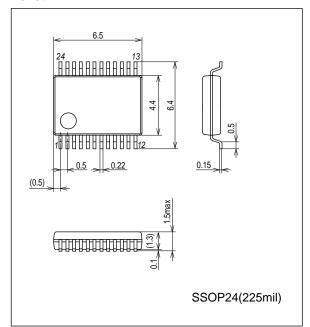


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

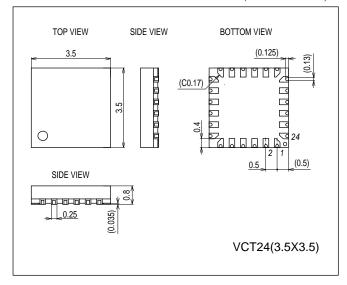
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	-
Core Size	8-Bit
Speed	12MHz
Connectivity	SIO, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	19
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SOP (0.236", 6.00mm Width)
Supplier Device Package	24-MFPSJ
Purchase URL	https://www.e-xfl.com/product-detail/onsemi/lc87f2g08au-ssop-e

Package Dimensions

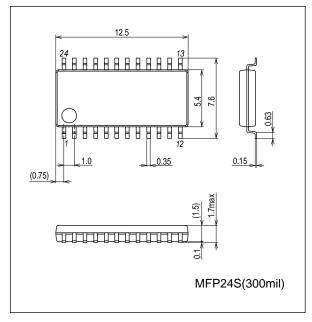
unit: mm (typ)


3287

Package Dimensions

unit : mm (typ) 3322A

(Build-to-order)



Package Dimensions

unit: mm (typ)

3112B

(Discontinued)

■Minimum Bus Cycle

- 83.3ns (12MHz at V_{DD}=2.7V to 5.5V)
- 100ns (10MHz at V_{DD}=2.2V to 5.5V)
- 250ns (4MHz at V_{DD}=1.8V to 5.5V)

Note: The bus cycle time here refers to the ROM read speed.

■Minimum Instruction Cycle Time

- 250ns (12MHz at V_{DD}=2.7V to 5.5V)
- 300ns (10MHz at V_{DD}=2.2V to 5.5V)
- 750ns (4MHz at V_{DD}=1.8V to 5.5V)

■Ports

• Normal withstand voltage I/O ports

Ports I/O direction can be designated in 1-bit units
11 (P1n, P20, P21, P70)
Ports I/O direction can be designated in 4-bit units
8 (P0n)

• Dedicated oscillator ports/input ports 2 (CF1/XT1, CF2/XT2)

• Reset pin 1 (RES)

• Power pins 2 (V_{SS}1, V_{DD}1)

■Timers

• Timer 0: 16-bit timer/counter with a capture register.

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) \times 2 channels

Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)

+ 8-bit counter (with an 8-bit capture register)

Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)

Mode 3: 16-bit counter (with a 16-bit capture register)

• Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/

counter with an 8-bit prescaler (with toggle outputs)

Mode 1: 8-bit PWM with an 8-bit prescaler × 2 channels

Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)

(toggle outputs also possible from the lower-order 8 bits)

Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)

(The lower-order 8 bits can be used as PWM)

- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - 2) Interrupts are programmable in 5 different time schemes

■High-Speed Clock Counter

- Can count clocks with a maximum clock rate of 20MHz (at a main clock of 10MHz).
- Can generate output real time.

■SIO

- SIO0: 8-bit Synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle=4/3tCYC)
- SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)
 - Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
 - Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

■UART

- Full Duplex
- 7/8/9 bit data bits selectable
- 1 stop bit (2 bits in continuous data transmission)
- Built-in baudrate generator
- ■AD Converter: 12 bits/8 bits × 8 channels
 - 12 bits/8 bits AD converter resolution selectable
- ■Remote Control Receiver Circuit (sharing pins with P15, SCK1, INT3, and T0IN)
 - Noise rejection function (noise filter time constant selectable from 1 tCYC, 32 tCYC, and 128 tCYC)

■Clock Output Function

- Can generate clock outputs with a frequency of 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 of the source clock selected as the system clock.
- Can generate the source clock for the subclock

■Watchdog Timer

- External RC watchdog timer
- Interrupt and reset signals selectable

■Interrupts

- 18 sources, 10 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4
4	0001BH	H or L	INT3/base timer
5	00023H	H or L	ТОН
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	SIO0/UART1 receive
8	0003BH	H or L	SIO1/UART1 transmit
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- ■Subroutine Stack Levels: 128levels (The stack is allocated in RAM.)
- High-speed Multiplication/Division Instructions

16 bits × 8 bits
24 bits × 16 bits
16 bits ÷ 8 bits
24 bits ÷ 16 bits
16 bits ÷ 16 bits
17 tCYC execution time
18 tCYC execution time
19 tCYC execution time
10 tCYC execution time
10 tCYC execution time
11 tCYC execution time
12 tCYC execution time

■Oscillation Circuits

• Internal oscillation circuits

Low-speed RC oscillation circuit : For system clock (100kHz)
Medium-speed RC oscillation circuit : For system clock (1MHz)
Multifrequency RC oscillation circuit : For system clock (8MHz)

• External oscillation circuits

Hi-speed CF oscillation circuit: For system clock, with internal Rf

Low speed crystal oscillation circuit: For low-speed system clock, with internal Rf

- 1) The CF and crystal oscillation circuits share the same pins. The active circuit is selected under program control.
- 2) Both the CF and crystal oscillator circuits stop operation on a system reset. When the reset is released, only the CF oscillation circuit resumes operation.

