E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	-
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (1), 10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BFBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8540vtaqfc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 256 Kbyte L2 cache/SRAM
 - Can be configured as follows
 - Full cache mode (256-Kbyte cache).
 - Full memory-mapped SRAM mode (256-Kbyte SRAM mapped as a single 256-Kbyte block or two 128-Kbyte blocks)
 - Half SRAM and half cache mode (128-Kbyte cache and 128-Kbyte memory-mapped SRAM)
 - Full ECC support on 64-bit boundary in both cache and SRAM modes
 - Cache mode supports instruction caching, data caching, or both
 - External masters can force data to be allocated into the cache through programmed memory ranges or special transaction types (stashing)
 - Eight-way set-associative cache organization (1024 sets of 32-byte cache lines)
 - Supports locking the entire cache or selected lines. Individual line locks are set and cleared through Book E instructions or by externally mastered transactions
 - Global locking and flash clearing done through writes to L2 configuration registers
 - Instruction and data locks can be flash cleared separately
 - Read and write buffering for internal bus accesses
 - SRAM features include the following:
 - I/O devices access SRAM regions by marking transactions as snoopable (global)
 - Regions can reside at any aligned location in the memory map
 - Byte accessible ECC is protected using read-modify-write transactions accesses for smaller than cache-line accesses.
- Address translation and mapping unit (ATMU)
 - Eight local access windows define mapping within local 32-bit address space
 - Inbound and outbound ATMUs map to larger external address spaces
 - Three inbound windows plus a configuration window on PCI/PCI-X
 - Four inbound windows plus a default and configuration window on RapidIO
 - Four outbound windows plus default translation for PCI
 - Eight outbound windows plus default translation for RapidIO
- DDR memory controller
 - Programmable timing supporting DDR-1 SDRAM
 - 64-bit data interface, up to 333-MHz data rate
 - Four banks of memory supported, each up to 1 Gbyte
 - DRAM chip configurations from 64 Mbits to 1 Gbit with x8/x16 data ports
 - Full ECC support
 - Page mode support (up to 16 simultaneous open pages)
 - Contiguous or discontiguous memory mapping

2.1.2 Power Sequencing

The MPC8540 requires its power rails to be applied in a specific sequence in order to ensure proper device operation. These requirements are as follows for power up:

- 1. V_{DD} , AV_{DD}
- 2. GV_{DD} , LV_{DD} , OV_{DD} (I/O supplies)

Items on the same line have no ordering requirement with respect to one another. Items on separate lines must be ordered sequentially such that voltage rails on a previous step must reach 90 percent of their value before the voltage rails on the current step reach 10 percent of theirs.

NOTE

If the items on line 2 must precede items on line 1, please ensure that the delay will not exceed 500 ms and the power sequence is not done greater than once per day in production environment.

NOTE

From a system standpoint, if the I/O power supplies ramp prior to the V_{DD} core supply, the I/Os on the MPC8540 may drive a logic one or zero during power-up.

2.1.3 Recommended Operating Conditions

Table 2 provides the recommended operating conditions for the MPC8540. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

Characteristic	Symbol	Recommended Value	Unit
Core supply voltage For devices rated at 667 and 833 MHz For devices rated at 1 GHz	V _{DD}	1.2 V ± 60 mV 1.3 V ± 50 mV	V
PLL supply voltage For devices rated at 667 and 833 MHz For devices rated at 1 GHz	AV _{DD}	1.2 V ± 60 mV 1.3 V ± 50 mV	V
DDR DRAM I/O voltage	GV _{DD}	2.5 V ± 125 mV	V
Three-speed Ethernet I/O voltage	LV _{DD}	3.3 V ± 165 mV 2.5 V ± 125 mV	V
PCI/PCI-X, local bus, RapidIO, 10/100 Ethernet, MII management, DUART, system control and power management, I ² C, and JTAG I/O voltage	OV _{DD}	3.3 V ± 165 mV	V

Table 2. Recommended Operating Conditions

Characteristic		Symbol	Recommended Value	Unit
Input voltage	DDR DRAM signals	MV _{IN}	GND to GV _{DD}	V
	DDR DRAM reference	MV _{REF}	GND to GV _{DD/2}	V
Three-speed Ethernet signals		LV _{IN}	GND to LV _{DD}	V
	PCI/PCI-X, local bus, RapidIO, 10/100 Ethernet, MII management, DUART, SYSCLK, system control and power management, I ² C, and JTAG signals	OV _{IN}	GND to OV _{DD}	V
Die-junction temperature		Тj	0 to 105	•C

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8540.

