

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1936t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IABL	E 1		28	5-PIN 3			-16(L)F	1936)						-	
0/1	28-Pin SPDIP	28-Pin QFN/UQFN	ANSEL	A/D	Cap Sense	Comparator	SR Latch	Timers	ССР	EUSART	MSSP	ГСD	Interrupt	Pull-up	Basic
RA0	2	27	Y	AN0	—	C12IN0-/ C2OUT ⁽¹⁾	SRNQ ⁽¹⁾		_	—	SS ⁽¹⁾	SEG12	—	—	VCAP ⁽²⁾
RA1	3	28	Y	AN1	_	C12IN1-	_	_	_	_	_	SEG7	_	_	—
RA2	4	1	Y	AN2/ VREF-	-	C2IN+/ DACOUT	—	-	_	-	—	COM2	—	-	—
RA3	5	2	Y	AN3/ VREF+	—	C1IN+	—		_	—	—	SEG15/ COM3	—	-	—
RA4	6	3	Y	—	CPS6	C10UT	SRQ	T0CKI	CCP5	—	—	SEG4	—		—
RA5	7	4	Y	AN4	CPS7	C2OUT ⁽¹⁾	SRNQ ⁽¹⁾	—	—	—	SS ⁽¹⁾	SEG5	_	_	VCAP ⁽²⁾
RA6	10	7		_	_	_	_			—	_	SEG1	_	—	OSC2/ CLKOUT V _{CAP} ⁽²⁾
RA7	9	6		-	—	_	—		_	-	—	SEG2	—	—	OSC1/ CLKIN
RB0	21	18	Y	AN12	CPS0	—	SRI	-	CCP4	-	—	SEG0	INT/ IOC	Y	—
RB1	22	19	Y	AN10	CPS1	C12IN3-	_	-	P1C	—	—	VLCD1	IOC	Y	—
RB2	23	20	Y	AN8	CPS2	_	_		P1B	_	_	VLCD2	IOC	Y	—
RB3	24	21	Y	AN9	CPS3	C12IN2-	_		CCP2 ⁽¹⁾ / P2A ⁽¹⁾	—	_	VLCD3	IOC	Y	—
RB4	25	22	Y	AN11	CPS4	—	_	_	P1D	—	—	COM0	IOC	Y	—
RB5	26	23	Y	AN13	CPS5	-	—	T1G ⁽¹⁾	P2B ⁽¹⁾ CCP3 ⁽¹⁾ / P3A ⁽¹⁾	—	—	COM1	IOC	Y	_
RB6	27	24	I	—	_	—	—			—	_	SEG14	IOC	Y	ICSPCLK/ ICDCLK
RB7	28	25		-	—	—	—	-	_	-	—	SEG13	IOC	Y	ICSPDAT/ ICDDAT
RC0	11	8	-	-	-	—	—	T1OSO/ T1CKI	P2B ⁽¹⁾	-	—	—	—	-	—
RC1	12	9	-	-	—	—	—	T10SI	CCP2 ⁽¹⁾ / P2A ⁽¹⁾	-	—	_	—	-	—
RC2	13	10	-	-	—	-	—	-	CCP1/ P1A	-	—	SEG3	—	-	—
RC3	14	11		—	_	—	_	-	-	—	SCK/SCL	SEG6	—		—
RC4	15	12		—	_	_	_	T1G ⁽¹⁾		_	SDI/SDA	SEG11	_	_	—
RC5	16	13		—	_	—	_	-	-	—	SDO	SEG10	—		—
RC6	17	14	l	_	_	_	—	1	CCP3 ⁽¹⁾ P3A ⁽¹⁾	TX/CK	_	SEG9	_	_	—
RC7	18	15	_			-		_	P3B	RX/DT		SEG8	—	_	
RE3	1	26					—				—		—	Y	MCLR/VPP
VDD	20	17	_	_	_	—	_	_	_	—	_	_	_	_	Vdd
Vss	8, 19	5, 16	_	-	-	-	-	—	—	-	_	—	-	-	Vss

20 DINI CLIMMADY (DIC46/I)E4026)

Note 1: Pin functions can be moved using the APFCON register.