■System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from 300ns, 600ns, 1.2μs, 2.4μs, 4.8μs, 9.6μs, 19.2μs, 38.4μs, and 76.8μs (at a main clock rate of 10MHz).

■Internal Reset Function

- Power-on reset (POR) function
 - 1) POR reset is generated only at power-on time.
 - 2) The POR release level can be selected from 8 levels (1.67V, 1.97V, 2.07V, 2.37V, 2.57V, 2.87V, 3.86V, and 4.35V) through option configuration.
- Low-voltage detection reset (LVD) function
 - 1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
 - 2) The use/disuse of the LVD function and the low voltage threshold level (7 levels: 1.91V, 2.01V, 2.31V, 2.51V, 2.81V, 3.79V, 4.28V).

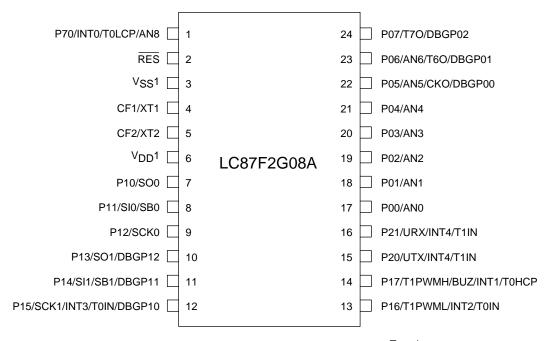
■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) There are three ways of resetting the HALT mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC, and crystal oscillators automatically stop operation.
 - 2) There are four ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the lower level.
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4
 - * INTO and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0.
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.
 - 1) The CF and RC oscillators automatically stop operation.
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are five ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level.
 - (2) System resetting by watchdog timer or low-voltage detection.
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4
 - * INTO and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0.
 - (5) Having an interrupt source established in the base timer circuit.

Note: Available only when X'tal oscillation is selected.

■Onchip Debugger

- Supports software debugging with the IC mounted on the target board.
- Two channels of on-chip debugger pins are available to be compatible with small pin count devices. DBGP0 (P0), DBGP1 (P1)
- ■Data Security Function (flash versions only)
 - \bullet Protects the program data stored in flash memory from unauthorized read or copy.

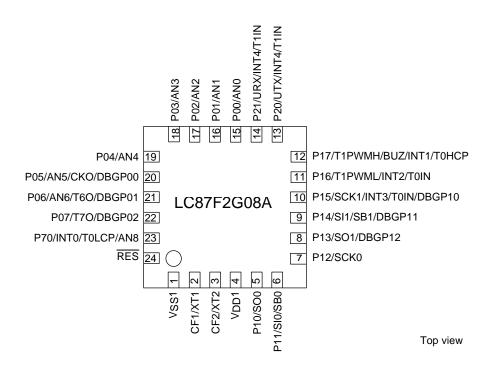

Note: This data security function does not necessarily provide absolute data security.

■Development Tools

- On-chip debugger: (1) TCB87 type B + LC87D2G08A
 - (2) TCB87 TypeB + LC87F2G08A
 - (3) TCB87 TypeC (3 wire version) + LC87D2G08A
 - (4) TCB87 TypeC (3 wire version) + LC87F2G08A

Note: LC87F2G08A has an On-chip debugger but its function is limited.

Pin Assignment

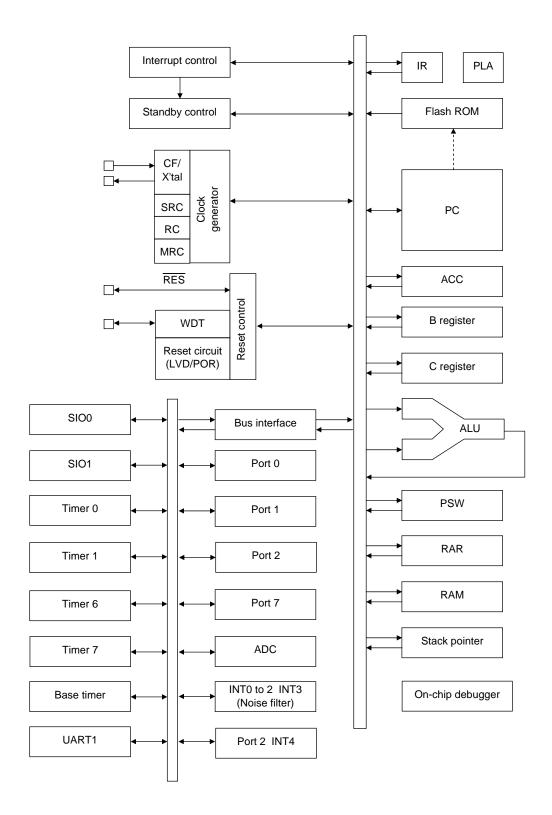


Top view

MFP24S (300mil) "Lead-free Type" MFP24SJ (300mil) "Lead-/Halogen-free Type" SSOP24 (225mil) "Lead-free Type"

