

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1934-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IABL	E 1		28	5-PIN 3			-16(L)F	1936)						-	
0/1	28-Pin SPDIP	28-Pin QFN/UQFN	ANSEL	A/D	Cap Sense	Comparator	SR Latch	Timers	ССР	EUSART	MSSP	ГСD	Interrupt	Pull-up	Basic
RA0	2	27	Y	AN0	—	C12IN0-/ C2OUT ⁽¹⁾	SRNQ ⁽¹⁾		_	—	SS ⁽¹⁾	SEG12	—	—	VCAP ⁽²⁾
RA1	3	28	Y	AN1	_	C12IN1-	_	_	_	_	_	SEG7	_	_	—
RA2	4	1	Y	AN2/ VREF-	-	C2IN+/ DACOUT	—	-	_	-	—	COM2	—	-	—
RA3	5	2	Y	AN3/ VREF+	—	C1IN+	—		_	—	—	SEG15/ COM3	—	-	—
RA4	6	3	Y	—	CPS6	C10UT	SRQ	T0CKI	CCP5	—	—	SEG4	—		—
RA5	7	4	Y	AN4	CPS7	C2OUT ⁽¹⁾	SRNQ ⁽¹⁾	—	_	—	SS ⁽¹⁾	SEG5	_	_	VCAP ⁽²⁾
RA6	10	7		_	_	_	_			—	_	SEG1	_	—	OSC2/ CLKOUT V _{CAP} ⁽²⁾
RA7	9	6		-	—	_	—		_	-	—	SEG2	—	—	OSC1/ CLKIN
RB0	21	18	Y	AN12	CPS0	—	SRI	-	CCP4	-	—	SEG0	INT/ IOC	Y	—
RB1	22	19	Y	AN10	CPS1	C12IN3-	_	-	P1C	—	—	VLCD1	IOC	Y	—
RB2	23	20	Y	AN8	CPS2	_	_		P1B	_	_	VLCD2	IOC	Y	—
RB3	24	21	Y	AN9	CPS3	C12IN2-	_		CCP2 ⁽¹⁾ / P2A ⁽¹⁾	—	_	VLCD3	IOC	Y	—
RB4	25	22	Y	AN11	CPS4	—	_	_	P1D	_	—	COM0	IOC	Y	—
RB5	26	23	Y	AN13	CPS5	-	—	T1G ⁽¹⁾	P2B ⁽¹⁾ CCP3 ⁽¹⁾ / P3A ⁽¹⁾	—	—	COM1	IOC	Y	_
RB6	27	24	l	—	_	—	—			—	_	SEG14	IOC	Y	ICSPCLK/ ICDCLK
RB7	28	25		-	—	—	—	-	_	-	—	SEG13	IOC	Y	ICSPDAT/ ICDDAT
RC0	11	8	-	-	-	—	—	T1OSO/ T1CKI	P2B ⁽¹⁾	-	—	—	—	-	—
RC1	12	9	-	-	—	—	—	T10SI	CCP2 ⁽¹⁾ / P2A ⁽¹⁾	-	—	_	—	-	—
RC2	13	10	-	-	—	-	—	-	CCP1/ P1A	-	—	SEG3	—	-	—
RC3	14	11		—	_	—	_	-	-	—	SCK/SCL	SEG6	—		—
RC4	15	12		—	_	_	_	T1G ⁽¹⁾		_	SDI/SDA	SEG11	_	_	—
RC5	16	13		—	_	—	_		-	—	SDO	SEG10	—		—
RC6	17	14	l	_	_	_	—	1	CCP3 ⁽¹⁾ P3A ⁽¹⁾	TX/CK	_	SEG9	_	_	—
RC7	18	15	_			-		_	P3B	RX/DT		SEG8	—	_	
RE3	1	26					—				—		—	Y	MCLR/VPP
VDD	20	17	_	_	_	—	_	_	_	—	_	_	_	_	Vdd
Vss	8, 19	5, 16	_	-	-	-	-	—	—	-	_	—	-	-	Vss

20 DINI CLIMMADY (DIC46/L)E4026)

Note 1: Pin functions can be moved using the APFCON register.

