating Conditions

4.3 RapidIO Transmit Clock Input Timing

Table 9 provides the RapidIO transmit clock input (RIO_TX_CLK_IN) AC timing specifications for the MPC8540.

Table 9. RIO	_TX_CL	K_IN AC	Timing	Specifications
--------------	--------	---------	--------	----------------

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
RIO_TX_CLK_IN frequency	f _{RCLK}	125	—	—	MHz	
RIO_TX_CLK_IN cycle time	t _{RCLK}	—	—	8	ns	
RIO_TX_CLK_IN duty cycle	t _{RCLKH} /t _{RCLK}	48	—	52	%	1

Notes:

1. Requires ± 100 ppm long term frequency stability. Timing is guaranteed by design and characterization.

4.4 Real Time Clock Timing

Table 10 provides the real time clock (RTC) AC timing specifications for the MPC8540.

Table 10. RTC AC Timing Specifications

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
RTC clock high time	^t RTCH	2 x t _{CCB_CLK}	—	—	ns	
RTC clock low time	t _{RTCL}	2 х t _{CCB_CLK}	_	—	ns	

5 RESET Initialization

This section describes the AC electrical specifications for the RESET initialization timing requirements of the MPC8540. Table 7 provides the RESET initialization AC timing specifications for the MPC8540.

Parameter/Condition	Min	Мах	Unit	Notes
Required assertion time of HRESET	100	—	μS	
Minimum assertion time for SRESET	512	—	SYSCLKs	1
PLL input setup time with stable SYSCLK before HRESET negation	100	_	μS	
Input setup time for POR configs (other than PLL config) with respect to negation of HRESET	4	_	SYSCLKs	1
Input hold time for POR configs (including PLL config) with respect to negation of HRESET	2	_	SYSCLKs	1

Table 11. RESET Initialization Timing Specifications

Table 13. DDR SDRAI	I DC Electrical	Characteristics	(continued)
---------------------	-----------------	------------------------	-------------

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
MV _{REF} input leakage current	I _{VREF}	_	100	μΑ	

Notes:

 $1.GV_{DD}$ is expected to be within 50 mV of the DRAM GV_{DD} at all times.

- $2.MV_{REF}$ is expected to be equal to $0.5 \times GV_{DD}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.
- 3.V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.
- $4.V_{IH}$ can tolerate an overshoot of 1.2V over GV_{DD} for a pulse width of \leq 3 ns, and the pulse width cannot be greater than t_{MCK}. V_{IL} can tolerate an undershoot of 1.2V below GND for a pulse width of \leq 3 ns, and the pulse width cannot be greater than t_{MCK}.

5. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 14 provides the DDR capacitance.

Table 14. DDR SDRAM Capacitance

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS, MSYNC_IN	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}		0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 2.5 \text{ V} \pm 0.125 \text{ V}$, f = 1 MHz, T_A = 25°C, $V_{OUT} = GV_{DD}/2$, V_{OUT} (peak to peak) = 0.2 V.

6.2 DDR SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR SDRAM Input AC Timing Specifications

Table 15 provides the input AC timing specifications for the DDR SDRAM interface.

Table 15. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	_	MV _{REF} – 0.31	V	
AC input high voltage	V _{IH}	MV _{REF} + 0.31	GV _{DD} + 0.3	V	
MDQS—MDQ/MECC input skew per byte For DDR = 333 MHz For DDR \leq 266 MHz	t _{DISKEW}	-750 -1125	750 1125	ps	1, 2

Note:

1.Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + $\{0...7\}$] if $0 \le n \le 7$) or ECC (MECC[$\{0...7\}$] if n=8).

2.For timing budget analysis, the MPC8540 consumes ±550 ps of the total budget.

Ethernet: Three-Speed, 10/100, MII Management

8.2.2 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.2.1 MII Transmit AC Timing Specifications

Table 25 provides the MII transmit AC timing specifications.

Table 25. MII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V \pm 5%, or LV_{DD}=2.5V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX} ²	—	400	—	ns
TX_CLK clock period 100 Mbps	t _{MTX}	—	40	—	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	—	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise and fall time	t _{MTXR} , t _{MTXF} ^{2,3}	1.0	_	4.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.Signal timings are measured at 0.7 V and 1.9 V voltage levels.3.Guaranteed by design.

Figure 10 shows the MII transmit AC timing diagram.

Figure 10. MII Transmit AC Timing Diagram

Figure 15 shows the MII transmit AC timing diagram.

Figure 15. MII Transmit AC Timing Diagram

8.3.2.2 MII Receive AC Timing Specifications

Table 32 provides the MII receive AC timing specifications.

Table 32. MII Receiv	e AC Timing	Specifications
----------------------	-------------	----------------

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	_	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	_	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[7:0], TX_DV, TX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[7:0], TX_DV, TX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise and fall time	$t_{MRXR}, t_{MRXF}^{2,3}$	1.0	—	4.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)}

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKH} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKH} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the high (H) state or hold time. Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3. Guaranteed by design.

Local Bus

Figure 19 through Figure 24 show the local bus signals.

Figure 19. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)

Local Bus

Figure 23. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 or 8 (DLL Enabled)

10 JTAG

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8540.

Table 38 provides the JTAG AC timing specifications as defined in Figure 26 through Figure 29.

Table 38. JTAG AC Timing Specifications (Independent of SYSCLK)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	
JTAG external clock cycle time	t _{JTG}	30	—	ns	
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15	—	ns	
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	6
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 0	_	ns	4
Input hold times: Boundary-scan data TMS, TDI	^t jtdxkh ^t jtixkh	20 25	_	ns	4
Valid times: Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	4 4	20 25	ns	5
Output hold times: Boundary-scan data TDO	t _{jtkldx} t _{jtklox}			ns	5
JTAG external clock to output high impedance: Boundary-scan data TDO	^t jtkldz ^t jtkloz	3 3	19 9	ns	5, 6

Notes:

2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example,

 t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4.Non-JTAG signal input timing with respect to t_{TCLK}.
- 5.Non-JTAG signal output timing with respect to t_{TCLK}.
- 6.Guaranteed by design.

^{1.}All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50- Ω load (see Figure 25). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

12.2 PCI/PCI-X AC Electrical Specifications

This section describes the general AC timing parameters of the PCI/PCI-X bus of the MPC8540. Note that the SYSCLK signal is used as the PCI input clock. Table 42 provides the PCI AC timing specifications at 66 MHz.

Parameter	Symbol ¹	Min	Max	Unit	Notes
SYSCLK to output valid	^t PCKHOV	_	6.0	ns	2
Output hold from SYSCLK	t _{PCKHOX}	2.0		ns	2, 9
SYSCLK to output high impedance	t _{PCKHOZ}	_	14	ns	2, 3, 10
Input setup to SYSCLK	t _{PCIVKH}	3.0		ns	2, 4, 9
Input hold from SYSCLK	t _{PCIXKH}	0		ns	2, 4, 9
REQ64 to HRESET ⁹ setup time	t _{PCRVRH}	$10 imes t_{SYS}$	_	clocks	5, 6, 10
HRESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	6, 10
HRESET high to first FRAME assertion	t _{PCRHFV}	10	_	clocks	7, 10

Table 42. PCI AC Timing Specifications at 66 MHz

Notes:

1.Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional}

block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI/PCI-X timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, t_{SYS} , reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI/PCI-X timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2.See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.

3.For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

- 4.Input timings are measured at the pin.
- 5. The timing parameter t_{SYS} indicates the minimum and maximum CLK cycle times for the various specified frequencies. The system clock period must be kept within the minimum and maximum defined ranges. For values see Section 15, "Clocking."

6.The setup and hold time is with respect to the rising edge of HRESET.

7. The timing parameter t_{PCRHFV} is a minimum of 10 clocks rather than the minimum of 5 clocks in the PCI 2.2 Local Bus Specifications.

8. The reset assertion timing requirement for $\overline{\text{HRESET}}$ is 100 µs.

9. Guaranteed by characterization.

10.Guaranteed by design.

PCI/PCI-X

Figure 18 provides the AC test load for PCI and PCI-X.

Figure 32. FCI/FCI-A AC Test Loa

Figure 33 shows the PCI/PCI-X input AC timing conditions.

Figure 33. PCI-PCI-X Input AC Timing Measurement Conditions

Figure 34 shows the PCI/PCI-X output AC timing conditions.

Figure 34. PCI-PCI-X Output AC Timing Measurement Condition

Table 43 provides the PCI-X AC timing specifications at 66 MHz.

Table 43. PCI-X AC Timing Specifications at 66 MHz
--

Parameter	Symbol	Min	Мах	Unit	Notes
SYSCLK to signal valid delay	^t PCKHOV	—	3.8	ns	1, 2, 3, 7, 8
Output hold from SYSCLK	t _{PCKHOX}	0.7	—	ns	1, 10
SYSCLK to output high impedance	t _{PCKHOZ}	—	7	ns	1, 4, 8, 11
Input setup time to SYSCLK	t _{PCIVKH}	1.7	—	ns	3, 5
Input hold time from SYSCLK	t _{PCIXKH}	0.5	—	ns	10
REQ64 to HRESET setup time	t _{PCRVRH}	10	—	clocks	11
HRESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	11
HRESET high to first FRAME assertion	t _{PCRHFV}	10		clocks	9, 11

RapidIO

enough that increasing the length of the sequence does not cause the resulting eye pattern to change from one that complies with the RapidIO receive mask to one that does not comply with the mask. The data carried by any given data signal in the interface may not be correlated with the data carried by any other data signal in the interface. The zero-crossings of the clock associated with a data signal shall be used as the timing reference for aligning the multiple recordings of the data signal when the recordings are overlaid.

While the method used to make the recordings and overlay them to form the eye pattern is not specified, the method used shall be demonstrably equivalent to the following method. The signal under test is repeatedly recorded with a digital oscilloscope in infinite persistence mode. Each recording is triggered by a zero-crossing of the clock associated with the data signal under test. Roughly half of the recordings are triggered by positive-going clock zero-crossings and roughly half are triggered by negative-going clock zero-crossings. Each recording is at least 1.9 UI in length (to ensure that at least one complete eye is formed) and begins 0.5 UI before the trigger point (0.5 UI before the associated clock zero-crossing). Depending on the length of the individual recordings used to generate the eye pattern, one or more complete eyes will be formed. Regardless of the number of eyes, the eye whose center is immediately to the right of the trigger point is the eye used for compliance testing.

An example of an eye pattern generated using the above method with recordings 3 UI in length is shown in Figure 41. In this example, there is no skew between the signal under test and the associated clock used to trigger the recordings. If skew was present, the eye pattern would be shifted to the left or right relative to the oscilloscope trigger point.

Figure 41. Example Receiver Input Eye Pattern

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	DDR SDRAM Memory Interface			
MDQ[0:63]	M26, L27, L22, K24, M24, M23, K27, K26, K22, J28, F26, E27, J26, J23, H26, G26, C26, E25, C24, E23, D26, C25, A24, D23, B23, F22, J21, G21, G22, D22, H21, E21, N18, J18, D18, L17, M18, L18, C18, A18, K17, K16, C16, B16, G17, L16, A16, L15, G15, E15, C14, K13, C15, D15, E14, D14, D13, E13, D12, A11, F13, H13, A13, B12	I/O	GV _{DD}	
MECC[0:7]	N20, M20, L19, E19, C21, A21, G19, A19	I/O	GV _{DD}	
MDM[0:8]	L24, H28, F24, L21, E18, E16, G14, B13, M19	0	GV _{DD}	
MDQS[0:8]	L26, J25, D25, A22, H18, F16, F14, C13, C20	I/O	GV _{DD}	
MBA[0:1]	B18, B19	0	GV _{DD}	
MA[0:14]	N19, B21, F21, K21, M21, C23, A23, B24, H23, G24, K19, B25, D27, J14, J13	0	GV _{DD}	
MWE	D17	0	GV _{DD}	
MRAS	F17	0	GV _{DD}	
MCAS	J16	0	GV _{DD}	
MCS[0:3]	H16, G16, J15, H15	0	GV _{DD}	
MCKE[0:1]	E26, E28	0	GV _{DD}	11
MCK[0:5]	J20, H25, A15, D20, F28, K14	0	GV _{DD}	
MCK[0:5]	F20, G27, B15, E20, F27, L14	0	GV _{DD}	
MSYNC_IN	M28	I	GV _{DD}	
MSYNC_OUT	N28	0	GV _{DD}	
	Local Bus Controller Interface			
LA[27]	U18	0	OV _{DD}	5, 9
LA[28:31]	T18, T19, T20, T21	0	OV _{DD}	7, 9
LAD[0:31]	AD26, AD27, AD28, AC26, AC27, AC28, AA22, AA23, AA26, Y21, Y22, Y26, W20, W22, W26, V19, T22, R24, R23, R22, R21, R18, P26, P25, P20, P19, P18, N22, N23, N24, N25, N26	I/O	OV _{DD}	
LALE	V21	0	OV _{DD}	8, 9
LBCTL	V20	0	OV _{DD}	9
LCKE	U23	0	OV _{DD}	
LCLK[0:2]	U27, U28, V18	0	OV _{DD}	
LCS[0:4]	Y27, Y28, W27, W28, R27	0	OV _{DD}	18
LCS5/DMA_DREQ2	R28	I/O	OV _{DD}	1