MFP24S/					
MFP24SJ/	NAME				
SSOP24					
1	P70/INT0/T0LCP/AN8				
2	RES				
3	V _{SS} 1				
4	CF1/XT1				
5	CF2/XT2				
6	V _{DD} 1				
7	P10/SO0				
8	P11/SI0/SB0				
9	P12/SCK0				
10	P13/SO1/DBGP12				
11	P14/SI1/SB1/DBGP11				
12	P15/SCK1/INT3/T0IN/DBGP10				

MFP24S/	
MFP24SJ/	NAME
SSOP24	
13	P16/T1PWML/INT2/T0IN
14	P17/T1PWMH/BUZ/INT1/T0HCP
15	P20/UTX/INT4/T1IN
16	P21/URX/INT4/T1IN
17	P00/AN0
18	P01/AN1
19	P02/AN2
20	P03/AN3
21	P04/AN4
22	P05/AN5/CKO/DBGP00
23	P06/AN6/T6O/DBGP01
24	P07/T7O/DBGP02



VCT24(3.5×3.5) "Lead-/Halogen-free Type" (build-to-order)

VCT24	NAME			
1	V _{SS} 1			
2	CF1/XT1			
3	CF2/XT2			
4	V _{DD} 1			
5	P10/SO0			
6	P11/SI0/SB0			
7	P12/SCK0			
8	P13/SO1/DBGP12			
9	P14/SI1/SB1/DBGP11			
10	P15/SCK1/INT3/T0IN/DBGP10			
11	P16/T1PWML/INT2/T0IN			
12	P17/T1PWMH/BUZ/INT1/T0HCP			

VCT24	NAME
13	P20/UTX/INT4/T1IN
14	P21/URX/INT4/T1IN
15	P00/AN0
16	P01/AN1
17	P02/AN2
18	P03/AN3
19	P04/AN4
20	P05/AN5/CKO/DBGP00
21	P06/AN6/T6O/DBGP01
22	P07/T7O/DBGP02
23	P70/INT0/T0LCP/AN8
24	RES

System Block Diagram

Continued from preceding page.

Pin Name	I/O			Des	cription				Option
Port 7 P70	I/O	Pull-up resistor Pin functions P70: INT0 input P70(AN8): AD 0	I/O specifiable in 1-bit units Pull-up resistors can be turned on and off in 1-bit units. Pin functions P70: INT0 input / HOLD reset input / timer 0L capture input / watchdog timer output P70(AN8): AD converter input Interrupt acknowledge types Rising Falling Rising & H level L level Falling Falling						
RES	I/O	External reset inp	out / internal res	et output					No
CF1/XT1	ı	Ceramic resonator or 32.768kHz crystal oscillator input pin Pin function							No
CF2/XT2	I/O	Pin function	General-purpose input port Ceramic resonator or 32.768kHz crystal oscillator output pin Pin function General-purpose input port						

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in the output mode.

Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
		2	Nch-open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P20 to P21	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable

Note 1: The control of the presence or absence of the programmable pull-up resistors for port 0 and the switching between low-and high-impedance pull-up connection is exercised in nibble (4-bit) units (P00 to 03 or P04 to 07).