PIC16F1936 devices only. 2:

TABLE 3-11:PIC16(L)F1934/6/7 MEMORY
MAP, BANK 31

		Bank 31	
	F8Ch		
		Unimplemented Read as '0'	
	FE3h		
	FE4h	STATUS_SHAD	
	FE5h	WREG_SHAD	
	FE6h	BSR_SHAD	
	FE7h	PCLATH_SHAD	
	FE8h	FSR0L_SHAD	
	FE9h	FSR0H_SHAD	
	FEAh	FSR1L_SHAD	
	FEBh	FSR1H_SHAD	
	FECh	—	
	FEDh	STKPTR	
	FEEh	TOSL	
	FEFh	TOSH	
Lege	end: as	= Unimplemented data '0'.	memory locations, read

3.2.6 SPECIAL FUNCTION REGISTERS SUMMARY

The Special Function Register Summary for the device family are as follows:

Device	Bank(s)	Page No.
	0	39
	1	40
	2	41
	3	42
	4	43
	5	44
PIC16(L)F1934/6/7	6	45
	7	46
	8	47
	9-14	48
	15	49
	16-30	51
	31	52

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- Automatic Context Saving

Many peripherals produce Interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 7-1.

7.6.3 PIE2 REGISTER

The PIE2 register contains the interrupt enable bits, as shown in Register 7-3.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 7-3:	PIE2: PERIPHERAL	INTERRUPT ENABL	E REGISTER 2
		=	

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	—	CCP2IE
bit 7							bit 0

Legend:			
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unch	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set		'0' = Bit is cleared	
bit 7	OSFIE: Oscil	lator Fail Interrupt Enable bit	
	1 = Enables 0 = Disables	the Oscillator Fail interrupt the Oscillator Fail interrupt	
bit 6	C2IE: Compa	arator C2 Interrupt Enable bit	
	1 = Enables 0 = Disables	the Comparator C2 interrupt the Comparator C2 interrupt	t
bit 5	C1IE: Compa	arator C1 Interrupt Enable bit	
	1 = Enables 0 = Disables	the Comparator C1 interrupt the Comparator C1 interrupt	t
bit 4	EEIE: EEPRO	OM Write Completion Interru	pt Enable bit
	1 = Enables 0 = Disables	the EEPROM Write Complet the EEPROM Write Comple	ion interrupt tion interrupt
bit 3	BCLIE: MSS	P Bus Collision Interrupt Ena	ble bit
	1 = Enables	the MSSP Bus Collision Inte	rrupt
	0 = Disables	the MSSP Bus Collision Inte	errupt
bit 2	LCDIE: LCD	Module Interrupt Enable bit	
	1 = Enables 0 = Disables	the LCD module interrupt	
bit 1	Unimplemen	ited: Read as '0'	
bit 0	CCP2IE: CCI	P2 Interrupt Enable bit	
	1 = Enables	the CCP2 interrupt	
	0 = Disables	the CCP2 interrupt	

7.6.6 PIR2 REGISTER

The PIR2 register contains the interrupt flag bits, as shown in Register 7-6.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 7-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0			
OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF		CCP2IF			
bit 7										

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	OSFIF: Oscillator Fail Interrupt Flag
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 6	C2IF: Comparator C2 Interrupt Flag
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 5	C1IF: Comparator C1 Interrupt Flag
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 4	EEIF: EEPROM Write Completion Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 3	BCLIF: MSSP Bus Collision Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 2	LCDIF: LCD Module Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 1	Unimplemented: Read as '0'
bit 0	CCP2IF: CCP2 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending

12.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. The APFCON register is shown in Register 12-1. For this device family, the following functions can be moved between different pins.

