

Welcome to E-XFL.COM

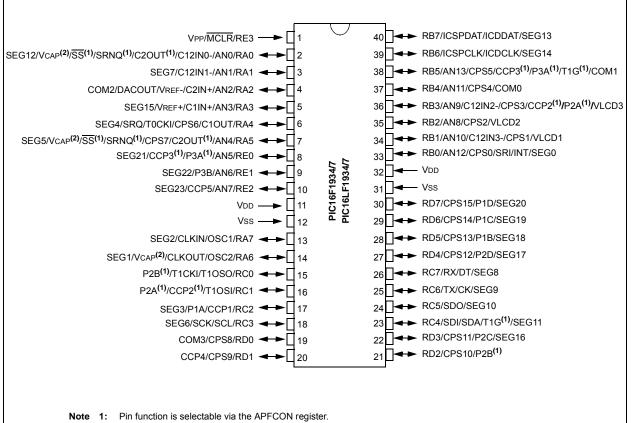
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1936-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram - 40-Pin PDIP (PIC16(L)F1934/7)

2: PIC16F1934/7 devices only.

Name	Function	Input Type	Output Type	Description
RA0/AN0/C12IN0-/C2OUT ⁽¹⁾ /	RA0	TTL	CMOS	General purpose I/O.
SRNQ ⁽¹⁾ /SS ⁽¹⁾ /VCAP ⁽²⁾ /SEG12	AN0	AN	—	A/D Channel 0 input.
	C12IN0-	AN	_	Comparator C1 or C2 negative input.
	C2OUT	_	CMOS	Comparator C2 output.
	SRNQ	_	CMOS	SR Latch inverting output.
	SS	ST	—	Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1934/6/7 only).
	SEG12		AN	LCD Analog output.
RA1/AN1/C12IN1-/SEG7	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN		A/D Channel 1 input.
	C12IN1-	AN	_	Comparator C1 or C2 negative input.
	SEG7	_	AN	LCD Analog output.
RA2/AN2/C2IN+/VREF-/	RA2	TTL	CMOS	General purpose I/O.
DACOUT/COM2	AN2	AN	_	A/D Channel 2 input.
	C2IN+	AN		Comparator C2 positive input.
	VREF-	AN	_	A/D Negative Voltage Reference input.
	DACOUT	_	AN	Voltage Reference output.
	COM2	_	AN	LCD Analog output.
RA3/AN3/C1IN+/VREF+/	RA3	TTL	CMOS	General purpose I/O.
COM3 ⁽³⁾ /SEG15	AN3	AN		A/D Channel 3 input.
	C1IN+	AN	—	Comparator C1 positive input.
	VREF+	AN		A/D Voltage Reference input.
	COM3 ⁽³⁾	_	AN	LCD Analog output.
	SEG15	_	AN	LCD Analog output.
RA4/C1OUT/CPS6/T0CKI/SRQ/	RA4	TTL	CMOS	General purpose I/O.
CCP5/SEG4	C10UT	_	CMOS	Comparator C1 output.
	CPS6	AN		Capacitive sensing input 6.
	TOCKI	ST		Timer0 clock input.
	SRQ		CMOS	SR Latch non-inverting output.
	CCP5	ST	CMOS	Capture/Compare/PWM5.
	SEG4	_	AN	LCD Analog output.
RA5/AN4/C2OUT ⁽¹⁾ /CPS7/	RA5	TTL	CMOS	General purpose I/O.
SRNQ ⁽¹⁾ /SS ⁽¹⁾ /VCAP ⁽²⁾ /SEG5	AN4	AN	_	A/D Channel 4 input.
	C2OUT	—	CMOS	Comparator C2 output.
	CPS7	AN	—	Capacitive sensing input 7.
	SRNQ	_	CMOS	SR Latch inverting output.
	SS	ST	_	Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1934/6/7 only).
	SEG5	_	AN	LCD Analog output.

TABLE 1-2: PIC16(L)F1934/6/7 PINOUT DESCRIPTION

Legend:AN= Analog input or outputCMOS = CMOS compatible input or outputOD= Open DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levels l^2C^{TM} = Schmitt Trigger input with l²C

HV = High Voltage XTAL = Crystal

levels

Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1934/6/7 devices only.

3: PIC16(L)F1936 devices only.

4: PORTD is available on PIC16(L)F1934/7 devices only.

5: RE<2:0> are available on PIC16(L)F1934/7 devices only.

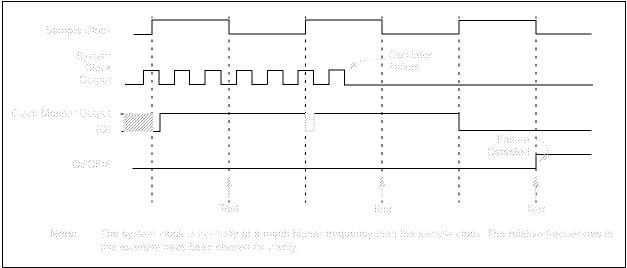
© 2008-2011 Microchip Technology Inc.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 6				•					-		
300h ⁽²⁾	INDF0	Addressing (not a physi		ises contents o	of FSR0H/FSR	0L to address	data memory	/		XXXX XXXX	xxxx xxxx
301h ⁽²⁾	INDF1	Addressing (not a physi		ises contents o	of FSR1H/FSR	1L to address	data memory	/		XXXX XXXX	xxxx xxxx
302h ⁽²⁾	PCL	Program Co	ounter (PC) Le	east Significant	t Byte					0000 0000	0000 0000
303h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
304h ⁽²⁾	FSR0L	Indirect Data	a Memory Ad	dress 0 Low P	ointer					0000 0000	uuuu uuuu
305h ⁽²⁾	FSR0H	Indirect Data	a Memory Ad	dress 0 High P	ointer					0000 0000	0000 0000
306h ⁽²⁾	FSR1L	Indirect Data	a Memory Ad	dress 1 Low P	ointer					0000 0000	uuuu uuuu
307h ⁽²⁾	FSR1H	Indirect Data	a Memory Ad	dress 1 High P	ointer					0000 0000	0000 0000
308h ⁽²⁾	BSR	—	—	_		I	BSR<4:0>			0 0000	0 0000
309h ⁽²⁾	WREG	Working Re	gister							0000 0000	uuuu uuuu
30Ah ^(1, 2)	PCLATH	—	Write Buffer	for the upper 7	bits of the Pro	gram Counte	r			-000 0000	-000 0000
30Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
30Ch	—	Unimpleme	nted				•	•	•	_	_
30Dh	—	Unimpleme	nted							_	_
30Eh	—	Unimpleme	Unimplemented							_	_
30Fh	—	Unimpleme	nted							_	_
310h	—	Unimpleme	nted							_	_
311h	CCPR3L	Capture/Co	mpare/PWM I	Register 3 (LSI	З)					xxxx xxxx	uuuu uuuu
312h	CCPR3H	Capture/Co	mpare/PWM I	Register 3 (MS	B)					xxxx xxxx	uuuu uuuu
313h	CCP3CON	P3M	<1:0>	DC3E	3<1:0>		CCP3M-	<1:0>		0000 0000	0000 0000
314h	PWM3CON	P3RSEN			P	3DC<6:0>				0000 0000	0000 0000
315h	CCP3AS	CCP3ASE		CCP3AS<2:0	>	PSS3A	C<1:0>	PSS3B	D<1:0>	0000 0000	0000 0000
316h	PSTR3CON	_	—	_	STR3SYNC	STR3D	STR3C	STR3B	STR3A	0 0001	0 0001
317h	—	Unimpleme	nted							_	_
318h	CCPR4L	Capture/Co	mpare/PWM I	Register 4 (LSI	3)					xxxx xxxx	uuuu uuuu
319h	CCPR4H	Capture/Co	Capture/Compare/PWM Register 4 (MSB)						xxxx xxxx	uuuu uuuu	
31Ah	CCP4CON	_	— — DC4B<1:0> ССР4М<3:0>						00 0000	00 0000	
31Bh	_	Unimpleme	nted							—	—
31Ch	CCPR5L	Capture/Co	mpare/PWM F	Register 5 (LSI	3)					xxxx xxxx	uuuu uuuu
31Dh	CCPR5H	Capture/Co	mpare/PWM F	Register 5 (MS	B)					xxxx xxxx	uuuu uuuu
31Eh	CCP5CON	—	—	DC5E	8<1:0>		CCP5M	<3:0>		00 0000	00 0000
31Fh	—	Unimpleme	nted							—	—
Leaend:			opgod vo	luo dopondo a	n condition =	unimplomon	tod road as '	o' – rocor	had		

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-12

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

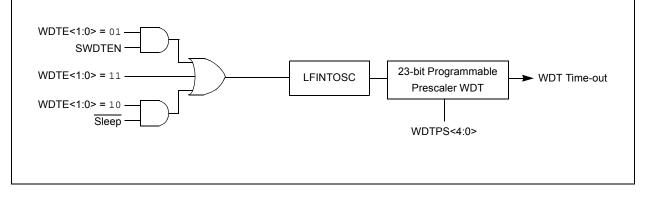

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'. 3:

4: Unimplemented, read as '1'.

NOTES:


10.0 WATCHDOG TIMER

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- · Independent clock source
- Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (typical)
- Multiple Reset conditions
- Operation during Sleep

FIGURE 10-1: WATCHDOG TIMER BLOCK DIAGRAM

11.0 DATA EEPROM AND FLASH PROGRAM MEMORY CONTROL

The data EEPROM and Flash program memory are readable and writable during normal operation (full VDD range). These memories are not directly mapped in the register file space. Instead, they are indirectly addressed through the Special Function Registers (SFRs). There are six SFRs used to access these memories:

- EECON1
- EECON2
- EEDATL
- EEDATH
- EEADRL
- EEADRH

When interfacing the data memory block, EEDATL holds the 8-bit data for read/write, and EEADRL holds the address of the EEDATL location being accessed. These devices have 256 bytes of data EEPROM with an address range from 0h to 0FFh.

When accessing the program memory block, the EEDATH:EEDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the EEADRL and EEADRH registers form a 2-byte word that holds the 15-bit address of the program memory location being read.

The EEPROM data memory allows byte read and write. An EEPROM byte write automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

Depending on the setting of the Flash Program Memory Self Write Enable bits WRT<1:0> of the Configuration Word 2, the device may or may not be able to write certain blocks of the program memory. However, reads from the program memory are always allowed.

When the device is code-protected, the device programmer can no longer access data or program memory. When code-protected, the CPU may continue to read and write the data EEPROM memory and Flash program memory.

11.1 EEADRL and EEADRH Registers

The EEADRH:EEADRL register pair can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 32K words of program memory.

When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADRL register. When selecting a EEPROM address value, only the LSB of the address is written to the EEADRL register.

11.1.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for EE memory accesses.

Control bit EEPGD determines if the access will be a program or data memory access. When clear, any subsequent operations will operate on the EEPROM memory. When set, any subsequent operations will operate on the program memory. On Reset, EEPROM is selected by default.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

Interrupt flag bit EEIF of the PIR2 register is set when write is complete. It must be cleared in the software.

Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence. To enable writes, a specific pattern must be written to EECON2.