Allowable Operating Conditions at Ta = -40°C to +85°C, $V_{SS}1 = 0V$

		1	T ~		1			
Parameter	Symbol	Pin/Remarks	Conditions			Specif	ication	ı
				V _{DD} [V]	min	typ	max	unit
Operating	V _{DD} (1)	V _{DD} 1	0.245μs ≤ tCYC ≤ 200μs		2.7		5.5	
supply voltage (Note 2-1)	V _{DD} (2)		0.294μs ≤ tCYC ≤ 200μs		2.2		5.5	
(Note 2-1)	V _{DD} (3)		0.735μs ≤ tCYC ≤ 200μs		1.8		5.5	
Memory sustaining supply voltage	VHD	V _{DD} 1	RAM and register contents sustained in HOLD mode.		1.6			
High level input voltage	V _{IH} (1)	Ports 1, 2, P70 port input/ interrupt side		1.8 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (2)	Ports 0		1.8 to 5.5	0.3V _{DD} +0.7		V_{DD}	
	V _{IH} (3)	Port 70 watchdog timer side		1.8 to 5.5	0.9V _{DD}		V _{DD}	V
	V _{IH} (4)	CF1, RES		1.8 to 5.5	0.75V _{DD}		V_{DD}	
Low level	V _{IL} (1)	Ports 1, 2,		4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
input voltage		P70 port input/ interrupt side		1.8 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (2)	Ports 0		4.0 to 5.5	V _{SS}		0.15V _{DD} +0.4	
				1.8 to 4.0	VSS		0.2V _{DD}	
	V _{IL} (3)	Port 70 watchdog timer side		1.8 to 5.5	V _{SS}		0.8V _{DD} -1.0	
	V _{IL} (4)	CF1, RES		1.8 to 5.5	V _{SS}		0.25V _{DD}	
Instruction	tCYC			2.7 to 5.5	0.245		200	
cycle time	(Note 2-2)			2.2 to 5.5	0.294		200	μs
(Note 2-1)				1.8 to 5.5	0.735		200	,,,,
External	FEXCF	CF1	CF2 pin open	2.7 to 5.5	0.1		12	
system clock frequency			System clock frequency division ratio=1/1 External system clock duty=50±5%	1.8 to 5.5	0.1		4	
			CF2 pin open	3.0 to 5.5	0.2		24.4	MHz
			System clock frequency division ratio=1/2 External system clock duty=50±5%	2.0 to 5.5	0.2		8	
Oscillation frequency	FmCF(1)	CF1, CF2	12MHz ceramic oscillation. See Fig. 1.	2.7 to 5.5		12		
range (Note 2-3)	FmCF(2)	CF1, CF2	10MHz ceramic oscillation. See Fig. 1.	2.2 to 5.5		10		
	FmCF(3)	CF1, CF2	4MHz ceramic oscillation. CF oscillation normal amplifier size selected. (CFLAMP=0) See Fig. 1.	1.8 to 5.5		4		
			4MHz ceramic oscillation. CF oscillation low amplifier size selected. (CFLAMP=1) See Fig. 1.	2.2 to 5.5		4		MHz
	FmMRC		Frequency variable RC oscillation. 1/2 frequency division ration. (RCCTD=0) (Note 2-4)	2.7 to 5.5	7.44	8.0	8.56	
	FmRC		Internal medium-speed RC oscillation	1.8 to 5.5	0.5	1.0	2.0	
	FmSRC		Internal low-speed RC oscillation	1.8 to 5.5	50	100	200	
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 2.	1.8 to 5.5		32.768		kHz
	•	•						

- Note 2-1: V_{DD} must be held greater than or equal to 2.2V in the flash ROM onboard programming mode.
- Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.
- Note 2-3: See Tables 1 and 2 for the oscillation constants.
- Note 2-4: When switching the system clock, allow an oscillation stabilization time of 100µs or longer after the multifrequency RC oscillator circuit transmits from the "oscillation stopped" to "oscillation enabled" state.

Electrical Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C,\,V_{SS}1 = 0V$

Parameter	Symbol	Pin/Remarks	Conditions			Specifica	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Ports 0, 1, 2, P70, RES	Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)	1.8 to 5.5			1	
	I _{IH} (2)	CF1	$V_{IN}=V_{DD}$	1.8 to 5.5			15	
Low level input current	I _{IL} (1)	Ports 0, 1, 2, P70, RES	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	1.8 to 5.5	-1			μΑ
	I _{IL} (2)	CF1	V _{IN} =V _{SS}	1.8 to 5.5	-15			
High level output	V _{OH} (1)	Ports 0, 1, 2	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)		I _{OH} =-0.35mA	2.7 to 5.5	V _{DD} -0.4			
	V _{OH} (3)		I _{OH} =-0.15mA	1.8 to 5.5	V _{DD} -0.4			
Low level output	V _{OL} (1)	Ports 0, 1, 2	I _{OL} =10mA	4.5 to 5.5			1.5	
voltage	V _{OL} (2)		I _{OL} =1.4mA	2.7 to 5.5			0.4	
	V _{OL} (3)		I _{OL} =0.8mA	1.8 to 5.5			0.4	V
	V _{OL} (4)	P70	I _{OL} =1.4mA	2.7 to 5.5			0.4	
	V _{OL} (5)		I _{OL} =0.8mA	1.8 to 5.5			0.4	
	V _{OL} (6)	P00, P01	I _{OL} =25mA	4.5 to 5.5			1.5	
	V _{OL} (7)		I _{OL} =4mA	2.7 to 5.5			0.4	
	V _{OL} (8)		I _{OL} =2mA	1.8 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Ports 0, 1, 2	V _{OH} =0.9V _{DD}	4.5 to 5.5	15	35	80	
	Rpu(2)	- P70	When Port 0 selected low-impedance pull-up.	1.8 to 4.5	18	50	230	kΩ
	Rpu(3)	Port 0	V _{OH} =0.9V _{DD} When Port 0 selected high-impedance pull-up.	1.8 to 5.5	100	210	400	K12
Hysteresis voltage	VHYS(1)	Ports 1, 2, P70,		2.7 to 5.5		0.1V _{DD}		
	VHYS(2)	RES		1.8 to 2.7		0.07V _{DD}		V
Pin capacitance	СР	All pins	For pins other than that under test: VIN=VSS f=1MHz Ta=25°C	1.8 to 5.5		10		pF