- SS (Slave Select)
- P2B output
- CCP2/P2A output
- CCP3/P3A output
- Timer1 Gate
- SR Latch SRNQ output
- Comparator C2 output

These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	—			CHS<4:0>			GO/DONE	ADON	163
ADCON1	ADFM		ADCS<2:0>		—	ADNREF	ADPRE	F<1:0>	164
ANSELA	—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	134
APFCON	—	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	131
CM1CON0	C10N	C1OUT	C10E	C1POL	—	C1SP	C1HYS	C1SYNC	183
CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2SP	C2HYS	C2SYNC	183
CM1CON1	C1NTP	C1INTN	C1PCI	H<1:0>	—	_	C1NCI	H<1:0>	184
CM2CON1	C2NTP	C2INTN	C2PCł	H<1:0>	—	—	C2NCI	H<1:0>	184
CPSCON0	CPSON	—	—	—	CPSRN	IG<1:0>	CPSOUT	TOXCS	323
CPSCON1	—	—	_	—		CPSCI	H<3:0>		324
DACCON0	DACEN	DACLPS	DACOE		DACPS	S<1:0>		DACNSS	176
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	133
LCDCON	LCDEN	SLPEN	WERR	—	CS<	:1:0>	LMUX	(<1:0>	329
LCDSE0	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	333
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	333
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		193
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	133
SRCON0	SRLEN	:	SRCLK<2:0>	•	SRQEN	SRNQEN	SRPS	SRPR	189
SSPCON1	WCOL	SSPOV	SSPEN	СКР		SSPN	1<3:0>		287
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	133

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	—	FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD	00
CONFIGT	7:0	CP	MCLRE	MCLRE PWRTE		WDTE<1:0>		FOSC<2:0>		62
	13:8	_	_	LVP	DEBUG	_	BORV	STVREN	PLLEN	0.4
CONFIG2	7:0	_	_	VCAPEN	N<1:0> ⁽¹⁾	_	_	WRT	<1:0>	04

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

Legend: — = unimplemented lo Note 1: PIC16F1934/6/7 only.

FIGURE 19-1: SR LATCH SIMPLIFIED BLOCK DIAGRAM

FIGURE 21-5:	TIMER1 GATE SINGLE-PULSE MODE
TMR1GE	
T1GPOL	
T1GSPM	
T1GG <u>O/</u> DONE	Set by software Cleared by hardware on falling edge of T1GVAL
T1G_IN	rising edge of T1G
т1СКІ	
T1GVAL	
TIMER1	N N + 1 N + 2
TMR1GIF	Cleared by Software Set by hardware on falling edge of T1GVAL

FIGURE 24-9:	SPI MODE WAVEFORM	(SLAVE MODE WITH CKE = 0)

	۱. ۲										7 (
- SCX - (GC ² 7 c	-										4 3 4 3 <u>4</u>
- (388) = (3) - (329×		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·	- 	; ; ;				· • •	(() 2
Version do SERPERIER VERE			: • ; • ; •	د ، د د	, , ,	< ; ; ;	c s s	> - - 	, , , , , ,	, ; ; ,	
\$920		K ber		X 88 8	X 338.4	X 288.3	x Xana z	X 68	X	68 G	2, * 15, 3,2 *
- 903								////////////////////////////////			7 3 4
ingni Sæmpie					4-		; ; ;; ;;	. 49. 		2 * / : : : :	
in second In the market		: : : :	· · · · · · · · · · · · · · · · · · ·	> 3 > 3 > 3 > 3 > 3 > 3 > 3 > 3 > 3 > 3			> > < <	• • • •	· · ·		
- 798 SSPSR 20 SSPSR 20		· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,	<		; ; ;	- s s 5	, ; ;	· :	ц.	
Wills Collision Manageliae active									·		

