

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1934-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram – 28-Pin SPDIP/SOIC/SSOP (PIC16(L)F1936)

TABLE 3-9:PIC16(L)F1936 MEMORY MAP,
BANK 15

	Bank 15	
791h	LCDCON	
792h	LCDPS	
793h	LCDREF	
794h	LCDCST	
795h		
795h		
790h	_	
798h	LCDSE0	
790h	LCDSE1	
795h		
79A11		
79DH		
7901		
79DN		
79En		
79FN 740b		
7A01	LCDDATA1	
7A2h	_	
7A3h	LCDDATA3]
7A4h	LCDDATA4	
7A5h	—	
7A6h	LCDDATA6	
7A/h	LCDDAIA7	
7A8h		
7A911 7AAh	LCDDATA9	
7ABh	_	
7ACh	_	
7ADh		
7AEh		
74Eh		
780h		
7B0h		
7011		
7 D211		
7 B311 7 B4b		
7 D411 7 D5h		
7 DJII 7 D6h		
7 D011		
7D/11 7D9b		
7 DOI1		
	Unimplemented	
7FFh		
Legend:	= I Inimplemented d	ata memory locations, road
as	- onimplemented d '0'.	ata memory locations, leau

TABLE 3-10:PIC16(L)F1934/7 MEMORY
MAP, BANK 15

	Bank 15	
791h	LCDCON	1
792h	LCDPS	
702h	I CDRFF	
79311	LODOST	
79411		
795h	LCDRL	
796h	_	
797h		
798h	LCDSE0	
799h	LCDSE1	
79Ah	LCDSE2	
79Bh	_	
79Ch	_	
79Dh	_	
70Eh		
70Eb	_	
79F11 740h		
7A01	LCDDATA1	
7A2h	LCDDATA2	
7A3h	LCDDATA3	
7A4h	LCDDATA4	
7A5h	LCDDATA5	
7A6N		
7A/II 7A8b		
7A9h	LCDDATA9	
7AAh	LCDDATA10	
7ABh	LCDDATA11	
7ACh	—	
7ADh	_	
7AEh	_	
7AFh		
7B0h	_	
7B1h		
7D111		
7 0211		
7830		
7B4h	_	
7B5h	_	
7B6h	_	
7B7h	—	
7B8h		
	Unimplemented Read as '0'	
7FFh	-	
		l nta manana la anti-na sur d
Legend: as	= Unimplemented d	ata memory locations, read

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 0	-									-	
000h ⁽²⁾	INDF0	Addressing (not a physi	Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)							XXXX XXXX	XXXX XXXX
001h ⁽²⁾	INDF1	Addressing (not a physi	Addressing this location uses contents of FSR1H/FSR1L to address data memory not a physical register)							XXXX XXXX	XXXX XXXX
002h ⁽²⁾	PCL	Program Co	ounter (PC) Le	ast Significan	t Byte					0000 0000	0000 0000
003h ⁽²⁾	STATUS	—	_	_	TO	PD	Z	DC	С	1 1000	q quuu
004h ⁽²⁾	FSR0L	Indirect Data	Indirect Data Memory Address 0 Low Pointer								uuuu uuuu
005h ⁽²⁾	FSR0H	Indirect Data	a Memory Ado	dress 0 High F	ointer					0000 0000	0000 0000
006h ⁽²⁾	FSR1L	Indirect Data	a Memory Ado	dress 1 Low P	ointer					0000 0000	uuuu uuuu
007h ⁽²⁾	FSR1H	Indirect Data	a Memory Add	dress 1 High F	ointer					0000 0000	0000 0000
008h ⁽²⁾	BSR	_	_	_			BSR<4:0>			0 0000	0 0000
009h ⁽²⁾	WREG	Working Re	gister							0000 0000	uuuu uuuu
00Ah ^(1, 2)	PCLATH	_	Write Buffer f	for the upper 7	bits of the Pro	ogram Counter	r			-000 0000	-000 0000
00Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
00Ch	PORTA	PORTA Data Latch when written: PORTA pins when read							XXXX XXXX	uuuu uuuu	
00Dh	PORTB	PORTB Data Latch when written: PORTB pins when read						XXXX XXXX	uuuu uuuu		
00Eh	PORTC	PORTC Dat	PORTC Data Latch when written: PORTC pins when read						XXXX XXXX	uuuu uuuu	
00Fh ⁽³⁾	PORTD	PORTD Dat	a Latch when	written: POR	TD pins when	read				XXXX XXXX	uuuu uuuu
010h	PORTE	—	—	_	_	RE3	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	xxxx	uuuu
011h	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
012h	PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	—	CCP2IF	0000 00-0	0000 00-0
013h	PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	-000 0-0-	-000 0-0-
014h	_	Unimplemented						—	—		
015h	TMR0	Timer0 Mod	Timer0 Module Register						xxxx xxxx	uuuu uuuu	
016h	TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register						xxxx xxxx	uuuu uuuu		
017h	TMR1H	Holding Reg	gister for the N	lost Significan	t Byte of the 1	6-bit TMR1 Re	egister			xxxx xxxx	uuuu uuuu
018h	T1CON	TMR10	CS<1:0>	T1CKF	PS<1:0>	T10SCEN	T1SYNC	—	TMR10N	0000 00-0	uuuu uu-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GS	S<1:0>	00x0 0x00	uuuu uxuu
01Ah	TMR2	Timer2 Mod	ule Register							0000 0000	0000 0000
01Bh	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
01Ch	T2CON	_		T2OUT	PS<3:0>		TMR2ON	T2CKP	'S<1:0>	-000 0000	-000 0000
01Dh	_	Unimpleme	nted							—	
01Eh	CPSCON0	CPSON	—	_	—	CPSRNG1	CPSRNG0	CPSOUT	T0XCS	0 0000	0 0000
01Fh	CPSCON1	_	_	_	_		CPSCH	<3:0>		0000	0000