Serial I/O Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = 0V$

1. SIO0 Serial I/O Characteristics (Note 4-1-1)

Parameter		Daramatar	Cumbal	Pin/	Conditions			Speci	fication	
	1		rameter Symbol Remarks Conditions		Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	• See Fig. 5.		2			
	Input clock	Low level pulse width	tSCKL(1)			1.8 to 5.5	1			40)/0
Serial clock	lupi	High level pulse width	tSCKH(1)				1			tCYC
erial	k	Frequency	tSCK(2)	SCK0(P12)	CMOS output selected		4/3			
S	Output clock	Low level pulse width	tSCKL(2)		• See Fig. 5.	1.8 to 5.5	1/2			tSCK
	Out	High level pulse width	tSCKH(2)					1/2		ISON
Serial input	Data setup time tsl Data hold time thl		tsDI(1)	SB0(P11), SI0(P11)	Must be specified with respect to rising edge of	1.8 to 5.5	0.05			
Seria			thDI(1)		SIOCLK. • See Fig. 5.	1.6 (0 5.5	0.05			
	Input clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11)	Continuous data transmission/reception mode (Note 4-1-2)				(1/3)tCYC +0.08	
Serial output	ıdul		tdD0(2)		• Synchronous 8-bit mode (Note 4-1-2)	1.8 to 5.5			1tCYC +0.08	μs
Serial	Output clock		tdD0(3)		(Note 4-1-2)	1.6 10 5.5			(1/3)tCYC +0.08	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5.

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

Parameter		Daramatar	Symbol Pin/ Conditions				Specification				
		Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
	×	Frequency	tSCK(3)	SCK1(P15)	See Fig. 5.		2				
	Input clock	Low level pulse width	tSCKL(3)			1.8 to 5.5	1				
Serial clock	In	High level pulse width	tSCKH(3)				1			tCYC	
Serial	ck	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected See Fig. 5.		2				
	Output clock	Low level pulse width	tSCKL(4)			1.8 to 5.5		1/2		+00K	
	nO	High level pulse width	tSCKH(4)					1/2		tSCK	
Serial input	· ·		tsDI(2)	SB1(P14), SI1(P14)	Must be specified with respect to rising edge of SIOCLK. See Fig. 5.	401.55	0.05				
Serial	Data hold time thDI(2		thDI(2)			1.8 to 5.5	0.05				
Serial output	Output delay time		tdD0(4)	SO1(P13), SB1(P14)	Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5.	1.8 to 5.5			(1/3)tCYC +0.08	μs	

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at Ta = -40°C to +85°C, $V_{SS}1 = 0V$

<u> </u>	0 1 1	D' (D	0 - 111		Specification					
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit		
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P70), INT1(P17), INT2(P16), INT4(P20 to P21)	Interrupt source flag can be set. Event inputs for timer 0 or 1 are enabled.	1.8 to 5.5	1					
	tPIH(2) tPIL(2)	INT3(P15) when noise filter time constant is 1/1	Interrupt source flag can be set. Event inputs for timer 0 are enabled.	1.8 to 5.5	2			tCYC		
	tPIH(3) tPIL(3)	INT3(P15) when noise filter time constant is 1/32	Interrupt source flag can be set. Event inputs for timer 0 are nabled.	1.8 to 5.5	64					
	tPIH(4) tPIL(4)	INT3(P15) when noise filter time constant is 1/128	Interrupt source flag can be set. Event inputs for timer 0 are enabled.	1.8 to 5.5	256					
	tPIL(5)	RES	Resetting is enabled.	1.8 to 5.5	200			μs		

Power-on Reset (POR) Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = 0V$

						Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
POR release	PORRL		Select from option.	1.67V	1.55	1.67	1.79	
voltage			(Note 7-1)	1.97V	1.85	1.97	2.09	
				2.07V	1.95	2.07	2.19	
				2.37V	2.25	2.37	2.49	
				2.57V	2.45	2.57	2.69	
			2.87V	2.75	2.87	2.99	V	
		ļ		3.86V	3.73	3.86	3.99	
				4.35V	4.21	4.35	4.49	
Detection voltage unknown state	POUKS		• See Fig. 7. (Note 7-2)			0.7	0.95	
Power supply rise time	PORIS		Power supply rise time from 0V to 1.6V.				100	ms

Note7-1: The POR release level can be selected out of 8 levels only when the LVD reset function is disabled.

Note7-2: POR is in an unknown state before transistors start operation.