FIGURE 24-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

SS				/
SCK (CKP = <u>0</u> CKE = 1)		ļ		
SCK (CKP = 1 CKE = 1)				
Write to SSPBUF		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
SDO	bit 7 bit 6	bit 5 bit 4 bit	3 bit 2 bit 1	bit 0
SDI	bit 7		$\rightarrow \bigcirc \bigcirc$	bit 0
Input Sample	<u> </u>	<u>↑</u> ↑ ↑	<u>↑</u> ↑	↑
SSPIF Interrupt Flag				
SSPSR to SSPBUF		1 1 1 1 1 1 1 1 1 1 1		
Wite Collision				

24.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

The CKP bit of the SSPCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

24.5.6.1 Normal Clock Stretching

Following an \overline{ACK} if the R/ \overline{W} bit of SSPSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPBUF with data to transfer to the master. If the SEN bit of SSPCON2 is set, the slave hardware will always stretch the clock after the \overline{ACK} sequence. Once the slave is ready, CKP is set by software and communication resumes.

- Note 1: The BF bit has no effect on whether the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSPBUF was read before the 9th falling edge of SCL.
 - 2: Previous versions of the module did not stretch the clock for a transmission if SSPBUF was loaded before the 9th falling edge of SCL. It is now always cleared for read requests.

24.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set, the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSPADD.

Note:	Previous versions of the module did not
	stretch the clock if the second address byte
	did not match.

24.5.6.3 Byte NACKing

When the AHEN bit of SSPCON3 is set; CKP is cleared by hardware after the 8th falling edge of SCL for a received matching address byte. When the DHEN bit of SSPCON3 is set; CKP is cleared after the 8th falling edge of SCL for received data.

Stretching after the 8th falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

24.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 24-22).

FIGURE 24-23: CLOCK SYNCHRONIZATION TIMING

	D 0/0						
R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
]
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HC = Cleared	d by hardware	S = User set	
bit 7	bit 7 GCEN: General Call Enable bit (in I ² C Slave mode only) 1 = Enable interrupt when a general call address (0x00 or 00h) is received in the SSPSR						ŝR
bit 6	ACKSTAT: Ac 1 = Acknowle 0 = Acknowle	cknowledge Sta dge was not re dge was receiv	atus bit (in I ² C ceived ved	mode only)			
bit 5	5 ACKDT: Acknowledge Data bit (in I ² C mode only) <u>In Receive mode:</u> Value transmitted when the user initiates an Acknowledge sequence at the end of a receive 1 = Not Acknowledge 0 = Acknowledge						
bit 4	 ACKEN: Acknowledge Sequence Enable bit (in I²C Master mode only) <u>In Master Receive mode:</u> 1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit. Automatically cleared by hardware. 0 = Acknowledge sequence Idle 						
bit 3	RCEN: Receive Enable bit (in I ² C Master mode only) 1 = Enables Receive mode for I ² C 0 = Receive Idle						
bit 2	PEN: Stop Condition Enable bit (in I ² C Master mode only) <u>SCKMSSP Release Control:</u> 1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Stop condition Idle						
bit 1	 RSEN: Repeated Start Condition Enabled bit (in I²C Master mode only) 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle 				ardware.		
bit 0	SEN: Start Co In Master moo 1 = Initiate Sta 0 = Start conc In Slave mod	ondition Enable <u>de:</u> art condition or lition Idle	d bit (in I ² C M I SDA and SC	aster mode or L pins. Automa	nly) atically cleared l	by hardware.	
	1 = Clock stre 0 = Clock stre	etching is enabl etching is disab	ed for both sla led	ave transmit ar	nd slave receive	e (stretch enabl	ed)
Note 1. For	hite ACKEN D			na 1 ² C modula	in not in the Idl	a mada thia hi	t may not be

REGISTER 24-3: SSPCON2: SSP CONTROL REGISTER 2

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

25.3.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 25-9 for the timing of the Break character sequence.

25.3.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.