PIC16F1936 devices only. 2:

Name	Function	Input Type	Output Type	Description
RA0/AN0/C12IN0-/C2OUT ⁽¹⁾ /	RA0	TTL	CMOS	General purpose I/O.
SRNQ ⁽¹⁾ / SS⁽¹⁾/VCAP⁽²⁾/SEG12	AN0	AN	_	A/D Channel 0 input.
	C12IN0-	AN	_	Comparator C1 or C2 negative input.
	C2OUT		CMOS	Comparator C2 output.
	SRNQ	_	CMOS	SR Latch inverting output.
	SS	ST		Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1934/6/7 only).
	SEG12	_	AN	LCD Analog output.
RA1/AN1/C12IN1-/SEG7	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN	_	A/D Channel 1 input.
	C12IN1-	AN	_	Comparator C1 or C2 negative input.
	SEG7	_	AN	LCD Analog output.
RA2/AN2/C2IN+/VREF-/	RA2	TTL	CMOS	General purpose I/O.
DACOUT/COM2	AN2	AN	_	A/D Channel 2 input.
	C2IN+	AN	_	Comparator C2 positive input.
	VREF-	AN	_	A/D Negative Voltage Reference input.
	DACOUT	_	AN	Voltage Reference output.
	COM2		AN	LCD Analog output.
RA3/AN3/C1IN+/VREF+/	RA3	TTL	CMOS	General purpose I/O.
COM3 ⁽³⁾ /SEG15	AN3	AN	_	A/D Channel 3 input.
	C1IN+	AN	_	Comparator C1 positive input.
	VREF+	AN	—	A/D Voltage Reference input.
	COM3 ⁽³⁾	_	AN	LCD Analog output.
	SEG15		AN	LCD Analog output.
RA4/C1OUT/CPS6/T0CKI/SRQ/	RA4	TTL	CMOS	General purpose I/O.
CCP5/SEG4	C10UT		CMOS	Comparator C1 output.
	CPS6	AN	_	Capacitive sensing input 6.
	TOCKI	ST	—	Timer0 clock input.
	SRQ		CMOS	SR Latch non-inverting output.
	CCP5	ST	CMOS	Capture/Compare/PWM5.
	SEG4	_	AN	LCD Analog output.
RA5/AN4/C2OUT ⁽¹⁾ /CPS7/	RA5	TTL	CMOS	General purpose I/O.
SRNQ ⁽¹⁾ /SS ⁽¹⁾ /VCAP ⁽²⁾ /SEG5	AN4	AN	—	A/D Channel 4 input.
	C2OUT	_	CMOS	Comparator C2 output.
	CPS7	AN	_	Capacitive sensing input 7.
	SRNQ	_	CMOS	SR Latch inverting output.
	SS	ST	_	Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1934/6/7 only).
	SEG5	_	AN	LCD Analog output.

TABLE 1-2: PIC16(L)F1934/6/7 PINOUT DESCRIPTION

Legend:AN= Analog input or outputCMOS = CMOS compatible input or outputOD= Open DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levels l^2C^{TM} = Schmitt Trigger input with l²C

HV = High Voltage XTAL = Crystal

levels

Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1934/6/7 devices only.

3: PIC16(L)F1936 devices only.

4: PORTD is available on PIC16(L)F1934/7 devices only.

5: RE<2:0> are available on PIC16(L)F1934/7 devices only.

© 2008-2011 Microchip Technology Inc.

3.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	DEX
call constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

								/			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 1											
080h ⁽²⁾	INDF0	Addressing (not a physi	Addressing this location uses contents of FSR0H/FSR0L to address data memory not a physical register)								XXXX XXXX
081h ⁽²⁾	INDF1	Addressing (not a physi	this location u cal register)	ses contents o	of FSR1H/FSF	R1L to address	data memory	/		XXXX XXXX	XXXX XXXX
082h ⁽²⁾	PCL	Program Co	ounter (PC) Le	ast Significant	t Byte					0000 0000	0000 0000
083h ⁽²⁾	STATUS	—	_	_	- TO PD Z DC C -						q quuu
084h ⁽²⁾	FSR0L	Indirect Data	a Memory Ado	dress 0 Low Po	ointer					0000 0000	uuuu uuuu
085h ⁽²⁾	FSR0H	Indirect Data	a Memory Ado	dress 0 High P	ointer					0000 0000	0000 0000
086h ⁽²⁾	FSR1L	Indirect Data	a Memory Ado	dress 1 Low Po	ointer					0000 0000	uuuu uuuu
087h ⁽²⁾	FSR1H	Indirect Data	a Memory Add	dress 1 High P	ointer					0000 0000	0000 0000
088h ⁽²⁾	BSR	—	_	_		E	BSR<4:0>			0 0000	0 0000
089h ⁽²⁾	WREG	Working Re	gister							0000 0000	uuuu uuuu
08Ah ^(1, 2)	PCLATH	—	Write Buffer f	for the upper 7	bits of the Pro	ogram Counter	r			-000 0000	-000 0000
08Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
08Ch	TRISA	PORTA Dat	a Direction Re	egister						1111 1111	1111 1111
08Dh	TRISB	PORTB Dat	PORTB Data Direction Register							1111 1111	1111 1111
08Eh	TRISC	PORTC Dat	PORTC Data Direction Register							1111 1111	1111 1111
08Fh ⁽³⁾	TRISD	PORTD Dat	ta Direction Re	egister						1111 1111	1111 1111
090h	TRISE	—	_	_	_	(4)	TRISE2 ⁽³⁾	TRISE1(3)	TRISE0 ⁽³⁾	1111	1111
091h	PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
092h	PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	0000 00-0	0000 00-0
093h	PIE3	_	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	_	-000 0-0-	-000 0-0-
094h	_	Unimpleme	nted							_	_
095h	OPTION_R EG	WPUEN	INTEDG	TMROCS	TMROSE	PSA		PS<2:0>		1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	_	_	RMCLR	RI	POR	BOR	00 11qq	qq qquu
097h	WDTCON	_	_		V	VDTPS<4:0>			SWDTEN	01 0110	01 0110
098h	OSCTUNE	_	_			TUN<5	:0>			00 0000	00 0000
099h	OSCCON	SPLLEN		IRCF	<3:0>		_	SCS	<1:0>	0011 1-00	0011 1-00
09Ah	OSCSTAT	T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	-0p0 0p00	dddd ddo-
09Bh	ADRESL	A/D Result	Register Low							xxxx xxxx	uuuu uuuu
09Ch	ADRESH	A/D Result	Register High							xxxx xxxx	uuuu uuuu
09Dh	ADCON0				CHS<4:0>			GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM		ADCS<2:0>			ADNREF	ADPREF1	ADPREF0	0000 -000	0000 -000
09Fh	_	Unimpleme	nted							_	_

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'.

4: Unimplemented, read as '1'.

3.4 Stack

FIGURE 3-5:

All devices have a 16-level x 15-bit wide hardware stack (refer to Figure 3-1 and Figure 3-2). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Word 2). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

ACCESSING THE STACK EXAMPLE 1

3.4.1 ACCESSING THE STACK

The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is 5 bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and Interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement the STKPTR.

Reference Figure 3-5 through Figure 3-8 for examples of accessing the stack.

7.6.3 PIE2 REGISTER

The PIE2 register contains the interrupt enable bits, as shown in Register 7-3.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 7-3:	PIE2: PERIPHERAL	INTERRUPT ENABL	E REGISTER 2
		=	

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	—	CCP2IE
bit 7							bit 0

Legend:					
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'		
u = Bit is unch	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets		
'1' = Bit is set		'0' = Bit is cleared			
bit 7	OSFIE: Oscil	lator Fail Interrupt Enable bit			
	1 = Enables 0 = Disables	the Oscillator Fail interrupt the Oscillator Fail interrupt			
bit 6	C2IE: Compa	arator C2 Interrupt Enable bit			
	 1 = Enables the Comparator C2 interrupt 0 = Disables the Comparator C2 interrupt 				
bit 5	C1IE: Compa	arator C1 Interrupt Enable bit			
	1 = Enables the Comparator C1 interrupt0 = Disables the Comparator C1 interrupt				
bit 4	EEIE: EEPRO	OM Write Completion Interru	pt Enable bit		
	1 = Enables 0 = Disables	the EEPROM Write Complet the EEPROM Write Comple	ion interrupt tion interrupt		
bit 3	BCLIE: MSS	P Bus Collision Interrupt Ena	ble bit		
	1 = Enables	the MSSP Bus Collision Inte	rrupt		
	0 = Disables	the MSSP Bus Collision Inte	errupt		
bit 2	LCDIE: LCD	Module Interrupt Enable bit			
	1 = Enables 0 = Disables	the LCD module interrupt			
bit 1	Unimplemen	ited: Read as '0'			
bit 0	CCP2IE: CCI	P2 Interrupt Enable bit			
	1 = Enables	the CCP2 interrupt			
	0 = Disables	the CCP2 interrupt			

NOTES:

10.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See the Electrical Specifications Chapters for the LFINTOSC tolerances.

10.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Word 1. See Table 10-1.

10.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Word 1 are set to '11', the WDT is always on.

WDT protection is active during Sleep.

10.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Word 1 are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

10.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Word 1 are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 10-1 for more details.

TABLE 10-1. WDT OPERATING WODES	TABLE 10-1:	WDT OPERATING MODES
---------------------------------	-------------	---------------------

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	Х	Active
10	37	Awake	Active
TO	X	Sleep	Disabled
0.1	1	~	Active
UI	0	^	Disabled
00	х	х	Disabled

TABLE 10-2: WDT CLEARING CONDITIONS

10.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is 2 seconds.

10.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep
- Oscillator fail event
- WDT is disabled
- Oscillator Start-up TImer (OST) is running

See Table 10-2 for more information.

10.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section 5.0** "Oscillator **Module (With Fail-Safe Clock Monitor)**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See **Section 3.0** "**Memory Organization**" and STATUS register (**Register 3-1**) for more information.

Conditions	WDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SWDTEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	Cleared
Oscillator Fail Detected	
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST
Change INTOSC divider (IRCF bits)	Unaffected

15.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- · ADC voltage reference selection
- ADC conversion clock source
- · Interrupt control
- Result formatting

15.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 12.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input buf-
	fer to conduct excess current.

15.1.2 CHANNEL SELECTION

There are 17 channel selections available:

- AN<13:0> pins
- · Temperature Indicator
- DAC Output
- FVR (Fixed Voltage Reference) Output

Refer to Section 16.0 "Temperature Indicator Module", Section 17.0 "Digital-to-Analog Converter (DAC) Module" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these channel selections.

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 15.2 "ADC Operation"** for more information.

15.1.3 ADC VOLTAGE REFERENCE

The ADPREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd
- FVR 2.048V
- FVR 4.096V (Not available on LF devices)

The ADNREF bits of the ADCON1 register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See **Section 14.0** "Fixed Voltage Reference (FVR)" for more details on the fixed voltage reference.

15.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- · Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 15-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the A/D conversion requirements in the applicable Electrical Specifications Chapter for more information. Table 15-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

15.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - · Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 15.3 "A/D Acquisition Requirements".