Low Voltage Detection Reset (LVD) Characteristics at Ta = -40°C to +85°C, $V_{SS}1=0V$

						Specific	ation	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
LVD reset voltage	LVDET		Select from option.	1.91V	1.81	1.91	2.01	
(Note 8-2)			(Note 8-1)	2.01V	1.91	2.01	2.11	
			(Note 8-3) • See Fig. 8.	2.31V	2.21	2.31	2.41	
			• See Fig. 6.	2.51V	2.41	2.51	2.61	V
				2.81V	2.71	2.81	2.91	
				3.79V	3.69	3.79	3.89	
				4.28V	4.18	4.28	4.38	
LVD hysteresys	LVHYS			1.91V		55		
width		2.01V		55				
				2.31V		55		
				2.51V		55		mV
				2.81V		60		
				3.79V		65		
				4.28V		65		
Detection voltage unknown state	LVUKS		• See Fig. 8. (Note 8-4)			0.7	0.95	V
Low voltage detection minimum width (Reply sensitivity)	TLVDW		• LVDET-0.5V • See Fig. 9.		0.2			ms

Note8-1: The LVD reset level can be selected out of 7 levels only when the LVD reset function is enabled.

Note8-2: LVD reset voltage specification values do not include hysteresis voltage.

Note8-3: LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Note8-4: LVD is in an unknown state before transistors start operation.

Consumption Current Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1 = 0V$

D	Cumhal	Pin/	0 - 155			Specif	ication	
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Normal mode consumption current	IDDOP(1)	V _{DD} 1	FmCF=12MHz ceramic oscillation mode System clock set to 12MHz side Internal low speed and medium speed RC	2.7 to 5.5		7.4	13.0	
(Note 9-1) (Note 9-2)			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.7 to 3.6		4.4	8.1	
	IDDOP(2)		CF1=24MHz external clock System clock set to CF1 side Internal low speed and medium speed RC	3.0 to 5.5		9.7	16.2	
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	3.0 to 3.6		5.3	8.7	
	IDDOP(3)		FmCF=10MHz ceramic oscillation mode System clock set to 10MHz side Internal low speed and medium speed RC oscillation stopped.	2.2 to 5.5		6.6	11.9	
			Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.2 to 3.6		4.0	7.4	
	IDDOP(4)		FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side Internal low speed and medium speed RC	1.8 to 5.5		2.9	6.5	
			oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	1.8 to 3.6		2.2	4.2	mA
	IDDOP(5)		CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side	2.2 to 5.5		1.1	2.5	
			Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio	2.2 to 3.6		0.6	1.3	
	IDDOP(6)		FsX'tal=32.768kHz crystal oscillation mode Internal low speed RC oscillation stopped. System clock set to internal medium speed	1.8 to 5.5		0.6	1.7	
			RC oscillation. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	1.8 to 3.6		0.3	0.9	
	IDDOP(7)		FsX'tal=32.768kHz crystal oscillation mode Internal low speed and medium speed RC oscillation stopped.	2.7 to 5.5		5.0	9.1	
			System clock set to 8MHz with frequency variable RC oscillation 1/1 frequency division ratio	2.7 to 3.6		3.6	5.8	
	IDDOP(8)		External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC oscillation.	1.8 to 5.5		75	370	
			 Internal medium speed RC oscillation sopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	1.8 to 3.6		46	192	
	IDDOP(9)		External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC	5.0		75	176	μА
			oscillation. Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped.	3.3		46	115	
			1/1 frequency division ratio Ta=-10 to +50°C	2.5		35	85	

Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Continued from preceding page.