TADIE 2 12.	SDECIAL	ELINCTION DECISTED	CIIMMADV
IADLE J-IZ.	SPECIAL	FUNCTION REGISTER	SUMMART

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations are unimplemented, read as '0'. Legend:

The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred Note 1: to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'.

4: Unimplemented, read as '1'.

4.2 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data EEPROM protection are controlled independently. Internal access to the program memory and data EEPROM are unaffected by any code protection setting.

4.2.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Word 1. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See **Section 4.3** "Write **Protection**" for more information.

4.2.2 DATA EEPROM PROTECTION

The entire data EEPROM is protected from external reads and writes by the CPD bit. When CPD = 0, external reads and writes of data EEPROM are inhibited. The CPU can continue to read and write data EEPROM regardless of the protection bit settings.

4.3 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as bootloader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Word 2 define the size of the program memory block that is protected.

4.4 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See **Section 4.5 "Device ID and Revision ID"** for more information on accessing these memory locations. For more information on checksum calculation, see the *"PIC16F193X/LF193X/PIC16F194X/LF194X/PIC16LF 190X Memory Programming Specification"* (DS41397).

6.10 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	0	x	1	1	Power-on Reset
0	0	1	1	0	x	0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	0	1	1	0	x	x	0	Illegal, PD is set on POR
0	0	1	1	u	0	1	1	Brown-out Reset
u	u	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS⁽²⁾

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

2: If a Status bit is not implemented, that bit will be read as '0'.

10.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See the Electrical Specifications Chapters for the LFINTOSC tolerances.

10.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Word 1. See Table 10-1.

10.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Word 1 are set to '11', the WDT is always on.

WDT protection is active during Sleep.

10.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Word 1 are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

10.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Word 1 are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 10-1 for more details.

TABLE 10-1. WDT OPERATING WODES	TABLE 10-1:	WDT OPERATING MODES
---------------------------------	-------------	---------------------

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	Х	Active
10	37	Awake	Active
TO	X	Sleep	Disabled
0.1	1	~	Active
UI	0	^	Disabled
00	х	х	Disabled

TABLE 10-2: WDT CLEARING CONDITIONS

10.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is 2 seconds.

10.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep
- Oscillator fail event
- WDT is disabled
- Oscillator Start-up TImer (OST) is running

See Table 10-2 for more information.

10.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section 5.0** "Oscillator **Module (With Fail-Safe Clock Monitor)**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See **Section 3.0** "**Memory Organization**" and STATUS register (**Register 3-1**) for more information.