 $t_{\mbox{\scriptsize SYS}}$ refers to the clock period associated with the $\mbox{\scriptsize SYSCLK}$ signal.

Figure 2. Overshoot/Undershoot Voltage for $GV_{DD}/OV_{DD}/LV_{DD}$

The MPC8540 core voltage must always be provided at nominal 1.2 V (see Table 2 for actual recommended core voltage). Voltage to the processor interface I/Os are provided through separate sets of supply pins and must be provided at the voltages shown in Table 2. The input voltage threshold scales with respect to the associated I/O supply voltage. OV_{DD} and LV_{DD} based receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR SDRAM interface uses a single-ended differential receiver referenced the externally supplied MV_{REF} signal (nominally set to $GV_{DD}/2$) as is appropriate for the SSTL2 electrical signaling standard.

Table 11. RESET Initialization Timing Specifications (continued)

Parameter/Condition	Min	Мах	Unit	Notes
Maximum valid-to-high impedance time for actively driven POR configs with respect to negation of HRESET	—	5	SYSCLKs	1

Notes:

1.SYSCLK is identical to the PCI_CLK signal and is the primary clock input for the MPC8540. See the MPC8540 Integrated Processor Preliminary Reference Manual for more details.

Table 12 provides the PLL and DLL lock times.

Table 12. PLL and DLL Lock Times

Parameter/Condition	Min	Max	Unit	Notes
PLL lock times	—	100	μS	
DLL lock times	7680	122,880	CCB Clocks	1, 2

Notes:

1.DLL lock times are a function of the ratio between the output clock and the platform (or CCB) clock. A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.

2. The CCB clock is determined by the SYSCLK \times platform PLL ratio.

6 DDR SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8540.

6.1 DDR SDRAM DC Electrical Characteristics

Table 13 provides the recommended operating conditions for the DDR SDRAM component(s) of the MPC8540.

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	4
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	4
Output leakage current	I _{OZ}	-10	10	μA	5
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-15.2	—	mA	
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	—	mA	

 Table 13. DDR SDRAM DC Electrical Characteristics

Table 16. DDR SDRAM Output AC Timing Specifications–DLL Mode (continued)

At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MDQS epilogue end	t _{DDSHME}	1.5	4.0	ns	7, 8

Notes:

1.The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (OX or DX). For example, t_{DDKHOV} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (O) are valid (V) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.

2.All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.

3.Maximum possible clock skew between a clock MCK[n] and its relative inverse clock MCK[n], or between a clock MCK[n] and a relative clock MCK[m] or MSYNC_OUT. Skew measured between complementary signals at GV_{DD}/2.

4.ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK and MDQ/MECC/MDM/MDQS.

- 5.Note that t_{DDSHMH} follows the symbol conventions described in note 1. For example, t_{DDSHMH} describes the DDR timing (DD) from the rising edge of the MSYNC_IN clock (SH) until the MDQS signal is valid (MH). t_{DDSHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. These controls allow the relationship between the synchronous clock control timing and the source-synchronous DQS domain to be modified by the user. For best turnaround times, these may need to be set to delay t_{DDSHMH} an additional 0.25t_{MCK}. This will also affect t_{DDSHMP} and t_{DDSHME} accordingly. See the *MPC8540 PowerQUICC III Integrated Host Processor Reference Manual* for a description and understanding of the timing modifications enabled by use of these bits.
- 6.Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the MPC8540.
- 7.All outputs are referenced to the rising edge of MSYNC_IN (S) at the pins of the MPC8540. Note that t_{DDSHMP} follows the symbol conventions described in note 1. For example, t_{DDSHMP} describes the DDR timing (DD) from the rising edge of the MSYNC_IN clock (SH) for the duration of the MDQS signal precharge period (MP).

8. Guaranteed by design.

9. Guaranteed by characterization.

Figure 5 provides the AC test load for the DDR bus.

Figure 5. DDR AC Test Load

Table 17. DDR SDRAM Measurement Conditions

Symbol	DDR	Unit	Notes
V _{TH}	MV _{REF} ± 0.31 V	V	1
V _{OUT}	$0.5\times \text{GV}_{\text{DD}}$	V	2

Notes:

1.Data input threshold measurement point.

2.Data output measurement point.

Ethernet: Three-Speed, 10/100, MII Management

8.2.2 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.2.1 MII Transmit AC Timing Specifications

Table 25 provides the MII transmit AC timing specifications.

Table 25. MII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V \pm 5%, or LV_{DD}=2.5V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX} ²	—	400	—	ns
TX_CLK clock period 100 Mbps	t _{MTX}	—	40	—	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	—	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise and fall time	t _{MTXR} , t _{MTXF} ^{2,3}	1.0	_	4.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.Signal timings are measured at 0.7 V and 1.9 V voltage levels.3.Guaranteed by design.

Figure 10 shows the MII transmit AC timing diagram.

Figure 10. MII Transmit AC Timing Diagram

Figure 14 shows the RGMII and RTBI AC timing and multiplexing diagrams.

Figure 14. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 10/100 Ethernet Controller (10/100 Mbps)—MII Electrical Characteristics

The electrical characteristics specified here apply to the MII (media independent interface) signals except MDIO (management data input/output) and MDC (management data clock). The MII interface can be operated at 3.3 or 2.5 V. Whether the MII interface is operated at 3.3 or 2.5 V, the timing is compliant with the IEEE 802.3 standard. The electrical characteristics for MDIO and MDC are specified in Section 2.1.3, "Recommended Operating Conditions."

8.3.1 MII DC Electrical Characteristics

All MII drivers and receivers comply with the DC parametric attributes specified in Table 30. The potential applied to the input of a MII receiver may exceed the potential of the receiver's power supply (that is, a MII driver powered from a 3.6-V supply driving V_{OH} into a MII receiver powered from a 2.5-V supply). Tolerance for dissimilar MII driver and receiver supply potentials is implicit in these specifications.

Figure 15 shows the MII transmit AC timing diagram.

Figure 15. MII Transmit AC Timing Diagram

8.3.2.2 MII Receive AC Timing Specifications

Table 32 provides the MII receive AC timing specifications.

Table 32. MII Receiv	e AC Timing	Specifications
----------------------	-------------	----------------

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	_	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	_	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[7:0], TX_DV, TX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[7:0], TX_DV, TX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise and fall time	$t_{MRXR}, t_{MRXF}^{2,3}$	1.0	—	4.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)}

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKH} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKH} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the high (H) state or hold time. Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3. Guaranteed by design.

Ethernet: Three-Speed, 10/100, MII Management

Figure 16 shows the MII receive AC timing diagram.

Figure 16. MII Receive AC Timing Diagram

8.4 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (TSEC) (10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics."

8.4.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 33.

Parameter	Symbol	Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	3.13	3.47	V
Output high voltage (OV _{DD} = Min, I _{OH} = -1.0 mA)	V _{OH}	2.10	OV _{DD} + 0.3	V
Output low voltage (OV _{DD} = Min, I _{OL} = 1.0 mA)	V _{OL}	GND	0.50	V
Input high voltage	V _{IH}	1.70	_	V
Input low voltage	V _{IL}	—	0.90	V
Input high current (OV _{DD} = Max, V _{IN} ¹ = 2.1 V)	Ι _{ΙΗ}	—	40	μΑ
Input low current (OV _{DD} = Max, V _{IN} = 0.5 V)	I _{IL}	-600	_	μΑ

Table 33. MII Management DC Electrical Characteristics

Note:

1.Note that the symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

Local Bus

Table 37 describes the general timing parameters of the local bus interface of the MPC8540 with the DLL bypassed.

Parameter	POR Configuration	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time		t _{LBK}	6.0	—	ns	2
Internal launch/capture clock to LCLK delay		t _{LBKHKT}	2.3	3.9	ns	8
LCLK[n] skew to LCLK[m] or LSYNC_OUT		t _{LBKSKEW}	_	150	ps	3, 9
Input setup to local bus clock (except LUPWAIT)		t _{LBIVKH1}	5.7	—	ns	4, 5
LUPWAIT input setup to local bus clock		t _{LBIVKH2}	5.6	_	ns	4, 5
Input hold from local bus clock (except LUPWAIT)		t _{LBIXKH1}	-1.8	—	ns	4, 5
LUPWAIT input hold from local bus clock		t _{LBIXKH2}	-1.3	_	ns	4, 5
LALE output transition to LAD/LDP output transition (LATCH hold time)		t _{LBOTOT}	1.5	—	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	TSEC2_TXD[6:5] = 00	t _{LBKLOV1}	—	-0.3	ns	4
	TSEC2_TXD[6:5] = 11 (default)			1.2		
Local bus clock to data valid for LAD/LDP	TSEC2_TXD[6:5] = 00	t _{LBKLOV2}	_	-0.1	ns	4
	TSEC2_TXD[6:5] = 11 (default)			1.4		
Local bus clock to address valid for LAD	TSEC2_TXD[6:5] = 00	t _{LBKLOV3}	_	0	ns	4
	TSEC2_TXD[6:5] = 11 (default)			1.5		
Local bus clock to LALE assertion		t _{LBKHOV4}	_	0	ns	4
Output hold from local bus clock (except	TSEC2_TXD[6:5] = 00	t _{LBKLOX1}	-3.2	—	ns	4
LAD/LDP and LALE)	TSEC2_TXD[6:5] = 11 (default)		-2.3			
Output hold from local bus clock for	TSEC2_TXD[6:5] = 00	t _{LBKLOX2}	-3.2	—	ns	4
	TSEC2_TXD[6:5] = 11 (default)		-2.3			
Local bus clock to output high Impedance	TSEC2_TXD[6:5] = 00	t _{LBKLOZ1}	_	0.2	ns	7
	TSEC2_TXD[6:5] = 11 (default)			1.5		

Table 37. Local Bus General Timing Parameters—DLL Bypassed

Figure 22. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)

Figure 24. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 or 8 (DLL Bypass Mode)

RapidIO

The eye pattern for a data signal is generated by making a large number of recordings of the signal and then overlaying the recordings. The number of recordings used to generate the eye shall be large enough that further increasing the number of recordings used does not cause the resulting eye pattern to change from one that complies with the RapidIO transmit mask to one that does not. Each data signal in the interface shall be carrying random or pseudo-random data when the recordings are made. If pseudo-random data is used, the length of the pseudo-random sequence (repeat length) shall be long enough that increasing the length of the sequence does not cause the resulting eye pattern to change from one that complies with the RapidIO transmit mask to one that does not comply with the mask. The data carried by any given data signal in the interface may not be correlated with the data carried by any other data signal in the interface. The zero-crossings of the clock associated with a data signal shall be used as the timing reference for aligning the multiple recordings of the data signal when the recordings are overlaid.

While the method used to make the recordings and overlay them to form the eye pattern is not specified, the method used shall be demonstrably equivalent to the following method. The signal under test is repeatedly recorded with a digital oscilloscope in infinite persistence mode. Each recording is triggered by a zero-crossing of the clock associated with the data signal under test. Roughly half of the recordings are triggered by positive-going clock zero-crossings and roughly half are triggered by negative-going clock zero-crossings. Each recording is at least 1.9 UI in length (to ensure that at least one complete eye is formed) and begins 0.5 UI before the trigger point (0.5 UI before the associated clock zero-crossing). Depending on the length of the individual recordings used to generate the eye pattern, one or more complete eyes will be formed. Regardless of the number of eyes, the eye whose center is immediately to the right of the trigger point is the eye used for compliance testing.