	preceding page.	Pin/	0			Specif	fication	
Parameter	Symbol	remarks	Conditions	V _{DD} [V]	min	typ	max	unit
HALT mode consumption current (Note 9-1)	IDDHALT(7)	V _{DD} 1	HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal low speed and medium speed RC oscillation stopped.	2.7 to 5.5		1.8	3.5	mA
(Note 9-2)			System clock set to 8MHz with frequency variable RC oscillation 1/1 frequency division ratio	2.7 to 3.6		1.1	2.0	
	IDDHALT(8)		HALT mode External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC	1.8 to 5.5		23	260	
			oscillation. Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	1.8 to 3.6		13	119	
	IDDHALT(9)		HALT mode External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC	5.0		23	65	
			oscillation. • Internal medium speed RC oscillation stopped.	3.3		13	35	
			 Frequency variable RC oscillation stopped. 1/1 frequency division ratio Ta=-10 to +50°C 	2.5		9.2	25	
	IDDHALT(10)		HALT mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal low speed and medium speed RC	1.8 to 5.5		25	112	
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	1.8 to 3.6		8.5	56	
	IDDHALT(11)		HALT mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side	5.0		25	69	μА
			Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped.	3.3		8.5	29	μΛ
			1/2 frequency division ratio Ta=-10 to +50°C	2.5		4.2	15	
HOLD mode	IDDHOLD(1)		HOLD mode	1.8 to 5.5		0.04	30	
consumption current			CF1=V _{DD} or open (External clock mode)	1.8 to 3.6		0.02	21	
(Note 9-1)	IDDHOLD(2)		HOLD mode	5.0		0.04	2.3	
(Note 9-2)			CF1=V _{DD} or open (External clock mode) Ta=-10 to +50°C	3.3		0.02	1.5	
			14-10101000	2.5		0.017	1.2	
	IDDHOLD(3)		HOLD mode	1.8 to 5.5		3.2	35	
			CF1=V _{DD} or open (External clock mode) LVD option selected	1.8 to 3.6		2.7	24	
	IDDHOLD(4)		HOLD mode	5.0		3.2	6.5	
			CF1=V _{DD} or open (External clock mode) Ta=-10 to +50°C	3.3		2.7	4.5	
			LVD option selected	2.5		2.5	4.2	
Timer HOLD	IDDHOLD(5)		Timer HOLD mode	1.8 to 5.5		22	106	
mode			FsX'tal=32.768 kHz crystal oscillation mode	1.8 to 3.6		7.5	45	
consumption current	IDDHOLD(6)		Timer HOLD mode	5.0		22	62	
(Note 9-1)			• FsX'tal=32.768kHz crystal oscillation mode	3.3		7.5	23	
(Note 9-2)			• Ta=-10 to +50°C	2.5		2.9	12	

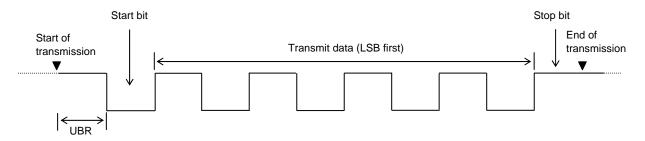
Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

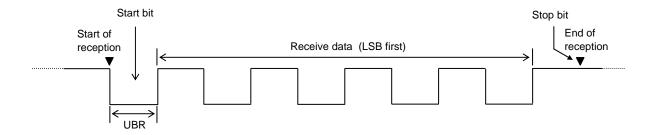
F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = 0V$

Danamatan	0	Pin/Remarks	O and the man		Specification			
Parameter	Symbol		Conditions	V _{DD} [V]	min	typ	max	unit
Onboard	IDDFW(1)	V _{DD} 1	Only current of the Flash block.					
programming				2.2 to 5.5		5	10	mA
current								
Programming	tFW(1)		Erasing time	0.04- 5.5		20	30	ms
time	tFW(2)		Programming time	2.2 to 5.5		40	60	μs

UART (Full Duplex) Operating Conditions at Ta = -40°C to +85°C, $V_{SS}1 = 0V$


Parameter	O. made ad	Pin/Remarks	O and distant		Specification				
	Symbol		Conditions	V _{DD} [V]	min	typ	max	unit	
Transfer rate	UBR	UTX(P20) URX(P21)		1.8 to 5.5	16/3		8192/3	tCYC	

Data length: 7/8/9 bits (LSB first)


Stop bits: 1 bit (2-bit in continuous data transmission)

Parity bits: None

Example of Continuous 8-bit Data Transmission Mode Processing (First Transmit Data=55H)

Example of Continuous 8-bit Data Reception Mode Processing (First Receive Data=55H)

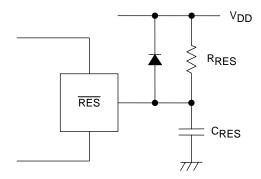
Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

• CF oscillation normal amplifier size selected (CFLAMP=0)

■MURATA


Nominal	_	Oscillator Name		Circui	t Constant		Operating	Oscillation Stabilization Time			
Frequency	Туре	Oscillator Name	C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Voltage Range [V]	typ [ms]	max [ms]	Remarks	
12MHz	SMD	CSTCE12M0G52-R0	(10)	(10)	Open	1.0k	2.7 to 5.5	0.1	0.5		
	OMD COTO	0070540M0050 D0	(40)	(40)	Open	680	2.2 to 3.6	0.1	0.5		
10MHz SMD	CSTCE10M0G52-R0	(10)	(10)	Open	1.0k	2.3 to 5.5	0.1	0.5			
	LEAD	CSTLS10M0G53-B0	(15)	(15)	Open	1.0k	2.5 to 5.5	0.1	0.5		
	SMD	CSTCE8M00G52-R0	(10)	(10)	Open	1.5k	2.2 to 5.5	0.1	0.5		
8MHz	LEAD	CSTLS8M00G53-B0	(45)	(15)	Open	1.0k	2.2 to 3.6	0.1	0.5	Internal C1, C2	
	LEAD	CSTLS6MI00G53-B0	(15)		Open	1.5k	2.4 to 5.5	0.1	0.5		
CNALL-	SMD	CSTCR6M00G53-R0	(15)	(15)	Open	2.2k	2.2 to 5.5	0.1	0.5		
6MHz	LEAD	CSTLS6M00G53-B0	(15)	(15)	Open	2.2k	2.2 to 5.5	0.1	0.5		
	SMD	CSTCR4M00G53-R0	(15)	(45)	Open	1.5k	1.8 to 2.7	0.2	0.6		
4MHz	SIVID			15) (15)	Open	3.3k	1.9 to 5.5	0.2	0.6		
	LEAD	CSTLS4M00G53-B0	(15)	(15)	Open	3.3k	1.9 to 5.5	0.2	0.6		

