

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1936-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram - 40-Pin PDIP (PIC16(L)F1934/7)

2: PIC16F1934/7 devices only.

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower 8 bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH directive will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants			
RETLW 1	DATA0	;Index0	data
RETLW 1	DATA1	;Index1	data
RETLW 1	DATA2		
RETLW 1	DATA3		
my_functio	n		
; LOT:	S OF CODE		
MOVLW	LOW constan	ts	
MOVWF	FSR1L		
MOVLW	HIGH consta	nts	
MOVWF	FSR1H		
MOVIW	0[FSR1]		
;THE PROGR	AM MEMORY IS	IN W	

3.2 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-3):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.5** "Indirect Addressing" for more information.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation of the PIC16(L)F1934/6/7. These registers are listed below:

- INDF0
- INDF1
- PCL
- STATUS
- FSR0 Low
- FSR0 High
- FSR1 Low
- FSR1 High
- BSR
- WREG
- PCLATH
- INTCON

Note: The core registers are the first 12 addresses of every data memory bank.

								/					
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets		
Bank 1													
080h ⁽²⁾	INDF0	Addressing (not a physi	Addressing this location uses contents of FSR0H/FSR0L to address data memory not a physical register)										
081h ⁽²⁾	INDF1	Addressing (not a physi	this location u cal register)	ses contents o	of FSR1H/FSF	R1L to address	data memory	/		XXXX XXXX	XXXX XXXX		
082h ⁽²⁾	PCL	Program Co	ounter (PC) Le	ast Significant	t Byte					0000 0000	0000 0000		
083h ⁽²⁾	STATUS	—	_	_	TO	PD	Z	DC	С	1 1000	q quuu		
084h ⁽²⁾	FSR0L	Indirect Data	a Memory Ado	dress 0 Low Po	ointer					0000 0000	uuuu uuuu		
085h ⁽²⁾	FSR0H	Indirect Data	a Memory Ado	dress 0 High P	ointer					0000 0000	0000 0000		
086h ⁽²⁾	FSR1L	Indirect Data	a Memory Ado	dress 1 Low Po	ointer					0000 0000	uuuu uuuu		
087h ⁽²⁾	FSR1H	Indirect Data	a Memory Add	dress 1 High P	ointer					0000 0000	0000 0000		
088h ⁽²⁾	BSR	—	_	_		E	BSR<4:0>			0 0000	0 0000		
089h ⁽²⁾	WREG	Working Re	gister							0000 0000	uuuu uuuu		
08Ah ^(1, 2)	PCLATH	—	Write Buffer f	for the upper 7	bits of the Pro	ogram Counter	r			-000 0000	-000 0000		
08Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000		
08Ch	TRISA	PORTA Dat	a Direction Re	egister						1111 1111	1111 1111		
08Dh	TRISB	PORTB Dat	PORTB Data Direction Register								1111 1111		
08Eh	TRISC	PORTC Dat	ta Direction Re	egister						1111 1111	1111 1111		
08Fh ⁽³⁾	TRISD	PORTD Dat	ta Direction Re	egister						1111 1111	1111 1111		
090h	TRISE	_	_	_	_	(4)	TRISE2 ⁽³⁾	TRISE1(3)	TRISE0 ⁽³⁾	1111	1111		
091h	PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000		
092h	PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	0000 00-0	0000 00-0		
093h	PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	_	-000 0-0-	-000 0-0-		
094h	_	Unimpleme	nted							_	_		
095h	OPTION_R EG	WPUEN	INTEDG	TMROCS	TMROSE	PSA		PS<2:0>		1111 1111	1111 1111		
096h	PCON	STKOVF	STKUNF	_	_	RMCLR	RI	POR	BOR	00 11qq	qq qquu		
097h	WDTCON	—	_		V	VDTPS<4:0>			SWDTEN	01 0110	01 0110		
098h	OSCTUNE	—	_			TUN<5	:0>			00 0000	00 0000		
099h	OSCCON	SPLLEN		IRCF	<3:0>		_	SCS	<1:0>	0011 1-00	0011 1-00		
09Ah	OSCSTAT	T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	-0p0 0p00	dddd ddo-		
09Bh	ADRESL	A/D Result	Register Low							xxxx xxxx	uuuu uuuu		
09Ch	ADRESH	A/D Result	Register High							xxxx xxxx	uuuu uuuu		
09Dh	ADCON0				CHS<4:0>			GO/DONE	ADON	-000 0000	-000 0000		
09Eh	ADCON1	ADFM		ADCS<2:0>			ADNREF	ADPREF1	ADPREF0	0000 -000	0000 -000		
09Fh	_	Unimpleme	nted							_	_		

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'.

4: Unimplemented, read as '1'.

4.0 DEVICE CONFIGURATION

Device Configuration consists of Configuration Word 1 and Configuration Word 2, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note:	The DEBUG bit in Configuration Word 2 is
	managed automatically by device
	development tools including debuggers
	and programmers. For normal device
	operation, this bit should be maintained as
	a '1'.

R-1/q	R-0/q	R-a/a	R-0/a	P_0/a	P_a/a		
			IX 0/Q	IX-0/Q	11-4/4	R-0/0	R-0/q
T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Condition	al		
bit 7	T1OSCR: Tim If <u>T1OSCEN</u> = 1 = Timer1 c 0 = Timer1 c If <u>T1OSCEN</u> = 1 = Timer1 c	ner1 Oscillator <u>= 1</u> : scillator is rea scillator is not <u>= 0</u> : slock source is	Ready bit dy ready always ready				
bit 6	PLLR 4x PLL 1 = 4x PLL is 0 = 4x PLL is	Ready bit s ready s not ready					
bit 5	OSTS: Oscilla 1 = Running 0 = Running	ator Start-up Ti from the clock from an intern	me-out Status defined by the al oscillator (F	bit e FOSC<2:0> k OSC<2:0> = 1	oits of the Confi 00)	iguration Word	1
bit 4	HFIOFR: High 1 = HFINTOS 0 = HFINTOS	n-Frequency Ir SC is ready SC is not ready	ternal Oscillat	or Ready bit			
bit 3	HFIOFL: High 1 = HFINTOS 0 = HFINTOS	n-Frequency In SC is at least 2 SC is not 2% a	ternal Oscillato % accurate ccurate	or Locked bit			
bit 2	MFIOFR: Med 1 = MFINTOS 0 = MFINTOS	dium-Frequenc SC is ready SC is not ready	cy Internal Osc	illator Ready b	it		
bit 1	LFIOFR: Low 1 = LFINTOS 0 = LFINTOS	-Frequency Inf C is ready C is not ready	ernal Oscillato	or Ready bit			
bit 0	HFIOFS: High 1 = HFINTOS 0 = HFINTOS	n-Frequency In SC is at least 0 SC is not 0.5%	ternal Oscillato .5% accurate accurate	or Stable bit			

REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER

15.3 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 15-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 15-4. The maximum recommended impedance for analog sources is 10 k Ω . As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 15-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 15-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED} \\V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) \quad ;combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

$$Tc = -CHOLD(RIC + RSS + RS) ln(1/511)$$

= -10pF(1k\Omega + 7k\Omega + 10k\Omega) ln(0.001957)
= 1.12\mus

Therefore:

$$TACQ = 2\mu s + 1.12\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.42\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

FIGURE 15-4: ANALOG INPUT MODEL

21.11 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 21-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 21-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u
TMR10	CS<1:0>	T1CKP	'S<1:0>	T1OSCEN	T1SYNC	—	TMR10N
bit 7		•					bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, reac	d as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	TMR1CS<1:0 11 = Timer1 o 10 = Timer1 o <u>If T1OSO</u> <u>Crystal o</u> 01 = Timer1 o 00 = Timer1 o	D>: Timer1 Clock clock source is clock source is <u>CEN = 0</u> : clock from T10 <u>CEN = 1</u> : oscillator on T1 clock source is clock source is	ck Source Sele Capacitive Se pin or oscillato CKI pin (on the OSI/T1OSO p system clock o instruction clo	ect bits nsing Oscillator or: e rising edge) ins (Fosc) ck (Fosc/4)	- (CAPOSC)		
bit 5-4	T1CKPS<1:0 11 = 1:8 Pres 10 = 1:4 Pres 01 = 1:2 Pres	>: Timer1 Inpu scale value scale value scale value	t Clock Presca	ale Select bits			
bit 3	TIOSCEN: L 1 = Dedicate 0 = Dedicate	P Oscillator En d Timer1 oscill d Timer1 oscill	able Control b ator circuit ena ator circuit dis	oit abled abled			
bit 2	T1SYNC: Tim TMR1CS<1:0	her1 External C D = 1X ynchronize extender hize external cl D = 0X	lock Input Syr ernal clock inp ock input with	nchronization C ut system clock (F	ontrol bit Fosc)		
	This bit is igno	ored. Timer1 u	ses the interna	al clock when T	MR1CS<1:0> =	= 1X.	
bit 1	Unimplemen	ted: Read as '	0'				
bit 0	TMR1ON: Tir	mer1 On bit					
	1 = Enables 0 = Stops Tin Clears Ti	Timer1 ner1 mer1 gate flip-t	flop				

NOTES:

24.0 MASTER SYNCHRONOUS SERIAL PORT MODULE

24.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- Daisy-chain connection of slave devices

Figure 24-1 is a block diagram of the SPI interface module.

TABLE 24-2:I²C BUS TERMS

	i
TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and terminates a transfer.
Slave	The device addressed by the mas- ter.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCL low to stall communication.
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state.

24.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDA from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 24-10 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDA line low before asserting it low. This does not conform to the I^2C specification that states no bus collision can occur on a Start.

24.4.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high.

Note:	At least one SCL low time must appear
	before a Stop is valid, therefore, if the SDA
	line goes low then high again while the SCL
	line stays high, only the Start condition is
	detected.

24.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/\overline{W} bit set. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/\overline{W} clear in 10-bit mode, a prior match flag is set and maintained. Until a Stop condition, a high address with R/\overline{W} clear, or high address match fails.

24.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	302
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	99
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	102
RCREG	EUSART F	Receive Dat	a Register						296*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	301
SPBRGL				BRG	<7:0>				303*
SPBRGH	BRG<15:8>							303*	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	300

TABLE 25-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for asynchronous reception.

* Page provides register information.

25.3.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPBRGH:SPBRGL register pair. After the ABDOVF has been set, the counter continues to count until the fifth rising edge is detected on the RX pin. Upon detecting the fifth RX edge, the hardware will set the RCIF interrupt flag and clear the ABDEN bit of the BAUDCON register. The RCIF flag can be subsequently cleared by reading the RCREG register. The ABDOVF flag of the BAUDCON register can be cleared by software directly.

To terminate the auto-baud process before the RCIF flag is set, clear the ABDEN bit then clear the ABDOVF bit of the BAUDCON register. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

25.3.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 25-7), and asynchronously if the device is in Sleep mode (Figure 25-8). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

25.3.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be 10 or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

<u>WUE Bit</u>

The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

REGISTER 27-2: LCDPS: LCD PHASE REGISTER

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1			
WFT	BIASMD	LCDA	WA		LP<	3:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared	C = Only clea	rable bit					
bit 7	WET: Wayefo	rm Type bit								
bit i	1 = Type-B p	hase changes	on each fram	e boundarv						
	0 = Type-A p	hase changes	within each c	ommon type						
bit 6	BIASMD: Bia	s Mode Select	bit							
	When LMUX<	< <u>1:0> = 00:</u>								
	0 = Static Bia	s mode (do not	set this bit to	oʻ1')						
	When LMUX<	< <u>1:0> = 01:</u>								
	1 = 1/2 Bias r 0 = 1/3 Bias r	node								
	When LMUX	< <u>1:0> = 10:</u>								
	1 = 1/2 Bias r	node								
	0 = 1/3 Bias r	node								
	When LMUX	<u><1:0> = 11:</u>	at this bit to '1	2)						
bit 5		Notivo Status bi		.)						
DIL 5	1 = 1 CD Drive	ar module is an	tivo							
	0 = LCD Drive	er module is ina	active							
bit 4	WA: LCD Wri	te Allow Status	bit							
	1 = Writing to 0 = Writing to	the LCDDATA the LCDDATA	n registers is n registers is	allowed not allowed						
bit 3-0	LP<3:0>: LCI	D Prescaler Se	lection bits							
	1111 = 1:16									
	1110 = 1:15									
	1101 = 1.14 1100 = 1:13									
	1011 = 1:12									
	1010 = 1:11									
	1001 = 1:10 1000 = 1:9									
	0111 = 1 :8									
	0110 = 1 :7									
	0101 = 1:6									
	0100 = 1:5 0011 = 1:4									
	0010 = 1:3									
	0001 = 1:2									
	0000 = 1:1									

Mnem	nonic,	Description	Cycles		14-Bit	Opcode	•	Status	Notos		
Operands		Description	Cycles	MSb			LSb	Affected	NOLES		
BYTE-ORIENTED FILE REGISTER OPERATIONS											
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2		
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2		
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2		
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2		
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2		
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2		
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2		
CLRW	_	Clear W	1	00	0001	0000	00xx	Z			
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2		
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2		
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2		
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2		
MOVF	f. d	Move f	1	00	1000	dfff	ffff	z	2		
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		2		
RLF	f. d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2		
RRF	f. d	Rotate Right f through Carry	1	0.0	1100	dfff	ffff	C	2		
SUBWF	f. d	Subtract W from f	1	0.0	0010	dfff	ffff	C. DC. Z	2		
SUBWFB	., ⊈ f. d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C. DC. Z	2		
SWAPE	fd	Swap nibbles in f	1	0.0	1110	dfff	ffff	-,, -	2		
XORWE	f d	Exclusive OR W with f	1	00	0110	dfff	ffff	7	2		
	., -	BYTE ORIENTED SKIP (PERATIO	ONS					-		
DECEST	fd	Decrement f. Skin if 0	1(2)	0.0	1011	dfff	ffff		12		
DECF52	f d	Increment f Skip if 0	1(2)	00	1111	dfff	ffff		1.2		
INCF32	., a		.(=)	<u> </u>		4111			., _		
		BIT-ORIENTED FILE REGIST			IS			1			
BCF	t, b	Bit Clear f	1	01	00bb	bfff	ffff		2		
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2		
		BIT-ORIENTED SKIP O	PERATIO	NS							
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2		
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2		
LITERAL O	OPERATIO	ŃS							•		
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z			
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z			
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk				
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk				
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk				
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z			
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z			
L					-						

TABLE 29-3: PIC16(L)F1934/6/7 ENHANCED INSTRUCTION SET

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

Param. No.	Symbol	Characte	eristic	Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	—		
SP101*	TLOW	Clock low time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	—		
SP102*	TR	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall	100 kHz mode	_	250	ns	
		time	400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
SP107*	TSU:DAT	Data input setup	100 kHz mode	250	—	ns	(Note 2)
		time	400 kHz mode	100	—	ns	
SP109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)
		clock	400 kHz mode	—	—	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
SP111	Св	Bus capacitive loading	ng	_	400	pF	

TABLE 30-16: I²C[™] BUS DATA REQUIREMENTS

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C[™] bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (12/2008)

Original release

Revision B (04/2009)

Revised data sheet title; Revised Features section.

Revision C (10/2009)

Added PIC16L/LF1933/34. General updates.

Revision D (12/2009)

General updates.

Revision E (5/2011)

Separated 193X data sheet into three separate data sheets. Added Characterization Data.

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This discusses some of the issues in migrating from other $\text{PIC}^{\textcircled{R}}$ devices to the PIC16(L)F1934/6/7 family of devices.

B.1 PIC16F917 to PIC16F1937

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F917	PIC16F1937
Max. Operating Speed	20 MHz	32 MHz
Max. Program Memory (Words)	8K	8K
Max. SRAM (Bytes)	368	512
A/D Resolution	10-bit	10-bit
Timers (8/16-bit)	2/1	4/1
Oscillator Modes	4	8
Brown-out Reset	Y	Y
Internal Pull-ups	RB<7:0>	RB<7:0>
Interrupt-on-change	RB<7:4>	RB<7:0>
Comparator	2	2
AUSART/EUSART	1/0	0/1
Extended WDT	Y	Y
Software Control Option of WDT/BOR	N	Y
INTOSC Frequencies	30 kHz - 8 MHz	500 kHz - 32 MHz
Clock Switching	Y	Y
Capacitive Sensing	N	Y
CCP/ECCP	2/0	2/3
Enhanced PIC16 CPU	Ν	Y
MSSP/SSP	0/1	1/0
LCD	Y	Y