NOTES:

NOTES:

22.5 Timer2/4/6 Control Register

REGISTER 22-1: TXCON: TIMER2/TIMER4/TIMER6 CONTROL REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
		TOUTPS<3:0>			TMRxON	TxCKP	S<1:0>			
oit 7							bit C			
_egend:										
				U = Unimpler	mented bit, read	l as '0'				
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets			
1' = Bit is se	et	'0' = Bit is clea	ared							
oit 7	Unimpleme	ented: Read as '	0'							
oit 6-3	-	:0>: Timer Outpu		Select bits						
	0000 = 1:1									
	0001 = 1:2	Postscaler								
	0010 = 1:3									
	0011 = 1:4									
	0100 = 1:5									
	0101 = 1:6 0110 = 1:7									
	0111 = 1 :8									
	1000 = 1:9									
	1001 = 1:10									
	1010 = 1:11									
	1011 = 1:12	1011 = 1:12 Postscaler								
	1100 = 1:13									
	1101 = 1:14									
	1110 = 1:15									
pit 2	1111 = 1:16	imerx On bit								
<i>J</i> IL 2	1 = Timerx									
	1 = Timerx 0 = Timerx									
oit 1-0	TxCKPS<1:	: 0>: Timer2-type	Clock Presca	le Select bits						
	00 = Presca	ler is 1								
	01 = Presca	aler is 4								
	10 = Presca									
	11 = Presca	ler is 64								

24.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

The CKP bit of the SSPCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

24.5.6.1 Normal Clock Stretching

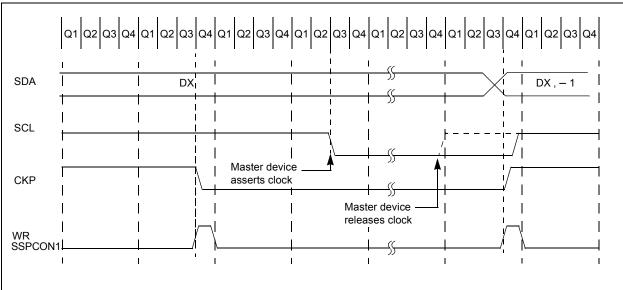
Following an \overline{ACK} if the R/ \overline{W} bit of SSPSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPBUF with data to transfer to the master. If the SEN bit of SSPCON2 is set, the slave hardware will always stretch the clock after the \overline{ACK} sequence. Once the slave is ready, CKP is set by software and communication resumes.

- Note 1: The BF bit has no effect on whether the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSPBUF was read before the 9th falling edge of SCL.
 - 2: Previous versions of the module did not stretch the clock for a transmission if SSPBUF was loaded before the 9th falling edge of SCL. It is now always cleared for read requests.

24.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set, the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSPADD.

Note:	Previous versions of the module did not
	stretch the clock if the second address byte
	did not match.


24.5.6.3 Byte NACKing

When the AHEN bit of SSPCON3 is set; CKP is cleared by hardware after the 8th falling edge of SCL for a received matching address byte. When the DHEN bit of SSPCON3 is set; CKP is cleared after the 8th falling edge of SCL for received data.

Stretching after the 8th falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

24.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 24-22).

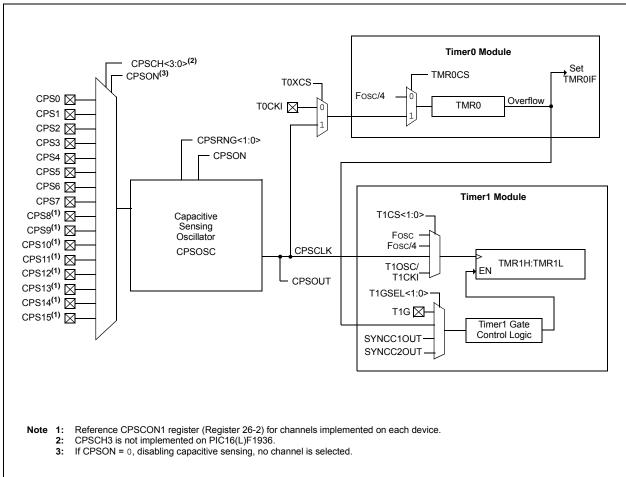
FIGURE 24-23: CLOCK SYNCHRONIZATION TIMING

25.2 Clock Accuracy with Asynchronous Operation

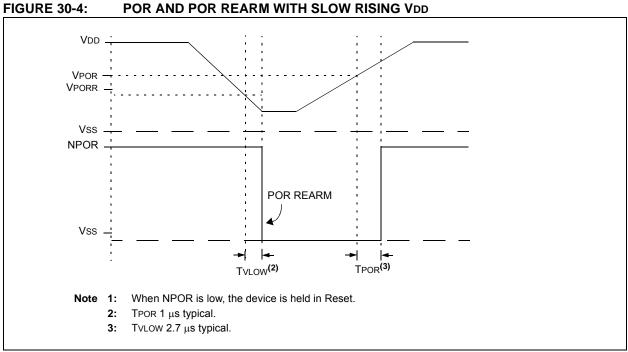
Г

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind. The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 5.2.2** "Internal Clock Sources" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 25.3.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.


REGISTER 25-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable bi	t	II = I Inimpleme	ented bit, read as '	٥'	
u = Bit is unch		x = Bit is unkno		•	POR and BOR/Va		Resets
'1' = Bit is set	angeu	'0' = Bit is clear					103013
1 Dit ib bet		0 Dit ib bicai	cu				
bit 7	CSRC: Clock	Source Select bit					
bit i	Asynchronous						
	Don't care	<u></u>					
	Synchronous r	mode:					
	1 = Master n	node (clock gener	ated internally	from BRG)			
	0 = Slave mo	ode (clock from e	kternal source)				
bit 6	TX9: 9-bit Trar	nsmit Enable bit					
	1 = Selects 9	9-bit transmission					
	0 = Selects 8	B-bit transmission					
bit 5	TXEN: Transm	nit Enable bit ⁽¹⁾					
	1 = Transmit	enabled					
	0 = Transmit	disabled					
bit 4	SYNC: EUSA	RT Mode Select b	it				
	1 = Synchron						
	0 = Asynchro						
bit 3		Break Character	bit				
	Asynchronous						
				eared by hardwa	are upon completio	n)	
	Synchronous r	ak transmission c	ompieted				
	Don't care	<u>mode</u> .					
bit 2		Baud Rate Select	hit				
Sit 2	Asynchronous		bit				
	1 = High spece						
	0 = Low spee						
	Synchronous r	mode:					
	Unused in this	mode					
bit 1	TRMT: Transm	nit Shift Register S	Status bit				
	1 = TSR emp	oty					
	0 = TSR full						
bit 0	TX9D: Ninth b	it of Transmit Dat	а				
	Can be addres						


26.0 CAPACITIVE SENSING (CPS) MODULE

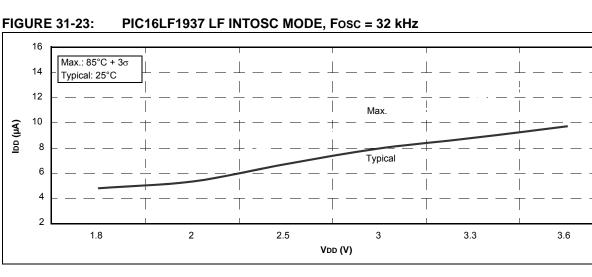
The Capacitive Sensing (CPS) module allows for an interaction with an end user without a mechanical interface. In a typical application, the CPS module is attached to a pad on a Printed Circuit Board (PCB), which is electrically isolated from the end user. When the end user places their finger over the PCB pad, a capacitive load is added, causing a frequency shift in the CPS module. The CPS module requires software and at least one timer resource to determine the change in frequency. Key features of this module include:

- · Analog MUX for monitoring multiple inputs
- · Capacitive sensing oscillator
- Multiple power ranges
- Multiple timer resources
- Software control
- Operation during Sleep

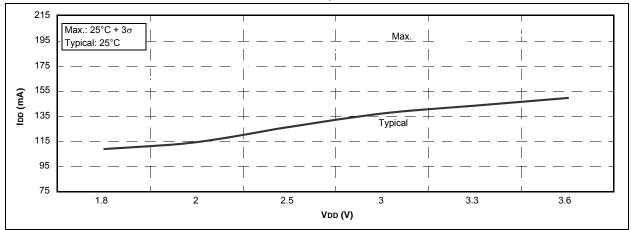
FIGURE 26-1: CAPACITIVE SENSING BLOCK DIAGRAM

30.3 DC Characteristics: PIC16(L)F1934/6/7-I/E (Power-Down)

PIC16LF1	934/36/37		r d Opera t ng temper	•	-40°C ≤	TA ≤ +85°	nerwise stated) °C for industrial 5°C for extended			
PIC16F1934/36/37				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param	Device Characteristics	Min.	Typ†	Max.	Max.	Units		Conditions		
No.	Device onaracteristics		וקעי	+85°C	+125°C	Units	Vdd	Note		
	Power-down Base Current	(IPD) ⁽²⁾								
D023			0.06	1.0	8.0	μA	1.8	WDT, BOR, FVR, and T1OSC		
			0.08	2.0	9.0	μA	3.0	disabled, all Peripherals Inactive		
D023		_	21	55	63	μA	1.8	WDT, BOR, FVR, and T1OSC		
		_	25	58	78	μA	3.0	disabled, all Peripherals Inactive		
		_	27	60	88	μA	5.0			
D024			0.5	4.0	9.0	μA	1.8	LPWDT Current (Note 1)		
		—	0.8	5.0	10	μA	3.0			
D024		_	23	57	65	μA	1.8	LPWDT Current (Note 1)		
		_	26	59	80	μA	3.0			
		—	28	61	90	μA	5.0			
D025		—	15	28	30	μA	1.8	FVR current		
		_	15	30	33	μA	3.0			
D025			38	96	100	μA	1.8	FVR current (Note 4)		
			45	110	120	μA	3.0			
		—	90	140	155	μA	5.0			
D026			13	25	28	μA	3.0	BOR Current (Note 1)		
D026		_	40	110	120	μA	3.0	BOR Current (Note 1, Note 4)		
		—	87	140	155	μA	5.0			
D027		_	0.6	5.0	9.0	μA	1.8	T1OSC Current (Note 1)		
		—	1.8	7.0	12	μA	3.0			
D027		_	22	57	60	μA	1.8	T1OSC Current (Note 1)		
		_	29	62	70	μA	3.0			
		—	35	66	85	μA	5.0			


t Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.


2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: A/D oscillator source is FRC.

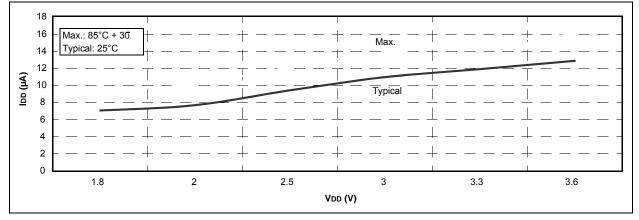

4: 0.1 μ F capacitor on VCAP (RA0).

FIGURE 31-24: PIC16LF1937 MF INTOSC MODE, Fosc = 500 kHz

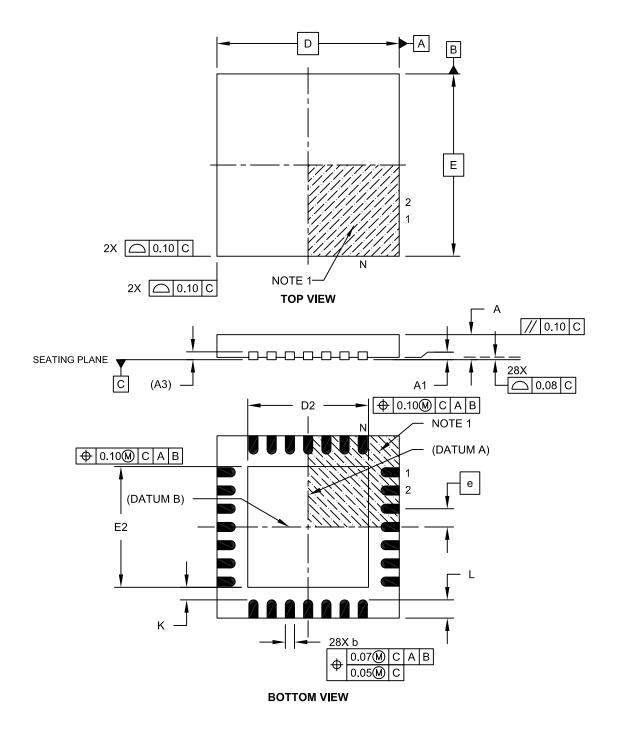
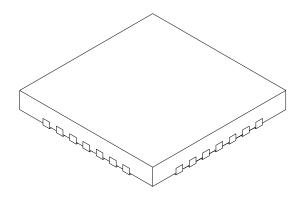


FIGURE 31-25: PIC16LF1937 LP OSCILLATOR MODE, Fosc = 32 kHz

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

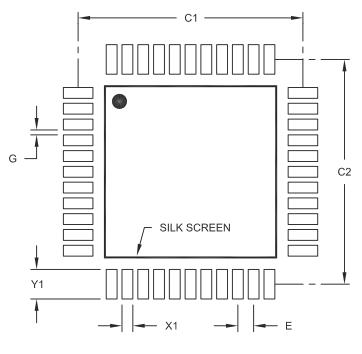

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	ILLIMETER	S
Dimensior	i Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		0.40 BSC	
Overall Height	A	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.127 REF	
Overall Width	E		4.00 BSC	
Exposed Pad Width	E2	2.55	2.65	2.75
Overall Length	D		4.00 BSC	
Exposed Pad Length	D2	2.55	2.65	2.75
Contact Width	b	0.15	0.20	0.25
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIM	ETERS	_	
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

SPI Slave Mode (CKE = 1) 408
Synchronous Reception (Master Mode, SREN) 317
Synchronous Transmission
Synchronous Transmission (Through TXEN)
Timer0 and Timer1 External Clock 401
Timer1 Incrementing Edge
Two Speed Start-up
Type-A in 1/2 MUX, 1/2 Bias Drive
Type-A in 1/2 MUX, 1/3 Bias Drive
Type-A in 1/3 MUX, 1/3 Bias Drive
Type-A in 1/3 MUX, 1/3 Bias Drive
Type-A in 1/4 MUX, 1/3 Bias Drive
Type-A/Type-B in Static Drive
Type-B in 1/2 MUX, 1/2 Bias Drive
Type-B in 1/2 MUX, 1/3 Bias Drive
Type-B in 1/3 MUX, 1/2 Bias Drive
Type-B in 1/3 MUX, 1/3 Bias Drive
Type-B in 1/4 MUX, 1/3 Bias Drive
USART Synchronous Receive (Master/Slave) 406
USART Synchronous Transmission (Master/Slave). 405
Wake-up from Interrupt
Timing Diagrams and Specifications
PLL Clock
Timing Parameter Symbology
Timing Requirements
I ² C Bus Data
I2C Bus Start/Stop Bits
SPI Mode
TMR0 Register
TMR1H Register
TMR1L Register
TMR2 Register
TRIS
TRISA Register
TRISB
TRISB Register 40, 140
TRISC
TRISC Register40, 144
TRISD 146
TRISD Register40, 147
TRISE
TRISE Register
Two-Speed Clock Start-up Mode
TXCON (Timer2/4/6) Register
TXREG
TXREG Register
TXSTA Register
BRGH Bit
U

W

Wake-up on Break	311
Wake-up Using Interrupts	112
Watchdog Timer (WDT)	
Associated Registers	
Configuration Word w/ Watchdog Timer	
Modes	114
Specifications	
WCOL	
WCOL Status Flag 273	
WDTCON Register	
WPUB Register	
Write Protection	
WWW Address	
WWW, On-Line Support	

۷

USART

VREF. SEE ADC Reference Voltage

Synchronous Master Mode