Signal	Package Pin Number	Power Supply	Notes					
TSEC2_RX_CLK	E10	I	LV _{DD}					
	10/100 Ethernet (MII) Interface							
FEC_TXD[3:0]	M1, N1, N4, N5	0	OV _{DD}					
FEC_TX_EN	P11	0	OV _{DD}					
FEC_TX_ER	P10	0	OV_{DD}					
FEC_TX_CLK	V6	I	OV _{DD}					
FEC_CRS	N10	I	OV _{DD}					
FEC_COL	N11	I	OV _{DD}					
FEC_RXD[3:0]	N9, N8, N7, N6	I	OV _{DD}					
FEC_RX_DV	P8	I	OV _{DD}					
FEC_RX_ER	Р9	I	OV _{DD}					
FEC_RX_CLK	V9	I	OV _{DD}					
	RapidIO Interface							
RIO_RCLK	Y25	I	OV _{DD}					
RIO_RCLK	Y24	I	OV _{DD}					
RIO_RD[0:7]	T25, U25, V25, W25, AA25, AB25, AC25, AD25	I	OV _{DD}					
RIO_RD[0:7]	T24, U24, V24, W24, AA24, AB24, AC24, AD24	I	OV _{DD}					
RIO_RFRAME	AE27	I	OV _{DD}					
RIO_RFRAME	AE26	I	OV _{DD}					
RIO_TCLK	AC20	0	OV _{DD}	11				
RIO_TCLK	AE21	0	OV _{DD}	11				
RIO_TD[0:7]	AE18, AC18, AD19, AE20, AD21, AE22, AC22, AD23	0	OV _{DD}					
RIO_TD[0:7]	AD18, AE19, AC19, AD20, AC21, AD22, AE23, AC23	0	OV _{DD}					
RIO_TFRAME	AE24	0	OV _{DD}					
RIO_TFRAME	AE25	0	OV _{DD}					
RIO_TX_CLK_IN	AF24	I	OV _{DD}					
RIO_TX_CLK_IN	AF25	I	OV _{DD}					
	I ² C interface							
IIC_SDA	AH22	I/O	OV _{DD}	4, 20				
IIC_SCL	AH23	I/O	OV _{DD}	4, 20				

Table 53. MPC8540 Pinout Listing (continued)

15 Clocking

This section describes the PLL configuration of the MPC8540. Note that the platform clock is identical to the CCB clock.

15.1 Clock Ranges

Table 54 provides the clocking specifications for the processor core and Table 55 provides the clocking specifications for the memory bus.

	Maximum Processor Core Frequency							
Characteristic	667	MHz	833	MHz	1 0	Hz	Unit	Notes
	Min	Max	Min	Max	Min	Max		
e500 core processor frequency	400	667	400	833	400	1000	MHz	1, 2, 3

Table 54. Processor Core Clocking Specifications

Notes:

1.Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 15.2, "Platform/System PLL Ratio," and Section 15.3, "e500 Core PLL Ratio," for ratio settings.

2.) The minimum e500 core frequency is based on the minimum platform frequency of 200 MHz.

3.)The 1.0 GHz core frequency is based on a 1.3 V VDD supply voltage.

Table 55. Memory Bus Clocking Specifications

Махі			Maximum Processor Core Frequency					
Characteristic	667	MHz	833	MHz	1 0	Hz	Unit	Notes
	Min	Max	Min	Max	Min	Max		
Memory bus frequency	100	166	100	166	100	166	MHz	1, 2, 3

Notes:

Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 15.2, "Platform/System PLL Ratio," and Section 15.3, "e500 Core PLL Ratio," for ratio settings.

2. The memory bus speed is half of the DDR data rate, hence, half of the platform clock frequency.

3.)The 1.0 GHz core frequency is based on a 1.3 V VDD supply voltage.

Clocking

15.2 Platform/System PLL Ratio

The platform clock is the clock that drives the L2 cache, the DDR SDRAM data rate, and the e500 core complex bus (CCB), and is also called the CCB clock. The values are determined by the binary value on LA[28:31] at power up, as shown in Table 56.

There is no default for this PLL ratio; these signals must be pulled to the desired values.

Binary Value of LA[28:31] Signals	Ratio Description
0000	16:1 ratio CCB clock: SYSCLK (PCI bus)
0001	Reserved
0010	2:1 ratio CCB clock: SYSCLK (PCI bus)
0011	3:1 ratio CCB clock: SYSCLK (PCI bus)
0100	4:1 ratio CCB clock: SYSCLK (PCI bus)
0101	5:1 ratio CCB clock: SYSCLK (PCI bus)
0110	6:1 ratio CCB clock: SYSCLK (PCI bus)
0111	Reserved
1000	8:1 ratio CCB clock: SYSCLK (PCI bus)
1001	9:1 ratio CCB clock: SYSCLK (PCI bus)
1010	10:1 ratio CCB clock: SYSCLK (PCI bus)
1011	Reserved
1100	12:1 ratio CCB clock: SYSCLK (PCI bus)
1101	Reserved
1110	Reserved
1111	Reserved

Table 56. CCB Clock Ratio

15.3 e500 Core PLL Ratio

Table 57 describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock. This ratio is determined by the binary value of LALE and LGPL2 at power up, as shown in Table 57.

Table 57. e500 Core to CCB Ratio

Binary Value of LALE, LGPL2 Signals	Ratio Description
00	2:1 e500 core:CCB
01	5:2 e500 core:CCB
10	3:1 e500 core:CCB
11	7:2 e500 core:CCB

Thermal

Alpha Novatech 473 Sapena Ct. #15 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-749-7601
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	818-842-7277
Millennium Electronics (MEI) Loroco Sites 671 East Brokaw Road San Jose, CA 95112 Internet: www.mei-millennium.com	408-436-8770
Tyco Electronics Chip Coolers TM P.O. Box 3668 Harrisburg, PA 17105-3668 Internet: www.chipcoolers.com	800-522-6752
Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com	603-635-5102

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost. Several heat sinks offered by Aavid Thermalloy, Alpha Novatech, IERC, Chip Coolers, Millennium Electronics, and Wakefield Engineering offer different heat sink-to-ambient thermal resistances, that will allow the MPC8540 to function in various environments.

16.2.1 Recommended Thermal Model

For system thermal modeling, the MPC8540 thermal model is shown in Figure 46. Five cuboids are used to represent this device. To simplify the model, the solder balls and substrate are modeled as a single block 29x29x1.47 mm with the conductivity adjusted accordingly. For modeling, the planar dimensions of the die are rounded to the nearest mm, so the die is modeled as 10x12 mm at a thickness of 0.76 mm. The bump/underfill layer is modeled as a collapsed resistance between the die and substrate assuming a conductivity of 0.6 in-plane and 1.9 W/m•K in the thickness dimension of 0.76 mm. The lid attach adhesive is also modeled as a collapsed resistance with dimensions of 10x12x0.050 mm and the conductivity of 1 W/m•K. The nickel plated copper lid is modeled as 12x14x1 mm. Note that the die and lid are not centered on the substrate; there is a 1.5 mm offset documented in the case outline drawing in Figure 44.

Thermal

Figure 47 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.

(Note the internal versus external package resistance)

Figure 47. Package with Heat Sink Mounted to a Printed-Circuit Board

The heat sink removes most of the heat from the device. Heat generated on the active side of the chip is conducted through the silicon and through the lid, then through the heat sink attach material (or thermal interface material), and finally to the heat sink. The junction-to-case thermal resistance is low enough that the heat sink attach material and heat sink thermal resistance are the dominant terms.

16.2.3 Thermal Interface Materials

A thermal interface material is required at the package-to-heat sink interface to minimize the thermal contact resistance. For those applications where the heat sink is attached by spring clip mechanism, Figure 48 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure. The use of thermal grease significantly reduces the interface thermal resistance. The bare joint results in a thermal resistance approximately six times greater than the thermal grease joint.

Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see Figure 45). Therefore, the synthetic grease offers the best thermal performance, especially at the low interface pressure.

When removing the heat sink for re-work, it is preferable to slide the heat sink off slowly until the thermal interface material loses its grip. If the support fixture around the package prevents sliding off the heat sink, the heat sink should be slowly removed. Heating the heat sink to 40-50•C with an air gun can soften the interface material and make the removal easier. The use of an adhesive for heat sink attach is not recommended.

Table 61	. Document	Revision	History	(continued))
----------	------------	----------	---------	-------------	---

Rev. No.	Substantive Change(s)
3.2	Updated Table 1 and Table 2 with 1.0 GHz device parameter requirements.
	Added Section 2.1.2, "Power Sequencing".
	Updated Table 4 with Maximum power data.
	Updated Table 4 and Table 5 with 1 GHz speed grade information.
	Updated Table 6 with corrected typical I/O power numbers.
	Updated Table 7 Note 2 lower voltage measurement point.
	Replaced Table 7 Note 5 with spread spectrum clocking guidelines.
	Added to Table 8 rise and fall time information.
	Added Section 4.4, "Real Time Clock Timing".
	Added precharge information to Section 6.2.2, "DDR SDRAM Output AC Timing Specifications".
	Updated Table 20 minimum and maximum baud rates.
	Removed V_{IL} and V_{IH} references from Table 23, Table 24, Table 25, and Table 26.
	Added reference level note to Table 23, Table 24, Table 25, Table 26, Table 27, Table 28, and Table 29.
	Updated TXD references to TCG in Section 8.2.3.1, "TBI Transmit AC Timing Specifications".
	Updated PMA_RX_CLK references to RX_CLK in Section 8.2.3.2, "TBI Receive AC Timing Specifications".
	Updated t _{TTKHDX} value in Table 27.
	Updated RXD references to RCG in Section 8.2.3.2, "TBI Receive AC Timing Specifications".
	Updated Table 29 Note 2.
	Removed V _{IL} and V _{IH} references from Table 31, and Table 32.
	Added reference level note to Table 31, and Table 32.
	Corrected Figure 15 and Figure 16.
	Corrected Table 34 f _{MDC} and t _{MDC} to reflect the correct minimum operating frequency.
	Updated Table 34 t _{MDKHDV} and t _{MDKHDX} values for clarification.
	Added t _{LBKHKT} and updated Note 2 in Table 37.
	Corrected LGTA timing references in Figure 19.
	Updated Figure 20, Figure 22, and Figure 24.
	Updated Figure 44.
	Clarified Table 53 Note 5.
	Updated Table 54 and Table 55 with 1 GHz information.
	Added heat sink removal discussion to Section 16.2.3, "Thermal Interface Materials".
	Corrected and added 1 GHz part number to Table 62.
3.1	Updated Table 4 and Table 5.
	Added Table 6.
	Added MCK duty cycle to Table 16.
	Updated f _{MDC} , t _{MDC} , t _{MDKHDV} , and t _{MDKHDX} parameters in Table 34.
	Added LALE to t _{LBKHOV3} parameter in Table 36 and Table 37, and updated Figure 19 and Figure 20.
	Corrected active level designations of some of the pins in Table 53.
	Updated Table 62.

Rev. No.	Substantive Change(s)
3.0	Table 1—Corrected MII management voltage reference
	Section 2.1.3—New
	Table 2—Corrected MII management voltage reference
	Table 4—Added V _{DD} power table
	Table 5—Added AV _{DD} power table
	Table 7—New
	Table 8—New
	Table 9—New
	Table 13—Added overshoot/undershoot note.
	Figure 4—New
	Table 16—Restated t _{MCKSKEW1} as t _{MCKSKEW} , removed t _{MCKSKEW2} ; added speed-specific minimum values for 333, 266, and 200 MHz; updated t _{DDSHME} values.
	Updated chapter to reflect that GMII, MII and TBI can be run with 2.5V signalling.
	Table 34—Added MDIO output valid timing
	Table 36—Updated t _{LBIVKH1} , t _{LBIXKH1} , and t _{LBOTOT} .
	Table 37—New
	Table 20, Table 22, Table 24—Updated clock reference
	Table 44—Updated t _{PCIVKH}
	Section 14.1— Changed minimum height from 2.22 to 3.07 and maximum from 2.76 to 3.75
	Table 53.—Updated MII management voltage reference and added note 20.
	Section 16.2.4.1—Changed θ_{JC} from 0.3 to 0.8; changed die-junction temperature from 67 to 71
	Section 17.7—Added paragraph that begins "TSEC1_TXD[3:0]"

Table 61. Document Revision History (continued)