• CF oscillation low amplifier size selected (CFLAMP=1)

■MURATA

Nominal Type Frequency	T	On alliate a Name		Circuit (Constant		Operating Oscillation Voltage Stabilization T			Remarks	
	Oscillator Name	C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Range [V]	typ [ms]	max [ms]	Remarks		
	00700 4400050 00	(4.5)	5) (45)	Open	1.0k	2.3 to 2.7	0.2	0.6			
	SMD	CSTCR4M00G53-R0	(15)	(15)	Open	2.2k	2.5 to 5.5	0.2	0.6	Internal C1,C2	
4MHz		CSTCR4M00G53095-R0	(15)	(15)	Open	1.0k	2.1 to 2.7	0.2	0.7		
4IVITZ		OOT! 04M00050 D0	(45)		Open	1.0k	2.3 to 2.7	0.2	0.6		
LEAD	CSTLS4M00G53-B0	(15)	(15)	Open	2.2k	2.5 to 5.5	0.2	0.6			
		CSTLS4M00G53095-B0	(15)	(15)	Open	1.0k	2.1 to 2.7	0.2	0.7		

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Figure 3).

Note:

External circuits for reset may vary depending on the usage of POR and LVD. Please refer to the user's manual for more information.

Figure 4 Reset Circuit

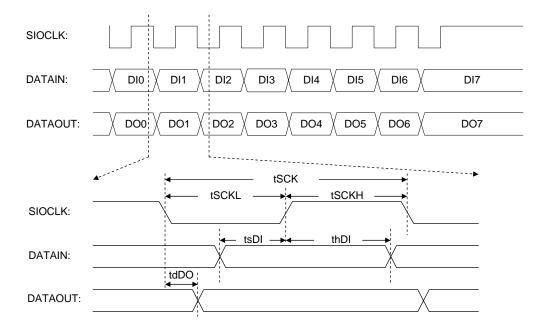


Figure 5 Serial I/O Output Waveforms

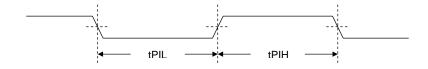


Figure 6 Pulse Input Timing Signal Waveform

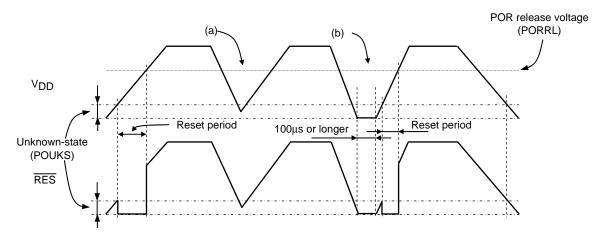


Figure 7 Waveform observed when only POR is used (LVD not used) (RESET pin: Pull-up resistor RRES only)

- The POR function generates a reset only when power is turned on starting at the VSS level.
- No stable reset will be generated if power is turned on again when the power level does not go down to the VSS level as shown in (a). If such a case is anticipated, use the LVD function together with the POR function or implement an external reset circuit.
- A reset is generated only when the power level goes down to the VSS level as shown in (b) and power is turned on again after this condition continues for 100µs or longer.

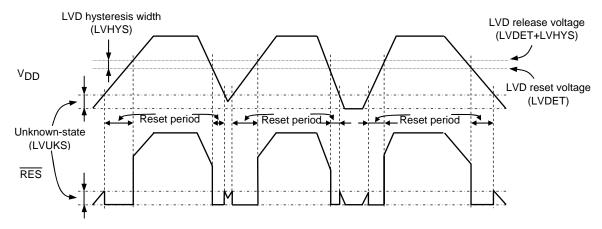


Figure 8 Waveform observed when both POR and LVD functions are used (RESET pin: Pull-up resistor R_{RES} only)

- Resets are generated both when power is turned on and when the power level lowers.
- A hysteresis width (LVHYS) is provided to prevent the repetitions of reset release and entry cycles near the detection level.

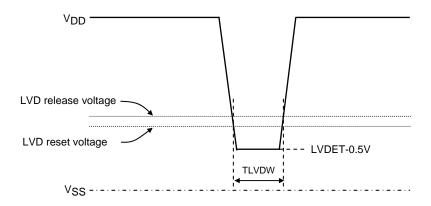


Figure 9 Low voltage detection minimum width (Example of momentary power loss/Voltage variation waveform)

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa