E·XFL

NXP USA Inc. - MPC8540VTAQFB Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	-
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (1), 10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BFBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8540vtaqfb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.3 RapidIO Transmit Clock Input Timing

Table 9 provides the RapidIO transmit clock input (RIO_TX_CLK_IN) AC timing specifications for the MPC8540.

Table 9. RIO	_TX_	CLK_	IN A	C	Timing	Specifications
--------------	------	------	------	---	--------	----------------

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
RIO_TX_CLK_IN frequency	f _{RCLK}	125	—	_	MHz	
RIO_TX_CLK_IN cycle time	t _{RCLK}	_	—	8	ns	
RIO_TX_CLK_IN duty cycle	t _{RCLKH} /t _{RCLK}	48		52	%	1

Notes:

1. Requires ± 100 ppm long term frequency stability. Timing is guaranteed by design and characterization.

4.4 Real Time Clock Timing

Table 10 provides the real time clock (RTC) AC timing specifications for the MPC8540.

Table 10. RTC AC Timing Specifications

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
RTC clock high time	^t RTCH	2 x t _{CCB_CLK}	—		ns	
RTC clock low time	t _{RTCL}	2 x t _{CCB_CLK}	_		ns	

5 RESET Initialization

This section describes the AC electrical specifications for the RESET initialization timing requirements of the MPC8540. Table 7 provides the RESET initialization AC timing specifications for the MPC8540.

Parameter/Condition	Min	Мах	Unit	Notes
Required assertion time of HRESET	100	_	μs	
Minimum assertion time for SRESET	512	_	SYSCLKs	1
PLL input setup time with stable SYSCLK before HRESET negation	100	_	μS	
Input setup time for POR configs (other than PLL config) with respect to negation of HRESET	4	_	SYSCLKs	1
Input hold time for POR configs (including PLL config) with respect to negation of HRESET	2	_	SYSCLKs	1

Table 11. RESET Initialization Timing Specifications

Table 16. DDR SDRAM Output AC Timing Specifications–DLL Mode (continued)

At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MDQS epilogue end	t _{DDSHME}	1.5	4.0	ns	7, 8

Notes:

1.The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (OX or DX). For example, t_{DDKHOV} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (O) are valid (V) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.

2.All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.

3.Maximum possible clock skew between a clock MCK[n] and its relative inverse clock MCK[n], or between a clock MCK[n] and a relative clock MCK[m] or MSYNC_OUT. Skew measured between complementary signals at GV_{DD}/2.

4.ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK and MDQ/MECC/MDM/MDQS.

- 5.Note that t_{DDSHMH} follows the symbol conventions described in note 1. For example, t_{DDSHMH} describes the DDR timing (DD) from the rising edge of the MSYNC_IN clock (SH) until the MDQS signal is valid (MH). t_{DDSHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. These controls allow the relationship between the synchronous clock control timing and the source-synchronous DQS domain to be modified by the user. For best turnaround times, these may need to be set to delay t_{DDSHMH} an additional 0.25t_{MCK}. This will also affect t_{DDSHMP} and t_{DDSHME} accordingly. See the *MPC8540 PowerQUICC III Integrated Host Processor Reference Manual* for a description and understanding of the timing modifications enabled by use of these bits.
- 6.Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the MPC8540.
- 7.All outputs are referenced to the rising edge of MSYNC_IN (S) at the pins of the MPC8540. Note that t_{DDSHMP} follows the symbol conventions described in note 1. For example, t_{DDSHMP} describes the DDR timing (DD) from the rising edge of the MSYNC_IN clock (SH) for the duration of the MDQS signal precharge period (MP).

8. Guaranteed by design.

9. Guaranteed by characterization.

Figure 5 provides the AC test load for the DDR bus.

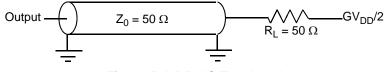


Figure 5. DDR AC Test Load

Table 17. DDR SDRAM Measurement Conditions

Symbol	DDR	Unit	Notes
V _{TH}	MV _{REF} ± 0.31 V	V	1
V _{OUT}	$0.5\times \text{GV}_{\text{DD}}$	V	2

Notes:

1.Data input threshold measurement point.

2.Data output measurement point.

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8540.

7.1 DUART DC Electrical Characteristics

Table 19 provides the DC electrical characteristics for the DUART interface of the MPC8540.

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current $(V_{IN}^{1} = 0 V \text{ or } V_{IN} = V_{DD})$	I _{IN}	—	±5	μΑ
High-level output voltage (OV _{DD} = min, I _{OH} = −100 μA)	V _{OH}	OV _{DD} – 0.2	_	V
Low-level output voltage $(OV_{DD} = min, I_{OL} = 100 \ \mu A)$	V _{OL}	—	0.2	V

Table 19. DUART DC Electrical Characteristics

Note:

1.Note that the symbol V_{IN} in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

7.2 DUART AC Electrical Specifications

Table 20 provides the AC timing parameters for the DUART interface of the MPC8540.

Table 20. DUART AC Timing Specifications

Parameter	Value Unit		Notes
Minimum baud rate	f _{CCB_CLK} / 1048576	baud	3
Maximum baud rate	f _{CCB_CLK} / 16	baud	1, 3
Oversample rate	16		2, 3

Notes:

1. Actual attainable baud rate will be limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

3. Guaranteed by design.

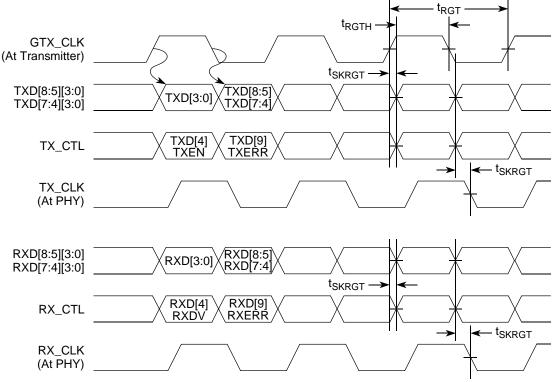


Figure 14 shows the RGMII and RTBI AC timing and multiplexing diagrams.

Figure 14. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 10/100 Ethernet Controller (10/100 Mbps)—MII Electrical Characteristics

The electrical characteristics specified here apply to the MII (media independent interface) signals except MDIO (management data input/output) and MDC (management data clock). The MII interface can be operated at 3.3 or 2.5 V. Whether the MII interface is operated at 3.3 or 2.5 V, the timing is compliant with the IEEE 802.3 standard. The electrical characteristics for MDIO and MDC are specified in Section 2.1.3, "Recommended Operating Conditions."

8.3.1 MII DC Electrical Characteristics

All MII drivers and receivers comply with the DC parametric attributes specified in Table 30. The potential applied to the input of a MII receiver may exceed the potential of the receiver's power supply (that is, a MII driver powered from a 3.6-V supply driving V_{OH} into a MII receiver powered from a 2.5-V supply). Tolerance for dissimilar MII driver and receiver supply potentials is implicit in these specifications.

Figure 15 shows the MII transmit AC timing diagram.

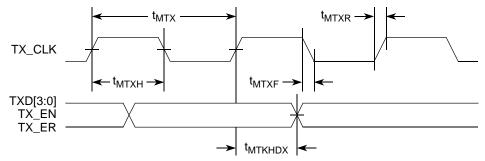


Figure 15. MII Transmit AC Timing Diagram

8.3.2.2 MII Receive AC Timing Specifications

Table 32 provides the MII receive AC timing specifications.

Table 32	. MII Rece	ve AC Tin	ning Specificatio	ns
----------	------------	-----------	-------------------	----

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	_	400	_	ns
RX_CLK clock period 100 Mbps	t _{MRX}	_	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	_	65	%
RXD[7:0], TX_DV, TX_ER setup time to RX_CLK	t _{MRDVKH}	10.0		—	ns
RXD[7:0], TX_DV, TX_ER hold time to RX_CLK	t _{MRDXKH}	10.0		—	ns
RX_CLK clock rise and fall time	t _{MRXR} , t _{MRXF} ^{2,3}	1.0		4.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)}

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKH} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKH} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the high (H) state or hold time. Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3. Guaranteed by design.

Parameter	POR Configuration	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to output valid	TSEC2_TXD[6:5] = 00	t _{LBKHOV1}	_	2.0	ns	4, 8
(except LAD/LDP and LALE)	TSEC2_TXD[6:5] = 11 (default)			3.5		
Local bus clock to data valid for	TSEC2_TXD[6:5] = 00	t _{LBKHOV2}	_	2.2	ns	4, 8
LAD/LDP	TSEC2_TXD[6:5] = 11 (default)			3.7		
Local bus clock to address valid for	TSEC2_TXD[6:5] = 00	t _{LBKHOV3}	_	2.3	ns	4, 8
LAD	TSEC2_TXD[6:5] = 11 (default)			3.8		
Local bus clock to LALE assertion		t _{LBKHOV4}		2.3	ns	4, 8
Output hold from local bus clock	TSEC2_TXD[6:5] = 00	t _{LBKHOX1}	0.7	—	ns	4, 8
(except LAD/LDP and LALE)	TSEC2_TXD[6:5] = 11 (default)		1.6			
Output hold from local bus clock for	TSEC2_TXD[6:5] = 00	t _{LBKHOX2}	0.7	—	ns	4, 8
LAD/LDP	TSEC2_TXD[6:5] = 11 (default)		1.6			
Local bus clock to output high	TSEC2_TXD[6:5] = 00	t _{LBKHOZ1}	_	2.5	ns	7, 9
Impedance (except LAD/LDP and LALE)	TSEC2_TXD[6:5] = 11 (default)			3.8		
Local bus clock to output high	TSEC2_TXD[6:5] = 00	t _{LBKHOZ2}		2.5	ns	7, 9
impedance for LAD/LDP	TSEC2_TXD[6:5] = 11 (default)			3.8		

Table 36. Local Bus General Timing Parameters - DLL Enabled (continued)

Notes:

1.The symbols used for timing specifications herein follow the pattern of t_{(First two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_{(First two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the to the output (O) going invalid (X) or output hold time.

2.All timings are in reference to LSYNC_IN for DLL enabled mode.

- 3.Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at OV_{DD}/2.
- 4.All signals are measured from $OV_{DD}/2$ of the rising edge of LSYNC_IN for DLL enabled to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.

5.Input timings are measured at the pin.

- 6. The value of t_{LBOTOT} is defined as the sum of 1/2 or 1 ccb_clk cycle as programmed by LBCR[AHD], and the number of local bus buffer delays used as programmed at power-on reset with configuration pins TSEC2_TXD[6:5].
- 7. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

8. Guaranteed by characterization.

9. Guaranteed by design.

Local Bus

Figure 19 through Figure 24 show the local bus signals.

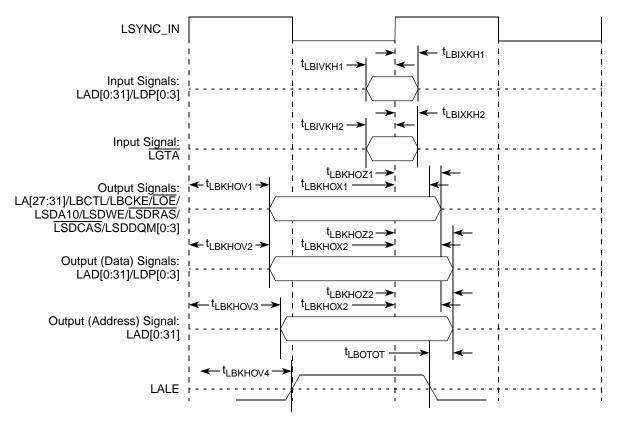


Figure 19. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)

Local Bus

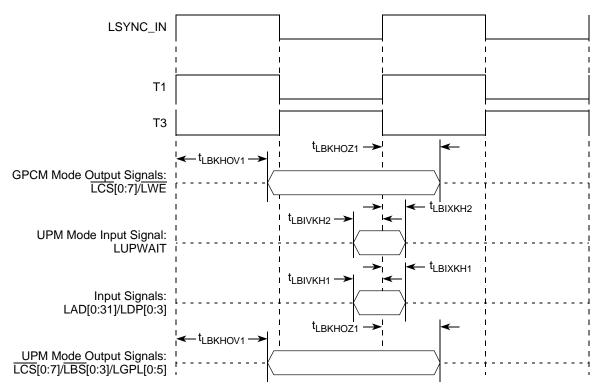


Figure 21. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)

Figure 29 provides the test access port timing diagram.

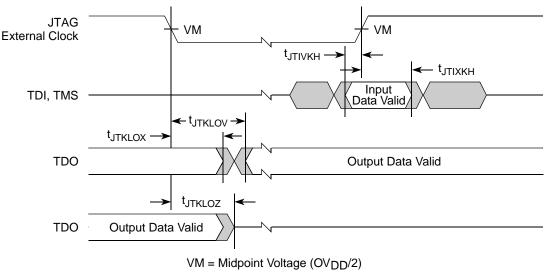


Figure 29. Test Access Port Timing Diagram

11 I²C

This section describes the DC and AC electrical characteristics for the I^2C interface of the MPC8540.

11.1 I²C DC Electrical Characteristics

Table 39 provides the DC electrical characteristics for the I^2C interface of the MPC8540.

Table 39. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
Input high voltage level	V _{IH}	$0.7 \times OV_{DD}$	OV _{DD} + 0.3	V	
Input low voltage level	V _{IL}	-0.3	$0.3\times\text{OV}_{\text{DD}}$	V	
Low level output voltage	V _{OL}	0	$0.2 \times \text{OV}_{\text{DD}}$	V	1
Pulse width of spikes which must be suppressed by the input filter	t _{i2KHKL}	0	50	ns	2
Input current each I/O pin (input voltage is between 0.1 \times OV_{DD} and 0.9 \times OV_{DD}(max)	Ι _Ι	-10	10	μΑ	3
Capacitance for each I/O pin	CI	—	10	pF	

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. Refer to the MPC8540 Integrated Processor Preliminary Reference Manual for information on the digital filter used.

3.I/O pins will obstruct the SDA and SCL lines if $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ is switched off.

I2C

11.2 I²C AC Electrical Specifications

Table 40 provides the AC timing parameters for the I^2C interface of the MPC8540.

Table 40. I²C AC Electrical Specifications

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 39).

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL} ⁶	1.3	_	μS
High period of the SCL clock	t _{I2CH} ⁶	0.6	_	μS
Setup time for a repeated START condition	t _{I2SVKH} ⁶	0.6	_	μS
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL} ⁶	0.6		μS
Data setup time	t _{I2DVKH} 6	100	_	ns
Data hold time: CBUS compatible masters I ² C bus devices	t _{I2DXKL}	<u> </u>	0.9 ³	μS
Set-up time for STOP condition	t _{I2PVKH}	0.6	_	μS
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	_	μS
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	_	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times \text{OV}_{\text{DD}}$	_	V

Notes:

1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the low (L) state or hold time. Also, t_{12PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the storp condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.MPC8540 provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL.

3. The maximum t_{I2DVKH} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.

 $4.C_B$ = capacitance of one bus line in pF.

6.Guaranteed by design.

Figure 18 provides the AC test load for the I^2C .

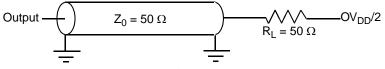


Figure 30. I²C AC Test Load

MPC8540 Integrated Processor Hardware Specifications, Rev. 4.1

Table 47. RapidIO Driver AC Timing Specifications—500 Mbps Data Rate (continued)

Characteristic	Symbol	Ra	nge	Unit	Notes
Characteristic	Symbol	Min	Max	Onit	NOLES
Duty cycle	DC	48	52	%	2, 6
V _{OD} rise time, 20%–80% of peak-to-peak differential signal swing	t _{FALL}	200	—	ps	3, 6
V _{OD} fall time, 20%–80% of peak-to-peak differential signal swing	t _{RISE}	200	—	ps	6
Data valid	DV	1260	—	ps	
Skew of any two data outputs	t _{DPAIR}	—	180	ps	4, 6
Skew of single data outputs to associated clock	t _{SKEW,PAIR}	-180	180	ps	5, 6

Notes:

1.See Figure 38.

2.Requires ±100 ppm long term frequency stability.

3.Measured at $V_{OD} = 0$ V.

4.Measured using the RapidIO transmit mask shown in Figure 38.

5.See Figure 43.

6.Guaranteed by design.

Table 48. RapidIO Driver AC Timing Specifications—750 Mbps Data Rate

Characteristic	Symbol	Ra	inge	l lucit	Nata
Characteristic	Symbol	Min	Max	- Unit	Notes
Differential output high voltage	V _{OHD}	200	540	mV	1
Differential output low voltage	V _{OLD}	-540	-200	mV	1
Duty cycle	DC	48	52	%	2, 6
V _{OD} rise time, 20%–80% of peak-to-peak differential signal swing	t _{FALL}	133	_	ps	3, 6
V _{OD} fall time, 20%–80% of peak-to-peak differential signal swing	t _{RISE}	133	_	ps	6
Data valid	DV	800	—	ps	6
Skew of any two data outputs	t _{DPAIR}	—	133	ps	4, 6
Skew of single data outputs to associated clock	t _{SKEW,PAIR}	-133	133	ps	5, 6

Notes:

1.See Figure 38.

2.Requires ±100 ppm long term frequency stability.

3.Measured at $V_{OD} = 0$ V.

4.Measured using the RapidIO transmit mask shown in Figure 38.

5.See Figure 43.

6.Guaranteed by design.

MPC8540 Integrated Processor Hardware Specifications, Rev. 4.1

Characteristic	Symbol		nge	Unit	Notes
Characteristic	Symbol	Min	Max	Unit	110103
Duty cycle of the clock input	DC	47	53	%	1, 5
Data valid	DV	425	—	ps	2
Allowable static skew between any two data inputs within a 8-/9-bit group	t _{DPAIR}	_	300	ps	3
Allowable static skew of data inputs to associated clock	t _{SKEW,PAIR}	-200	200	ps	4

 Table 52. RapidIO Receiver AC Timing Specifications—1 Gbps Data Rate

Notes:

1.Measured at $V_{ID} = 0$ V.

2.Measured using the RapidIO receive mask shown in Figure 40.

3.See Figure 43.

4.See Figure 42 and Figure 43.

5.Guaranteed by design.

The compliance of receiver input signals RD[0:15] and RFRAME with their minimum data valid window (DV) specification shall be determined by generating an eye pattern for each of the data signals and comparing the eye pattern of each data signal with the RapidIO receive mask shown in Figure 40. The value of X2 used to construct the mask shall be $(1 - DV_{min})/2$. The ±100 mV minimum data valid and ±600 mV maximum input voltage values are from the DC specification. A signal is compliant with the data valid window specification if and only if the receive mask can be positioned on the signal's eye pattern such that the eye pattern falls entirely within the unshaded portion of the mask.

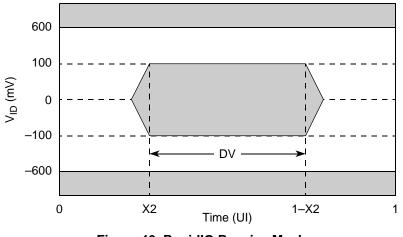


Figure 40. RapidIO Receive Mask

The eye pattern for a data signal is generated by making a large number of recordings of the signal and then overlaying the recordings. The number of recordings used to generate the eye shall be large enough that further increasing the number of recordings used does not cause the resulting eye pattern to change from one that complies with the RapidIO receive mask to one that does not. Each data signal in the interface shall be carrying random or pseudo-random data when the recordings are made. If pseudo-random data is used, the length of the pseudo-random sequence (repeat length) shall be long

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LCS6/DMA_DACK2	P27	0	OV _{DD}	1
LCS7/DMA_DDONE2	P28	0	OV _{DD}	1
LDP[0:3]	AA27, AA28, T26, P21	I/O	OV _{DD}	
LGPL0/LSDA10	U19	0	OV _{DD}	5, 9
LGPL1/LSDWE	U22	0	OV _{DD}	5, 9
LGPL2/LOE/LSDRAS	V28	0	OV _{DD}	8, 9
LGPL3/LSDCAS	V27	0	OV _{DD}	5, 9
LGPL4/LGTA/LUPWAIT/ LPBSE	V23	I/O	OV _{DD}	22
LGPL5	V22	0	OV _{DD}	5, 9
LSYNC_IN	T27	I	OV _{DD}	
LSYNC_OUT	T28	0	OV _{DD}	
LWE[0:1]/LSDDQM[0:1]/LBS [0:1]	AB28, AB27	0	OV _{DD}	1, 5, 9
LWE[2:3]/LSDDQM[2:3]/LBS [2:3]	T23, P24	0	OV _{DD}	1, 5, 9
	DMA			
DMA_DREQ[0:1]	H5, G4	I	OV _{DD}	
DMA_DACK[0:1]	H6, G5	0	OV _{DD}	
DMA_DDONE[0:1]	H7, G6	0	OV _{DD}	
	DUART			
UART_SIN[0:1]	AE2, AD5	I	OV _{DD}	
UART_SOUT[0:1]	AE3, AD2	0	OV _{DD}	
UART_CTS[0:1]	U9, U7	I	OV _{DD}	
UART_RTS[0:1]	AD6, AD1	0	OV _{DD}	
	Programmable Interrupt Controller			
MCP	AG17	l	OV _{DD}	
UDE	AG16	I	OV _{DD}	
IRQ[0:7]	AA18, Y18, AB18, AG24, AA21, Y19, AA19, AG25	I	OV _{DD}	
IRQ8	AB20	ļ	OV _{DD}	9
IRQ9/DMA_DREQ3	Y20	I	OV _{DD}	1
IRQ10/DMA_DACK3	AF26	I/O	OV _{DD}	1
IRQ11/DMA_DDONE3	AH24	I/O	OV _{DD}	1

Table 53. MPC8540 Pinout Listing (continued)

MPC8540 Integrated Processor Hardware Specifications, Rev. 4.1

Thermal

888-246-9050

Thermagon Inc. 4707 Detroit Ave. Cleveland, OH 44102 Internet: www.thermagon.com

16.2.4 Heat Sink Selection Examples

The following section provides a heat sink selection example using one of the commercially available heat sinks.

16.2.4.1 Case 1

For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

$$T_{J} = T_{I} + T_{R} + (\theta_{JC} + \theta_{INT} + \theta_{SA}) \times P_{D}$$

where

 T_J is the die-junction temperature

T_I is the inlet cabinet ambient temperature

 T_R is the air temperature rise within the computer cabinet

 θ_{JC} is the junction-to-case thermal resistance

 θ_{INT} is the adhesive or interface material thermal resistance

 θ_{SA} is the heat sink base-to-ambient thermal resistance

 P_D is the power dissipated by the device

During operation the die-junction temperatures (T_J) should be maintained within the range specified in Table 2. The temperature of air cooling the component greatly depends on the ambient inlet air temperature and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (T_A) may range from 30° to 40°C. The air temperature rise within a cabinet (T_R) may be in the range of 5° to 10°C. The thermal resistance of some thermal interface material (θ_{INT}) may be about 1°C/W. Assuming a T_I of 30 C, a T_R of 5 C, a FC-PBGA package $\theta_{JC} = 0.8$, and a power consumption (P_D) of 7.0 W, the following expression for T_J is obtained:

Die-junction temperature: $T_J = 30^{\circ}C + 5^{\circ}C + (0.8^{\circ}C/W + 1.0^{\circ}C/W + \theta_{SA}) \times 7.0 W$

The heat sink-to-ambient thermal resistance (θ_{SA}) versus airflow velocity for a Thermalloy heat sink #2328B is shown in Figure 49.

Assuming an air velocity of 2 m/s, we have an effective θ_{SA+} of about 3.3 C/W, thus

 $T_J = 30 C + 5 C + (0.8 C/W + 1.0 C/W + 3.3 C/W) \times 7.0 W,$

resulting in a die-junction temperature of approximately 71 C which is well within the maximum operating temperature of the component.

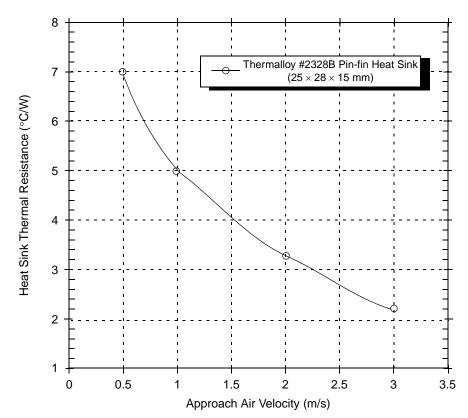
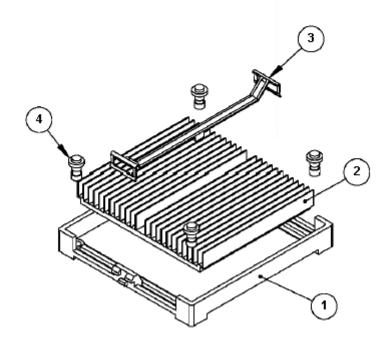


Figure 49. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity

16.2.4.2 Case 2


Every system application has different conditions that the thermal management solution must solve. As an alternate example, assume that the air reaching the component is 85 C with an approach velocity of 1 m/sec. For a maximum junction temperature of 105 C at 7 W, the total thermal resistance of junction to case thermal resistance plus thermal interface material plus heat sink thermal resistance must be less than 2.8 C/W. The value of the junction to case thermal resistance in Table 59 includes the thermal interface resistance of a thin layer of thermal grease as documented in footnote 4 of the table. Assuming that the heat sink is flat enough to allow a thin layer of grease or phase change material, then the heat sink must be less than 2 C/W.

Millennium Electronics (MEI) has tooled a heat sink MTHERM-1051 for this requirement assuming a compactPCI environment at 1 m/sec and a heat sink height of 12 mm. The MEI solution is illustrated in Figure 50 and Figure 51. This design has several significant advantages:

- The heat sink is clipped to a plastic frame attached to the application board with screws or plastic inserts at the corners away from the primary signal routing areas.
- The heat sink clip is designed to apply the force holding the heat sink in place directly above the die at a maximum force of less than 10 lbs.
- For applications with significant vibration requirements, silicone damping material can be applied between the heat sink and plastic frame.

Thermal

Γ	ltem No	QTY	MEI PN	Description
	1	1	MFRAME-2000	HEATSINK FRAME
	2	1	MSNK-1120	EXTRUDED HEATSINK
	3	1	MCLIP-1013	CLIP
	4	4	MPPINS-1000	FRAME ATTACHMENT PINS

Illustrative source provided by Millennium Electronics (MEI)

Figure 51. Exploded Views (2) of a Heat Sink Attachment using a Plastic Fence

The die junction-to-ambient and the heat sink-to-ambient thermal resistances are common figure-of-merits used for comparing the thermal performance of various microelectronic packaging technologies, one should exercise caution when only using this metric in determining thermal management because no single parameter can adequately describe three-dimensional heat flow. The final die-junction operating temperature is not only a function of the component-level thermal resistance, but the system level design and its operating conditions. In addition to the component's power consumption, a number of factors affect the final operating die-junction temperature: airflow, board population (local heat flux of adjacent components), system air temperature rise, altitude, etc.

Due to the complexity and the many variations of system-level boundary conditions for today's microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation convection and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models for the boards, as well as, system-level designs.

Rev. No.	Substantive Change(s)
3.2	Updated Table 1 and Table 2 with 1.0 GHz device parameter requirements.
	Added Section 2.1.2, "Power Sequencing".
	Updated Table 4 with Maximum power data.
	Updated Table 4 and Table 5 with 1 GHz speed grade information.
	Updated Table 6 with corrected typical I/O power numbers.
	Updated Table 7 Note 2 lower voltage measurement point.
	Replaced Table 7 Note 5 with spread spectrum clocking guidelines.
	Added to Table 8 rise and fall time information.
	Added Section 4.4, "Real Time Clock Timing".
	Added precharge information to Section 6.2.2, "DDR SDRAM Output AC Timing Specifications".
	Updated Table 20 minimum and maximum baud rates.
	Removed V_{IL} and V_{IH} references from Table 23, Table 24, Table 25, and Table 26.
	Added reference level note to Table 23, Table 24, Table 25, Table 26, Table 27, Table 28, and Table 29.
	Updated TXD references to TCG in Section 8.2.3.1, "TBI Transmit AC Timing Specifications".
	Updated PMA_RX_CLK references to RX_CLK in Section 8.2.3.2, "TBI Receive AC Timing Specifications".
	Updated t _{TTKHDX} value in Table 27.
	Updated RXD references to RCG in Section 8.2.3.2, "TBI Receive AC Timing Specifications".
	Updated Table 29 Note 2.
	Removed V _{IL} and V _{IH} references from Table 31, and Table 32.
	Added reference level note to Table 31, and Table 32.
	Corrected Figure 15 and Figure 16.
	Corrected Table 34 f _{MDC} and t _{MDC} to reflect the correct minimum operating frequency.
	Updated Table 34 t _{MDKHDV} and t _{MDKHDX} values for clarification.
	Added t _{LBKHKT} and updated Note 2 in Table 37.
	Corrected LGTA timing references in Figure 19.
	Updated Figure 20, Figure 22, and Figure 24.
	Updated Figure 44.
	Clarified Table 53 Note 5.
	Updated Table 54 and Table 55 with 1 GHz information.
	Added heat sink removal discussion to Section 16.2.3, "Thermal Interface Materials".
	Corrected and added 1 GHz part number to Table 62.
3.1	Updated Table 4 and Table 5.
	Added Table 6.
	Added MCK duty cycle to Table 16.
	Updated f _{MDC} , t _{MDC} , t _{MDKHDV} , and t _{MDKHDX} parameters in Table 34.
	Added LALE to t _{LBKHOV3} parameter in Table 36 and Table 37, and updated Figure 19 and Figure 20.
	Corrected active level designations of some of the pins in Table 53.
	Updated Table 62.

Rev. No.	Substantive Change(s)
2.0	Section 1.1—Updated features list to coincide with latest version of the reference manual
	Table 1 and Table 2—Addition of SYSCLK to OVIN
	Table 2—Addition of notes 1 and 2
	Table 3—Addition of note 1
	Table 5—New
	Section 4—New
	Table 13—Addition of I _{VREF}
	Removed Figure 4 DDR SRAM Input TIming Diagram
	Table 15—Modified maximum values for t _{DISKEW}
	Table 16—Added MSYNC_OUT to tMCKSKEW2
	Figure 5—New
	Section 6.2.1—Removed Figure 4, "DDR SDRAM Input Timing Diagram"
	Section 8.1—Removed references to 2.5 V from first paragraph
	Figure 8—New
	Table 21 and Table 22—Modified "conditions" for I _{IH} and I _{IL}
	Table 23—Addition of min and max for GTX_CLK125 reference clock duty cycle
	Table 27 — Addition of min and max for GTX_CLK125 reference clock duty cycle
	Table 29—Addition of min and max for GTX_CLK125 reference clock duty cycle
	Table 30—VOH min and conditions; I _{IH} and I _{IL} conditions
	Table 31—Min and max for t _{MTXR} and t _{MTXF}
	Table 32—Min and max for t _{MRXR} and t _{MRXF}
	Figure 23 and Figure 24—Changed LSYNC_IN to Internal clock at top of each figure
	Figure 18—New
	Figure 18—New
	Table 36—Removed row for tLBKHOX3
	Table 43—New (AC timing of PCI-X at 66 MHz)
	Table 53—Addition of note 19
	Figure 55—Addition of jumper and note at top of diagram
	Table 55: Changed max bus freq for 667 core to 166
	Section 16.2.1—Modified first paragraph
	Figure 46—Modified
	Figure 47—New
	Table 59—Modified thermal resistance data
	Section 16.2.4.2—Modified first and second paragraphs

Table 61. Document Revision History (continued)

Rev. No.	Substantive Change(s)
1.2	Section 1.1.1—Updated feature list.
	Section 1.2.1.1—Updated notes for Table 1.
	Section 1.2.1.2—Removed 5-V PCI interface overshoot and undershoot figure.
	Section 1.2.1.3—Added this section to summarize impedance driver settings for various interfaces.
	Section 1.4—Updated rows in Reset Initialization timing specifications table. Added a table with DLL and PLL timing specifications.
	Section 1.5.2.2—Updated note 6 of DDR SDRAM Output AC Timing Specifications table.
	Section 1.7—Changed the minimum input low current from -600 to -15 μ A for the RGMII DC electrical characteristics.
	Section 1.8.2—Changed LCS[3:4] to TSEC1_TXD[6:5] in. Updated notes regarding LCS[3:4].
	Section 1.13.2—Updated the mechanical dimensions diagram for the package.
	Section 1.13.3—Updated the notes for LBCTL, TRIG_OUT, and ASLEEP. Corrected pin assignments for IIC_SDA and IIC_SCL. Corrected reserved pin assignment of V11 to U11. V11 is actually PCI_STOP.
	Section 1.14.1—Updated the table for frequency options with respect to platform/CCB frequencies.
	Section 1.14.4—Edited Frequency options with respect to memory bus speeds.
1.1	Section 1.6.1—Added symbols and note for the GTX_CLK125 timing parameters.
	Section 1.11.3—Updated pin list table: LGPL5/LSDAMUX to LGPL5, LA[27:29] and LA[30:31] to LA[27:31], FEC_TXD[0:3] to FEC_TXD[3:0], FEC_RXD[0:3] to FEC_RXD[3:0], TRST to TRST, added GBE Clocking section and EC_GTX_CLK125 signal.
	Updated thermal model information to match current offering.
1	Original Customer Version.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. The described product is a PowerPC microprocessor. The PowerPC name is a trademark of IBM Corp. and is used under license. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2004-2007. All rights reserved.

Document Number: MPC8540EC Rev. 4.1 07/2007