An example of an eye pattern generated using the above method with recordings 3 UI in length is shown in Figure 39. In this example, there is no skew between the signal under test and the associated clock used to trigger the recordings. If skew was present, the eye pattern would be shifted to the left or right relative to the oscilloscope trigger point.

Figure 39. Example Driver Output Eye Pattern

RapidIO

13.3.2 RapidIO Receiver AC Timing Specifications

The RapidIO receiver AC timing specifications are provided in Table 50. A receiver shall comply with the specifications for each data rate/frequency for which operation of the receiver is specified. Unless otherwise specified, these specifications are subject to the following conditions.

- The specifications apply over the supply voltage and ambient temperature ranges specified by the device vendor.
- The specifications apply for any combination of data patterns on the data signals.
- The specifications apply over the receiver common mode and differential input voltage ranges.
- Clock specifications apply only to clock signals.
- Data specifications apply only to data signals (FRAME, D[0:7])

Table 50. RapidIO Receiver AC Timing Specifications—500 Mbps Data Rate

Characteristic	Symbol	Rai	nge	Unit	Notes
Unaracteristic	Gymbol	Min	Max	Onic	Notes
Duty cycle of the clock input	DC	47	53	%	1, 5
Data valid	DV	1080		ps	2
Allowable static skew between any two data inputs within a 8-/9-bit group	t _{DPAIR}	—	380	ps	3
Allowable static skew of data inputs to associated clock	t _{SKEW,PAIR}	-300	300	ps	4

Notes:

1.Measured at $V_{ID} = 0$ V.

2.Measured using the RapidIO receive mask shown in Figure 40.

3.See Figure 43.

4.See Figure 42 and Figure 43.

5.Guaranteed by design.

Table 51. RapidIO Receiver AC Timing Specifications—750 Mbps Data Rate

Charactoristic	Symbol	Rai	nge	Unit	Notos
Characteristic	Symbol	Min	Max	Unit	NOLES
Duty cycle of the clock input	DC	47	53	%	1, 5
Data valid	DV	600	_	ps	2
Allowable static skew between any two data inputs within a 8-/9-bit group	t _{DPAIR}	—	400	ps	3
Allowable static skew of data inputs to associated clock	t _{SKEW,PAIR}	-267	267	ps	4

Notes:

1.Measured at $V_{ID} = 0$ V.

2.Measured using the RapidIO receive mask shown in Figure 40.

3.See Figure 43.

4.See Figure 42 and Figure 43.

5.Guaranteed by design.

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
LCS6/DMA_DACK2	P27	0	OV_{DD}	1		
LCS7/DMA_DDONE2	P28	0	OV_{DD}	1		
LDP[0:3]	AA27, AA28, T26, P21	I/O	OV_{DD}			
LGPL0/LSDA10	U19	0	OV _{DD}	5, 9		
LGPL1/LSDWE	U22	0	OV _{DD}	5, 9		
LGPL2/LOE/LSDRAS	V28	0	OV _{DD}	8, 9		
LGPL3/LSDCAS	V27	0	OV _{DD}	5, 9		
LGPL4/LGTA/LUPWAIT/ LPBSE	V23	I/O	OV _{DD}	22		
LGPL5	V22	0	OV _{DD}	5, 9		
LSYNC_IN	T27	I	OV _{DD}			
LSYNC_OUT	T28	0	OV _{DD}			
LWE[0:1]/LSDDQM[0:1]/LBS [0:1]	AB28, AB27	0	OV _{DD}	1, 5, 9		
LWE[2:3]/LSDDQM[2:3]/LBS [2:3]	T23, P24	0	OV _{DD}	1, 5, 9		
DMA						
DMA_DREQ[0:1]	H5, G4	I	OV _{DD}			
DMA_DACK[0:1]	H6, G5	0	OV_{DD}			
DMA_DDONE[0:1]	H7, G6	0	OV_{DD}			
	DUART					
UART_SIN[0:1]	AE2, AD5	I	OV _{DD}			
UART_SOUT[0:1]	AE3, AD2	0	OV_{DD}			
UART_CTS[0:1]	U9, U7	I	OV _{DD}			
UART_RTS[0:1]	AD6, AD1	0	OV _{DD}			
	Programmable Interrupt Controller					
MCP	AG17	I	OV _{DD}			
UDE	AG16	I	OV _{DD}			
IRQ[0:7]	AA18, Y18, AB18, AG24, AA21, Y19, AA19, AG25	I	OV _{DD}			
IRQ8	AB20	I	OV _{DD}	9		
IRQ9/DMA_DREQ3	Y20		OV _{DD}	1		
IRQ10/DMA_DACK3	AF26	I/O	OV _{DD}	1		
IRQ11/DMA_DDONE3	AH24	I/O	OV_{DD}	1		

Table 53. MPC8540 Pinout Listing (continued)

Signal	Package Pin Number Pin Type			Notes			
TSEC2_RX_CLK	E10	I	LV _{DD}				
	10/100 Ethernet (MII) Interface						
FEC_TXD[3:0]	M1, N1, N4, N5	0	OV _{DD}				
FEC_TX_EN	P11	0	OV _{DD}				
FEC_TX_ER	P10	0	OV_{DD}				
FEC_TX_CLK	V6	I	OV _{DD}				
FEC_CRS	N10	I	OV _{DD}				
FEC_COL	N11	I	OV _{DD}				
FEC_RXD[3:0]	N9, N8, N7, N6	I	OV _{DD}				
FEC_RX_DV	P8	I	OV _{DD}				
FEC_RX_ER	Р9	I	OV _{DD}				
FEC_RX_CLK	V9	I	OV _{DD}				
RapidIO Interface							
RIO_RCLK	Y25	I	OV _{DD}				
RIO_RCLK	Y24	I	OV _{DD}				
RIO_RD[0:7]	T25, U25, V25, W25, AA25, AB25, AC25, AD25	I	OV _{DD}				
RIO_RD[0:7]	T24, U24, V24, W24, AA24, AB24, AC24, AD24	I	OV _{DD}				
RIO_RFRAME	AE27	I	OV _{DD}				
RIO_RFRAME	AE26	I	OV _{DD}				
RIO_TCLK	AC20	0	OV _{DD}	11			
RIO_TCLK	AE21	0	OV _{DD}	11			
RIO_TD[0:7]	AE18, AC18, AD19, AE20, AD21, AE22, AC22, AD23	0	OV _{DD}				
RIO_TD[0:7]	AD18, AE19, AC19, AD20, AC21, AD22, AE23, AC23	0	OV _{DD}				
RIO_TFRAME	AE24	0	OV _{DD}				
RIO_TFRAME	AE25	0	OV _{DD}				
RIO_TX_CLK_IN	AF24	I	OV _{DD}				
RIO_TX_CLK_IN	AF25	I	OV _{DD}				
	I ² C interface						
IIC_SDA	AH22	I/O	OV _{DD}	4, 20			
IIC_SCL	AH23	I/O	OV _{DD}	4, 20			

Table 53. MPC8540 Pinout Listing (continued)

Package and Pin Listings

Table 53. MPC8540	Pinout L	.isting (continued)
-------------------	----------	-----------	------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
	System Control					
HRESET	AH16	I	OV_{DD}			
HRESET_REQ	AG20	0	OV_{DD}			
SRESET	AF20	I	OV _{DD}			
CKSTP_IN	M11	I	OV _{DD}			
CKSTP_OUT	G1	0	OV _{DD}	2, 4		
Debug						
TRIG_IN	N12	I	OV _{DD}			
TRIG_OUT/READY	G2	0	OV _{DD}	6, 9, 19		
MSRCID[0:1]	J9, G3	0	OV _{DD}	5, 6, 9		
MSRCID[2:4]	F3, F5, F2	0	OV_{DD}	6		
MDVAL	F4	0	OV _{DD}	6		
	Clock					
SYSCLK	AH21	I	OV _{DD}			
RTC	AB23	I	OV _{DD}			
CLK_OUT	AF22	0	OV _{DD}	11		
	JTAG					
тск	AF21	I	OV _{DD}			
TDI	AG21	I	OV _{DD}	12		
TDO	AF19	0	OV _{DD}	11		
TMS	AF23	I	OV _{DD}	12		
TRST	AG23	I	OV _{DD}	12		
	DFT					
LSSD_MODE	AG19	I	OV _{DD}	21		
L1_TSTCLK	AB22	I	OV _{DD}	21		
L2_TSTCLK	AG22	I	OV _{DD}	21		
TEST_SEL	AH20	I	OV _{DD}	3		
	Thermal Management		•			
THERM0	AG2	l	_	14		
THERM1	АНЗ	I	-	14		

```
Thermal
```

15.4 Frequency Options

Table 58 shows the expected frequency values for the platform frequency when using a CCB to SYSCLK ratio in comparison to the memory bus speed.

CCB to SYSCLK Ratio				S	YSCLK (Mł	łz)			
	16.67	25	33.33	41.63	66.67	83	100	111	133.33
	Platform/CCB Frequency (MHz)								
2							200	222	267
3					200	250	300	333	
4					267	333			-
5				208	333		<u>.</u>		
6			200	250		-			
8		200	267	333					
9		225	300		-				
10		250	333						
12	200	300		-					
16	267		-						

Table 58. Frequency Options with Respect to Memory Bus Speeds

16 Thermal

This section describes the thermal specifications of the MPC8540.

16.1 Thermal Characteristics

Table 59 provides the package thermal characteristics for the MPC8540.

 Table 59. Package Thermal Characteristics

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient Natural Convection on four layer board (2s2p)	$R_{ hetaJMA}$	16	°C/W	1, 2
Junction-to-ambient (@100 ft/min or 0.5 m/s) on four layer board (2s2p)	R_{\thetaJMA}	14	°C/W	1, 2
Junction-to-ambient (@200 ft/min or 1 m/s) on four layer board (2s2p)	R_{\thetaJMA}	12	•C/W	1, 2
Junction-to-board thermal	$R_{\theta JB}$	7.5	•C/W	3

Thermal

ltem No	QTY	MEI PN	Description
1	1	MFRAME-2000	HEATSINK FRAME
2	1	MSNK-1120	EXTRUDED HEATSINK
3	1	MCLIP-1013	CLIP
4	4	MPPINS-1000	FRAME ATTACHMENT PINS

Illustrative source provided by Millennium Electronics (MEI)

Figure 51. Exploded Views (2) of a Heat Sink Attachment using a Plastic Fence

The die junction-to-ambient and the heat sink-to-ambient thermal resistances are common figure-of-merits used for comparing the thermal performance of various microelectronic packaging technologies, one should exercise caution when only using this metric in determining thermal management because no single parameter can adequately describe three-dimensional heat flow. The final die-junction operating temperature is not only a function of the component-level thermal resistance, but the system level design and its operating conditions. In addition to the component's power consumption, a number of factors affect the final operating die-junction temperature: airflow, board population (local heat flux of adjacent components), system air temperature rise, altitude, etc.

Due to the complexity and the many variations of system-level boundary conditions for today's microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation convection and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models for the boards, as well as, system-level designs.

17.3 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, the MPC8540 can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8540 system, and the MPC8540 itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pins of the MPC8540. These decoupling capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , LV_{DD} , and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

17.4 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} , GV_{DD} , or LV_{DD} as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} , GV_{DD} , LV_{DD} , OV_{DD} , and GND pins of the MPC8540.

17.5 Output Buffer DC Impedance

The MPC8540 drivers are characterized over process, voltage, and temperature. There are two driver types: a push-pull single-ended driver (open drain for I²C) for all buses except RapidIO, and a current-steering differential driver for the RapidIO port.

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 53). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_P is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.