Conditions	WDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SWDTEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	Cleared
Oscillator Fail Detected	
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST
Change INTOSC divider (IRCF bits)	Unaffected

11.6 Write Verify

Depending on the application, good programming practice may dictate that the value written to the data EEPROM or program memory should be verified (see Example 11-6) to the desired value to be written. Example 11-6 shows how to verify a write to EEPROM.

EXAMPLE 11-6: EEPROM WRITE VERIFY

BANKSEI	EEDATL		;
MOVF	EEDATL, W	N.	;EEDATL not changed
			;from previous write
BSF	EECON1, F	RD	;YES, Read the
			;value written
XORWF	EEDATL, W	V	;
BTFSS	STATUS, Z	Ζ	;Is data the same
GOTO	WRITE_ERF	ર	;No, handle error
:			;Yes, continue

15.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - · Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 15.3 "A/D Acquisition Requirements".

EXAMPLE 15-1: A/D CONVERSION

;This code block configures the ADC ; for polling, Vdd and Vss references, Frc ;clock and ANO input. ;Conversion start & polling for completion ; are included. BANKSEL ADCON1 ; B'11110000' ;Right justify, Frc MOVLW ;clock MOVWF ADCON1 ;Vdd and Vss Vref BANKSEL TRISA ; BSF TRISA,0 ;Set RA0 to input BANKSEL ANSEL ; BSF ANSEL,0 ;Set RA0 to analog BANKSEL ADCON0 B'00000001' ;Select channel ANO MOVLW MOVWE ;Turn ADC On ADCON0 SampleTime ; Acquisiton delay CALL ADCON0, ADGO ; Start conversion BSF BTFSC ADCON0, ADGO ; Is conversion done? GOTO \$-1 ;No, test again ADRESH ; BANKSEL ADRESH,W ;Read upper 2 bits MOVF MOVWF RESULTHI ;store in GPR space BANKSEL ADRESL ; ADRESL,W MOVF ;Read lower 8 bits MOVWE RESULTIO ;Store in GPR space

21.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

21.4 Timer1 Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the T1OSCEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to using Timer1. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

21.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 21.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	When switching from synchronous to
	asynchronous operation, it is possible to
	skip an increment. When switching from
	asynchronous to synchronous operation,
	it is possible to produce an additional
	increment.

21.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

21.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

21.6.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 21-3 for timing details.

TABLE 21-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
1	1	1	Counts

24.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPCON3 register enables additional clock stretching and interrupt generation after the 8th falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPIF interrupt is set.

Figure 24-18 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled.

- 1. Bus starts Idle.
- 2. Master sends Start condition; the S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the 8th falling edge of the SCL line the CKP bit is cleared and SSPIF interrupt is generated.
- 4. Slave software clears SSPIF.
- Slave software reads ACKTIM bit of SSPCON3 register, and R/W and D/A of the SSPSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets ACKDT bit of the SSPCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPIF.
- 12. Slave loads value to transmit to the master into SSPBUF setting the BF bit.

Note: <u>SSPBUF</u> cannot be loaded until after the <u>ACK</u>.

13. Slave sets CKP bit releasing the clock.

- 14. Master clocks out the data from the slave and sends an ACK value on the 9th SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not \overline{ACK} the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

R/W-0/0	R/W-0/0	R/C-0/0	U-0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1		
LCDEN	SLPEN	WERR	_	CS<1:0>		LMUX<1:0>			
bit 7						•	bit 0		
Legend:									
R = Readable	bit	W = Writable bi	t	U = Unimplem	nented bit, read	as '0'			
u = Bit is uncha	anged	x = Bit is unkno	wn	-n/n = Value a	t POR and BO	R/Value at all of	ther Resets		
'1' = Bit is set		'0' = Bit is clear	ed	C = Only clea	rable bit				
bit 7	LCDEN: LCD	Driver Enable b	it						
	1 = LCD Driv	er module is ena	bled						
	0 = LCD Driv	er module is disa	ibled						
bit 6	SLPEN: LCD	Driver Enable ir	Sleep Mod	e bit					
	1 = LCD Driv 0 = LCD Driv	er module is disa er module is ena	bled in Slee	p mode p mode					
bit 5	WERR: LCD	Write Failed Erro	or bit						
	1 = LCDDAT	An register writt	en while the	e WA bit of the	e LCDPS regis	ter = 0 (must	be cleared in		
	software) vrito orror							
bit 4		while error							
bit 2 2		neu. Neau as 0	t hite						
bit 3-2	0.0 = Fosc/25								
	01 = T1OSC	(Timer1)							
	1x = LFINTO	SC (31 kHz)							
bit 1-0	LMUX<1:0>:	Commons Selec	t bits						
	Maximum Number of Pixels								
		Multiplex	PIC	16(L)F1936	PIC16(PIC16(L)F1934/7			
	00	Static (COM0)		16		24	Static		
	01	1/2 (COM<1:0>)	32		48	1/2 or 1/3		
	10	1/3 (COM<2:0>)	48		72	1/2 or 1/3		
	11	1/4 (COM<3:0>)	60 ⁽¹⁾		96	1/3		

REGISTER 27-1: LCDCON: LIQUID CRYSTAL DISPLAY (LCD) CONTROL REGISTER

Note 1: On these devices, COM3 and SEG15 are shared on one pin, limiting the device from driving 64 pixels.

27.5 LCD Multiplex Types

The LCD driver module can be configured into one of four multiplex types:

- Static (only COM0 is used)
- 1/2 multiplex (COM<1:0> are used)
- 1/3 multiplex (COM<2:0> are used)
- 1/4 multiplex (COM<3:0> are used)

The LMUX<1:0> bit setting of the LCDCON register decides which of the LCD common pins are used (see Table 27-4 for details).

If the pin is a digital I/O, the corresponding TRIS bit controls the data direction. If the pin is a COM drive, then the TRIS setting of that pin is overridden.

Multiplex	LMUX <1:0>	СОМЗ	COM2	COM1
Static	00	Unused	Unused	Unused
1/2	01	Unused	Unused	Active
1/3	10	Unused	Active	Active
1/4	11	Active	Active	Active

TABLE 27-4: COMMON PIN USAGE

27.6 Segment Enables

The LCDSEn registers are used to select the pin function for each segment pin. The selection allows each pin to operate as either an LCD segment driver or as one of the pin's alternate functions. To configure the pin as a segment pin, the corresponding bits in the LCDSEn registers must be set to '1'.

If the pin is a digital I/O, the corresponding TRIS bit controls the data direction. Any bit set in the LCDSEn registers overrides any bit settings in the corresponding TRIS register.

Note: On a Power-on Reset, these pins are configured as normal I/O, not LCD pins.

27.7 Pixel Control

The LCDDATAx registers contain bits which define the state of each pixel. Each bit defines one unique pixel.

Register 27-6 shows the correlation of each bit in the LCDDATAx registers to the respective common and segment signals.

Any LCD pixel location not being used for display can be used as general purpose RAM.

27.8 LCD Frame Frequency

The rate at which the COM and SEG outputs change is called the LCD frame frequency.

TABLE 27-5: FRAME FREQUENCY FORMULAS

Multiplex	Frame Frequency =
Static	Clock source/(4 x 1 x (LPD Prescaler) x 32))
1/2	Clock source/(2 x 2 x (LPD Prescaler) x 32))
1/3	Clock source/(1 x 3 x (LPD Prescaler) x 32))
1/4	Clock source/(1 x 4 x (LPD Prescaler) x 32))

Note: Clock source is Fosc/256, T1OSC or LFINTOSC.

TABLE 27-6: APPROXIMATE FRAME FREQUENCY (IN Hz) USING Fosc @ 8 MHz, TIMER1 @ 32.768 kHz OR LFINTOSC

LP<3:0>	Static	1/2	1/3	1/4
2	122	122	162	122
3	81	81	108	81
4	61	61	81	61
5	49	49	65	49
6	41	41	54	41
7	35	35	47	35

FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file regis	ster op 7 6	eratio	ons	0			
OPCODE	d	t	f (FILE #)				
d = 0 for destination W d = 1 for destination f f = 7-bit file register address							
Bit-oriented file registe	er oper	ation	S	0			
OPCODE	b (BIT :	#)	f (FILE #)				
b = 3-bit bit addres f = 7-bit file registe	ss er addre	ess					
Literal and control ope	eration	S					
General	0 -			•			
	8 /		k (litoral)	0			
OFCODE			K (IIIEIAI)				
k = 8-bit immediate	e value						
CALL and GOTO instruct	ions on	ly					
13 11 10				0			
OPCODE		k (liter	al)				
k = 11-bit immedia	te value	е					
MOVLP instruction only							
13	7	6		0			
OPCODE			k (literal)				
k = 7-bit immediate	e value						
MOVLB instruction only							
13		5 4	4	0			
OPCODE			k (literal)				
k = 5-bit immediate	e value	÷					
BRA instruction only							
13 9	8			0			
OPCODE			k (literal)				
k = 9-bit immediat	e value	•					
FSR Offset instructions		_					
	76	5	k (literal)	0			
OPCODE	n		k (literal)				
n = appropriate FS k = 6-bit immediat	sr e value	•					
FSR Increment instruction	ons						
		3	2 1				
n = appropriate E	SR			oue)			
m = 2-bit mode va	lue						
OPCODE only							
13	0005			0			
0	PCOD	<u> </u>					

SWAPF	Swap Nibbles in f				
Syntax:	[label] SWAPF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$				
Status Affected:	None				
Description:	The upper and lower nibbles of regis ter 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd is '1', the result is placed in register 'f				

XORLW	Exclusive OR literal with W					
Syntax:	[label] XORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	Z					
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.					

TRIS	Load TRIS Register with W	XORWF	Exclusiv	
Syntax:	[label] TRIS f	Syntax:		
Operands:	Operands: $5 \le f \le 7$		0 ≤ f ≤ 127 d ∈ [0,1]	
Status Affected:	$(W) \rightarrow TRIS register T$ None	Operation:	(W) .XOR	
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.	Status Affected: Description:	Z Exclusive register wi result is st is '1', the r	

DRWFExclusive OR W with fIntax:[label] XORWF f,dberands: $0 \le f \le 127$
 $d \in [0,1]$ beration:(W) .XOR. (f) \rightarrow (destination)beration:Zscription:Exclusive OR the contents of the W
register with register 'f'. If 'd' is '0', the
result is stored in the W register. If 'd'
is '1', the result is stored back in regis-
ter 'f'.

TABLE 30-8: PIC16(L)F1934/6/7 A/D CONVERTER (ADC) CHARACTERISTICS:

Standard Operating Conditions (unless otherwise stated) Operating temperature Tested at 25°C									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
AD01	NR	Resolution	_		10	bit			
AD02	EIL	Integral Error			±1.7	LSb	VREF = 3.0V		
AD03	Edl	Differential Error	_		±1	LSb	No missing codes VREF = 3.0V		
AD04	Eoff	Offset Error			±2.5	LSb	VREF = 3.0V		
AD05	Egn	Gain Error	_		±2.0	LSb	VREF = 3.0V		
AD06	Vref	Reference Voltage ⁽³⁾	1.8		Vdd	V	VREF = (VREF+ minus VREF-) (Note 5)		
AD07	VAIN	Full-Scale Range	Vss		VREF	V			
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	—	—	10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: ADC VREF is from external VREF, VDD pin or FVR, whichever is selected as reference input.

4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

5: FVR voltage selected must be 2.048V or 4.096V.

TABLE 30-9: PIC16(L)F1934/6/7 A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
AD130*	Tad	A/D Clock Period A/D Internal RC Oscillator Period	1.0 1.0	 2.5	9.0 6.0	μs μs	Tosc-based ADCS<1:0> = 11 (ADRC mode)		
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾		11	—	TAD	Set GO/DONE bit to conversion complete		
AD132*	TACQ	Acquisition Time		5.0	_	μS			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

Param. No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
CS01	ISRC	Current Source	High	-3	-8	-15	μA	
			Medium	-0.8	-1.5	-3	μA	
			Low	-0.1	-0.3	-0.4	μA	
CS02	Isnk	Current Sink	High	2.5	7.5	14	μA	
			Medium	0.6	1.5	2.9	μA	
			Low	0.1	0.25	0.6	μA	
CS03	VСтн	Cap Threshold		—	0.8		mV	
CS04	VCTL	Cap Threshold		—	0.4		mV	
CS05	VCHYST	Cap Hysteresis (Vстн-VстL)	High Medium Low	350 250 175	525 375 300	725 500 425	mV mV mV	

TABLE 30-17: CAP SENSE OSCILLATOR SPECIFICATIONS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-22: CAP SENSE OSCILLATOR

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A