EXAMPLE 15-1: A/D CONVERSION

;This code block configures the ADC ; for polling, Vdd and Vss references, Frc ;clock and ANO input. ;Conversion start & polling for completion ; are included. BANKSEL ADCON1 ; B'11110000' ;Right justify, Frc MOVLW ;clock MOVWF ADCON1 ;Vdd and Vss Vref BANKSEL TRISA ; BSF TRISA,0 ;Set RA0 to input BANKSEL ANSEL ; BSF ANSEL,0 ;Set RA0 to analog BANKSEL ADCON0 B'00000001' ;Select channel ANO MOVLW MOVWE ;Turn ADC On ADCON0 SampleTime ; Acquisiton delay CALL ADCON0, ADGO ; Start conversion BSF BTFSC ADCON0, ADGO ; Is conversion done? GOTO \$-1 ;No, test again ADRESH ; BANKSEL ADRESH,W ;Read upper 2 bits MOVF MOVWF RESULTHI ;store in GPR space BANKSEL ADRESL ; ADRESL,W MOVF ;Read lower 8 bits MOVWE RESULTIO ;Store in GPR space

FIGURE 21-4: TIMER1 GATE TOGGLE MODE

24.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPCON3 register enables additional clock stretching and interrupt generation after the 8th falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPIF interrupt is set.

Figure 24-18 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled.

- 1. Bus starts Idle.
- 2. Master sends Start condition; the S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the 8th falling edge of the SCL line the CKP bit is cleared and SSPIF interrupt is generated.
- 4. Slave software clears SSPIF.
- Slave software reads ACKTIM bit of SSPCON3 register, and R/W and D/A of the SSPSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets ACKDT bit of the SSPCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPIF.
- 12. Slave loads value to transmit to the master into SSPBUF setting the BF bit.

Note: <u>SSPBUF</u> cannot be loaded until after the <u>ACK</u>.

13. Slave sets CKP bit releasing the clock.

- 14. Master clocks out the data from the slave and sends an ACK value on the 9th SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not \overline{ACK} the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

24.7 Baud Rate Generator

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPADD register (Register 24-6). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 24-39 triggers the value from SSPADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module

clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 24-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

EQUATION 24-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 24-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 24-4: MSSP CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FcLock (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz ⁽¹⁾
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

REGISTER 24-5: SSPMSK: SSP MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
-			MSK	<7:0>			
bit 7							bit 0
							
Legend:							
R = Readable bit		W = Writable	W = Writable bit U = Unimplemented bit, read as '0'		l as '0'		
u = Bit is unchanged		x = Bit is unkr	nown	own -n/n = Value at POR and BOR/Value at all other I		other Resets	
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-1	MSK<7:1>:	Mask bits					
1 = The received address bit n is compared to SSPADD <n> to detect I^2C address match 0 = The received address bit n is not used to detect I^2C address match</n>				tch			
bit 0	MSK<0>: M I ² C Slave m 1 = The rec 0 = The rec	ask bit for I ² C S ode, 10-bit addr eived address b eived address b	lave mode, 10 ess (SSPM<3 it 0 is compar it 0 is not use	0-bit Address :0> = 0111 or ed to SSPADD d to detect I ² C	1111): <0> to detect l ² address match	C address mat	tch

I²C Slave mode, 7-bit address, the bit is ignored

'0' = Bit is cleared

REGISTER 24-6: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets

Master mode:

1' = Bit is set

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode — Most Significant Address byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode — Least Significant Address byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

FIGURE 27-12: TYPE-B WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE

ΜΟΥΨΙ	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	$\label{eq:W} \begin{split} W &\rightarrow INDFn \\ \text{Effective address is determined by} \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR + k \ (\text{relative offset}) \\ \text{After the Move, the FSR value will be either:} \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \text{Unchanged} \end{split}$
Status Affected:	None

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	
Syntax:	

Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

No Operation

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \to OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.
Words:	1
Cycles:	1
Example:	OPTION
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft- ware

FIGURE 31-10: TYPICAL COMPARATOR RESPONSE TIME OVER TEMPERATURE, HIGH-POWER MODE

FIGURE 31-27: PIC16LF1937 HS OSCILLATOR MODE, Fosc = 32 MHz