5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

25.3.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTA register and the Received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- · RCIF bit is set
- FERR bit is set
- RCREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 25.3.3** "Auto-Wake-up on **Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCON register before placing the EUSART in Sleep mode.

FIGURE 25-9: SEND BREAK CHARACTER SEQUENCE

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a two-cycle instruc- tion. This branch has a limited range.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label]BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BRW	Relative Branch with W		
Syntax:	[label] BRW		
Operands:	None		
Operation:	$(PC) + (W) \to PC$		
Status Affected:	None		
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be $PC + 1 + (W)$. This instruction is a two-cycle instruc- tion.		

BSF	Bit Set f
Syntax:	[<i>label</i>]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

30.2 DC Characteristics: PIC16(L)F1934/6/7-I/E (Industrial, Extended) (Continued)

PIC16LF1934/36/37											
PIC16F1934/36/37			Standard Operating	d Operati g tempera	ng Condi ature	tions (un -40°C ≤ T/ -40°C ≤ T/	less otherwise stated) $A \le +85^{\circ}C$ for industrial $A \le +125^{\circ}C$ for extended				
Param	Device Characteristics	Min.	Тур†	Max.	Units	Conditions					
No.						Vdd	Note				
D017	Supply Current (IDD) ^(1, 2)										
0017		—	110	180	μA	1.8	Fosc = 500 kHz				
		—	140	250	μA	3.0	MFINTOSC mode				
D017		_	150	250	μΑ	1.8	Fosc = 500 kHz				
		_	210	330	μA	3.0	MFINTOSC mode (Note 5)				
		—	270	430	μA	5.0					
D018		_	1.0	1.4	mA	1.8	Fosc = 8 MHz				
		—	1.8	2.3	mA	3.0	HFINIOSC mode				
D018		_	1.0	1.5	mA	1.8	Fosc = 8 MHz				
		_	1.8	2.3	mA	3.0	HFINTOSC mode (Note 5)				
		_	2.0	2.8	mA	5.0					
D019			1.5	2.2	mA	1.8	Fosc = 16 MHz				
		—	2.8	3.7	mA	3.0	HFINTOSC mode				
D019		_	1.7	2.3	mA	1.8	Fosc = 16 MHz				
			2.9	3.9	mA	3.0	HFINTOSC mode (Note 5)				
		—	3.1	4.1	mA	5.0					
D020		_	4.8	6.2	mA	3.0	Fosc = 32 MHz				
		—	5.0	7.5	mA	3.6	HFINTOSC mode				
D020		_	4.8	6.5	mA	3.0	Fosc = 32 MHz				
		_	5.0	7.5	mA	5.0	HFINTOSC mode				
D021		_	410	550	μA	1.8	Fosc = 4 MHz				
		—	710	990	μΑ	3.0	EXTRC mode (Note 3)				
D021			430	700	μA	1.8	Fosc = 4 MHz				
		_	730	1100	μA	3.0	EXTRC mode (Note 3, Note 5)				
		_	860	1400	μA	5.0					
D022			5.0	6.2	mA	3.0	Fosc = 32 MHz				
			6.0	7.5	mA	3.6	HS Uscillator mode (Note 6)				
D022			5.0	6.5	mA	3.0	Fosc = 32 MHz				
		—	5.2	7.5	mA	5.0	HS Oscillator mode (Note 5, Note 6)				

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

- 4: FVR and BOR are disabled.
- 5: 0.1 μF capacitor on VCAP (RA0).

6: 8 MHz crystal oscillator with 4x PLL enabled.

FIGURE 31-68: PIC16LF1937 WDT

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch	E		0.65 BSC			
Optional Center Pad Width	W2			6.80		
Optional Center Pad Length	T2			6.80		
Contact Pad Spacing	C1		8.00			
Contact Pad Spacing	C2		8.00			
Contact Pad Width (X44)	X1			0.35		
Contact Pad Length (X44)	Y1			0.80		
Distance Between Pads	G	0.25				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

NOTES: