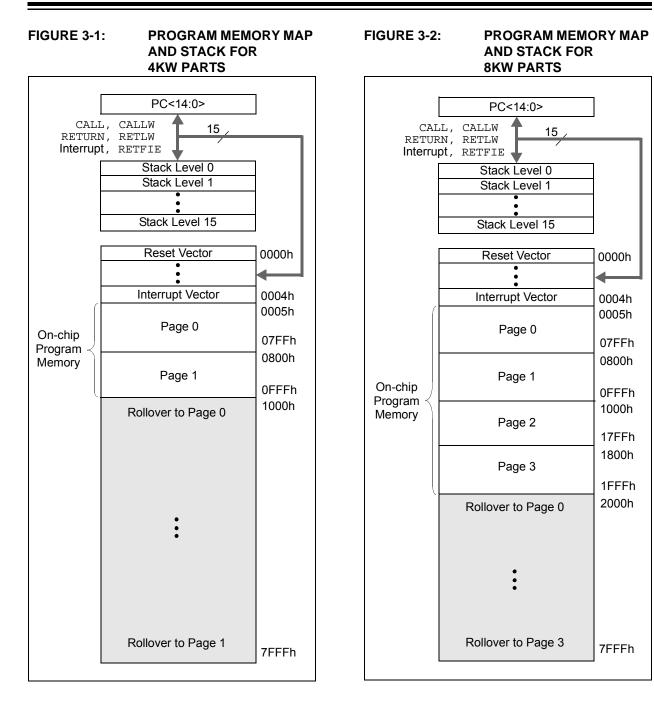


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1936t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1934/6/7

PIC16(L)F1934/6/7

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2											
100h ⁽²⁾	INDF0	Addressing (not a physi		ses contents o	of FSR0H/FSF	R0L to address	data memory	/		XXXX XXXX	XXXX XXXX
101h ⁽²⁾	INDF1 Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)									XXXX XXXX	XXXX XXXX
102h ⁽²⁾	PCL	Program Counter (PC) Least Significant Byte								0000 0000	0000 0000
103h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
104h ⁽²⁾	FSR0L	Indirect Data	a Memory Add	Iress 0 Low Po	ointer		•		•	0000 0000	uuuu uuuu
105h ⁽²⁾	FSR0H	Indirect Data	a Memory Add	lress 0 High P	ointer					0000 0000	0000 0000
106h ⁽²⁾	FSR1L	Indirect Dat	a Memory Add	Iress 1 Low Po	ointer					0000 0000	uuuu uuuu
107h ⁽²⁾	FSR1H	Indirect Dat	a Memory Add	lress 1 High P	ointer					0000 0000	0000 0000
108h ⁽²⁾	BSR	_	—	—		E	BSR<4:0>			0 0000	0 0000
109h ⁽²⁾	WREG										uuuu uuuu
10Ah ^(1, 2)	PCLATH	CLATH — Write Buffer for the upper 7 bits of the Program Counter									-000 0000
10Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
10Ch	LATA	PORTA Data Latch								xxxx xxxx	uuuu uuuu
10Dh	LATB PORTB Data Latch									xxxx xxxx	uuuu uuuu
10Eh	LATC	ATC PORTC Data Latch								xxxx xxxx	uuuu uuuu
10Fh ⁽³⁾	LATD	PORTD Dat	ta Latch							xxxx xxxx	uuuu uuuu
110h	LATE	_	—	—		_	LATE2 ⁽³⁾	LATE1 ⁽³⁾	LATE0 ⁽³⁾	xxx	uuu
111h	CM1CON0	C10N	C10UT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	0000 -100	0000 -100
112h	CM1CON1	C1INTP	C1INTN	C1PCH1	C1PCH0	_	_	C1NCI	H<1:0>	000000	000000
113h	CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	0000 -100	0000 -100
114h	CM2CON1	C2INTP	C2INTN	C2PCH1	C2PCH0	_	_	C2NCI	H<1:0>	000000	000000
115h	CMOUT	_	_	_		_	_	MC2OUT	MC10UT	00	00
116h	BORCON	SBOREN	_	_	_	_	_	—	BORRDY	1 q	uu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR1	CDAFVR0	ADFVI	R<1:0>	0q00 0000	0q00 0000
118h	DACCON0	DACEN	DACLPS	DACOE		DACPS	S<1:0>		DACNSS	000- 00-0	000- 00-0
119h	DACCON1					D	ACR<4:0>		-	0 0000	0 0000
11Ah	SRCON0	SRLEN	SRCLK2	SRCLK1	SRCLK0	SRQEN	SRNQEN	SRPS	SRPR	0000 0000	0000 0000
11Bh	SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	0000 0000	0000 0000
11Ch	—	Unimpleme	nted							—	_
11Dh	APFCON	_	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	-000 0000	-000 0000
11Eh	—	Unimpleme	nted		•			•		_	_
11Fh	Unimplemented									_	_

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'. 3:

4: Unimplemented, read as '1'.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
OPTION_REG	WPUEN	INTEDG	TMROCS	TMROSE	PSA		PS<2:0>		193
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	99
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	100
PIE3	_	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	—	101
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	102
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF		CCP2IF	103
PIR3		CCP5IF	CCP4IF	CCP3IF	TMR6IF		TMR4IF	_	104

 TABLE 7-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Interrupts.

9.0 POWER-DOWN MODE (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. $\overline{\text{TO}}$ bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Timer1 oscillator is unaffected and peripherals that operate from it may continue operation in Sleep.
- 7. ADC is unaffected, if the dedicated FRC clock is selected.
- 8. Capacitive Sensing oscillator is unaffected.
- 9. I/O ports maintain the status they had before SLEEP was executed (driving high, low or highimpedance).
- 10. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- · Internal circuitry sourcing current from I/O pins
- · Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- Modules using Timer1 oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 17.0 "Digital-to-Analog Converter (DAC) Module" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

9.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 6.10 "Determining the Cause of a Reset"**.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

11.4 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.
- 8. Repeat steps 6 and 7 as many times as required to reprogram the erased row.

11.5 User ID, Device ID and Configuration Word Access

Instead of accessing program memory or EEPROM data memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the EECON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 11-2.

When read access is initiated on an address outside the parameters listed in Table 11-2, the EEDATH:EEDATL register pair is cleared.

_				(0) 00 = =)
	Address	Function	Read Access	Write Access
	8000h-8003h	User IDs	Yes	Yes
Γ	8006h	Device ID/Revision ID	Yes	No
Γ	8007h-8008h	Configuration Words 1 and 2	Yes	No

TABLE 11-2: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)

EXAMPLE 11-3: CONFIGURATION WORD AND DEVICE ID ACCESS

* This code block will read 1 word of program memory at the memory address:

- * PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables;
- * PROG_DATA_HI, PROG_DATA_LO

M	ANKSEL OVLW OVWF LRF	PROG_ADDR_LO EEADRL	; ;	Select correct Bank Store LSB of address Clear MSB of address
B B N N	SF CF SF OP OP SF	INTCON,GIE EECON1,RD	; ; ;	Select Configuration Space Disable interrupts Initiate read Executed (See Figure 11-1) Ignored (See Figure 11-1) Restore interrupts
M M	OVF OVWF OVF OVWF	PROG_DATA_LO EEDATH,W	; ;	Get LSB of word Store in user location Get MSB of word Store in user location

R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0		
EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD		
bit 7							bit C		
Logondi									
Legend: R = Readable	hit	W = Writable	hit	II – Unimplo	monted hit read	d oo 'O'			
		x = Bit is unk		•	mented bit, read	R/Value at all c	than Basata		
S = Bit can or '1' = Bit is set	•						Inel Resels		
I = DILIS SEL		'0' = Bit is cle	areu		eared by hardw	Vale			
bit 7	EEPGD: Flas	sh Program/Da	ta EEPROM M	emory Select	bit				
		s program spa s data EEPRO	ce Flash memo M memory	ory					
bit 6			EEPROM or C	Configuration	Select bit				
	1 = Accesse	s Configuration	n, User ID and	Device ID Reg	gisters				
		-	m or data EEP	ROM Memory	/				
bit 5		Write Latches	•						
					EPGD = 1 (prog				
		next WR con ated.	nmand does no	ot initiate a w	rite; only the p	program memo	y latches are		
			mand writes a v	alue from EEI	DATH:EEDATL	into program m	emory latche		
					program memo		2		
	If CFGS = 0 a	and EEPGD =	0: (Accessing of	data EEPRON	1)				
					e to the data El	EPROM.			
bit 4	FREE: Progr	am Flash Eras	e Enable bit						
	<u>If CFGS = 1</u>	(Configuration	<u>space)</u> OR <u>CF</u>	GS = 0 and E	EPGD = 1 (prog	gram Flash):			
			operation on t	he next WR c	ommand (clear	ed by hardware	after comple		
		of erase). forms a write o	peration on the	next WR con	nmand.				
			<u>0:</u> (Accessing			and a write av			
hit 0	-			will initiate boi	n a erase cycle	and a write cyo	le.		
bit 3		PROM Error F	•	ram or oraco	soquence atte	mot or tormina	tion (hit is so		
		Condition indicates an improper program or erase sequence attempt or termination (bit is set automatically on any set attempt (write '1') of the WR bit).							
			operation comp						
bit 2	WREN: Prog	ram/Erase Ena	able bit						
		rogram/erase o							
	-		rasing of progra	am Flash and	data EEPROM				
bit 1	WR: Write Co				, .				
					n/erase operation	on. operation is co	mnlete		
			e set (not cleare				inpiete.		
					OM is complete	e and inactive.			
bit 0	RD: Read Co	ontrol bit							
						one cycle. RD	is cleared in		
			an only be set						
		i miliale a prog	ram Flash or d	αια ΕΕΓΚΟΙΝ	udia iedu.				

REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
			EEPROM Co	ontrol Register 2			
bit 7				-			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
S = Bit can onl	y be set	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 Data EEPROM Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the EECON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes. Refer to **Section 11.2.2** "Writing to the Data EEPROM Memory" for more information.

TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	127
EECON2	ON2 EEPROM Control Register 2 (not a physical register)								
EEADRL	EEADRL<7:0>								126
EEADRH	EEADRH<6:0								126
EEDATL	EEDATL<7:0>								126
EEDATH	_	_			EEDAT	H<5:0>			126
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	100
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	—	CCP2IF	103

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the data EEPROM module.

* Page provides register information.

REGISTER 12-22: WPUE: WEAK PULL-UP PORTE REGISTER

U-0	U-0	U-0	U-0	R/W-1/1	U-0	U-0	U-0	
			_	WPUE3		—	_	
bit 7	÷						bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all c	ther Resets	
'1' = Bit is s	set	'0' = Bit is cle	ared					
bit 7-4	Unimplomor	ited: Read as '	0'					
DIL 7-4	ommplemen		U					
bit 3	WPUE: Weal	k Pull-up Regis	ter bit					

- 1 = Pull-up enabled
- 0 = Pull-up disabled

bit 2-0 Unimplemented: Read as '0'

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	—			CHS<4:0>			GO/DONE	ADON	163
ANSELE	_	_	_		_	ANSE2 ⁽¹⁾	ANSE1 ⁽¹⁾	ANSE0 ⁽¹⁾	149
CCPxCON	PxM≤	<1:0>	DCxB	<1:0>		CCPxM<3:0>			
LATE	—	_	_	_	_	LATE2 ⁽¹⁾	LATE1 ⁽¹⁾	LATE0 ⁽¹⁾	149
LCDCON	LCDEN	SLPEN	WERR	_	CS<1:0>		LMUX<1:0>		329
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	333
PORTE	—	_	_	_	RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾	148
TRISE	_	_	_	_	(2)	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	148
WPUE	_	_	_	_	WPUE3	—	_	_	150

TABLE 12-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

Note 1: These bits are not implemented on the PIC16(L)F1936 devices, read as '0'.

2: Unimplemented, read as '1'.

3: These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'.

16.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, *"Use and Calibration of the Internal Temperature Indicator"* (DS01333) for more details regarding the calibration process.

16.1 Circuit Operation

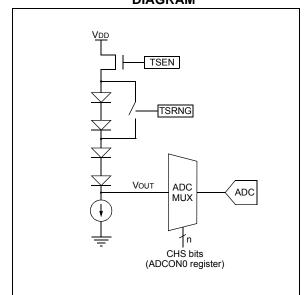
Figure 16-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 16-1 describes the output characteristics of the temperature indicator.

EQUATION 16-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT


The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 14.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 16-1: TEMPERATURE CIRCUIT DIAGRAM

16.2 Minimum Operating VDD vs. Minimum Sensing Temperature

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 16-1 shows the recommended minimum VDD vs. range setting.

TABLE 16-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

16.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to Section 16.0 "Analog-to-Digital Converter (ADC) Module" for detailed information.

16.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

^{© 2008-2011} Microchip Technology Inc.

21.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 21-1 displays the Timer1 enable selections.

TABLE 21-1:	TIMER1 ENABLE
	SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

21.2 Clock Source Selection

The TMR1CS<1:0> and T1OSCEN bits of the T1CON register are used to select the clock source for Timer1. Table 21-2 displays the clock source selections.

21.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1 gate
- C1 or C2 comparator input to Timer1 gate

21.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI or the capacitive sensing oscillator signal. Either of these external clock sources can be synchronized to the microcontroller system clock or they can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated internal oscillator circuit.

- **Note:** In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
 - Timer1 enabled after POR
 - Write to TMR1H or TMR1L
 - Timer1 is disabled
 - Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TMR1CS1	TMR1CS0	T1OSCEN	Clock Source
0	0	x	Instruction Clock (Fosc/4)
0	1	x	System Clock (FOSC)
1	0	0	External Clocking on T1CKI Pin
1	0	0	External Clocking on T1CKI Pin
1	1	x	Capacitive Sensing Oscillator

TABLE 21-2: CLOCK SOURCE SELECTIONS

21.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

21.4 Timer1 Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the T1OSCEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to using Timer1. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

21.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 21.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	When switching from synchronous to
	asynchronous operation, it is possible to
	skip an increment. When switching from
	asynchronous to synchronous operation,
	it is possible to produce an additional
	increment.

21.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

21.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

21.6.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 21-3 for timing details.

TABLE 21-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

23.1.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 12.1 "Alternate Pin Function**" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	_	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	131
CCPxCON	PxM<	1:0> (1)	DCxB	<1:0>		CCPxM<	:3:0>		234
CCPRxL	Capture/Co	mpare/PWM	Register x l	Low Byte (LS	SB)				212
CCPRxH	Capture/Co	mpare/PWM	Register x I	High Byte (M	ISB)				212
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	99
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	100
PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	_	101
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	102
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	103
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	104
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	203
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS	S<1:0>	204
TMR1L	Holding Reg	gister for the	Least Signif	icant Byte of	f the 16-bit TMR1	1 Register			199
TMR1H	Holding Reg	gister for the	Most Signifi	cant Byte of	the 16-bit TMR1	Register			199
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	133
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	138
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
TRISD ⁽²⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	145
TRISE				—	_(3)	TRISE2 ⁽²⁾	TRISE1 ⁽²⁾	TRISE0 ⁽²⁾	148

TABLE 23-2:	SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by Capture mode.

Note 1: Applies to ECCP modules only.

2: These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'.

3: Unimplemented, read as '1'.

25.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH mark state which represents a '1' data bit, and a VOL space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is 8 bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 25-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

25.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 25-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

25.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note 1: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

25.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

25.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDCON register. The default state of this bit is '0' which selects high true transmit ldle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true ldle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 25.4.1.2 "Clock Polarity"**.

25.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

					SYNC	C = 0, BRGH	l = 1, BRC	616 = 0					
BAUD	Fos	c = 8.000) MHz	Fos	c = 4.000) MHz	Fosc	: = 3.686	4 MHz	Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	_	—	_		_			_	300	0.16	207	
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_	
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_	
115.2k	—	_	—	—	_	—	115.2k	0.00	1	—	_	—	

TABLE 25-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc	: = 32.00	0 MHz	Fosc	= 20.00	0 MHz	Fosc = 18.432 MHz			Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303	
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575	
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

		SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 8.000 MHz			Fos	Fosc = 4.000 MHz			: = 3.686	4 MHz	Fosc = 1.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207		
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51		
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25		
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_		
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5		
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_		
57.6k	55556	-3.55	8	—	_	—	57.60k	0.00	3	—	—	—		
115.2k	—	_	—	_	_	—	115.2k	0.00	1	_	_	—		

FIGURE 25-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin TX/CK pin (SCKP = 0)	
TX/CK pin (SCKP = 1) Write to bit SREN	
SREN bit	·0'
RCIF bit (Interrupt) —	۔ اس
Read RXREG	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TABLE 25-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	302
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	99
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	102
RCREG	EUSART R	eceive Dat	a Register						296*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	301
SPBRGL				BRG	<7:0>				303*
SPBRGH				BRG<	:15:8>				303*
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	300

Legend: — = unimplemented read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

27.10 LCD Interrupts

The LCD module provides an interrupt in two cases. An interrupt when the LCD controller goes from active to inactive controller. An interrupt also provides unframed boundaries for Type B waveform. The LCD timing generation provides an interrupt that defines the LCD frame timing.

27.10.1 LCD INTERRUPT ON MODULE SHUTDOWN

An LCD interrupt is generated when the module completes shutting down (LCDA goes from '1' to '0').

27.10.2 LCD FRAME INTERRUPTS

A new frame is defined to begin at the leading edge of the COM0 common signal. The interrupt will be set immediately after the LCD controller completes accessing all pixel data required for a frame. This will occur at a fixed interval before the frame boundary (TFINT), as shown in Figure 27-19. The LCD controller will begin to access data for the next frame within the interval from the interrupt to when the controller begins to access data after the interrupt (TFWR). New data must be written within TFWR, as this is when the LCD controller will begin to access the data for the next frame.

When the LCD driver is running with Type-B waveforms and the LMUX<1:0> bits are not equal to '00' (static drive), there are some additional issues that must be addressed. Since the DC voltage on the pixel takes two frames to maintain zero volts, the pixel data must not change between subsequent frames. If the pixel data were allowed to change, the waveform for the odd frames would not necessarily be the complement of the waveform generated in the even frames and a DC component would be introduced into the panel. Therefore, when using Type-B waveforms, the user must synchronize the LCD pixel updates to occur within a subframe after the frame interrupt.

To correctly sequence writing while in Type-B, the interrupt will only occur on complete phase intervals. If the user attempts to write when the write is disabled, the WERR bit of the LCDCON register is set and the write does not occur.

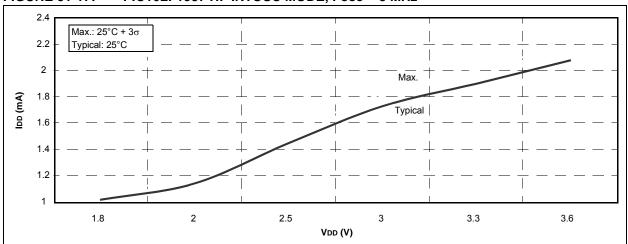
Note:	The LCD frame interrupt is not generated								
	when the Type-A waveform is selected								
	and when the Type-B with no multiplex								
	(static) is selected.								

30.4 DC Characteristics: PIC16(L)F1934/6/7-I/E (Continued)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature -40°C \le TA \le +85°C for industrial} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $						
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
		VCAP Capacitor Charging							
D102		Charging current	—	200	_	μΑ			
D102A		Source/sink capability when charging complete	-	0.0	—	mA			

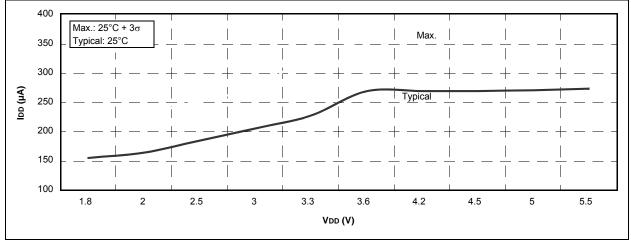
These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

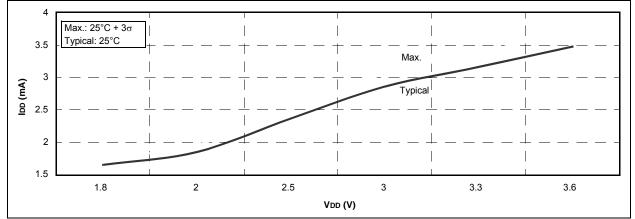

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

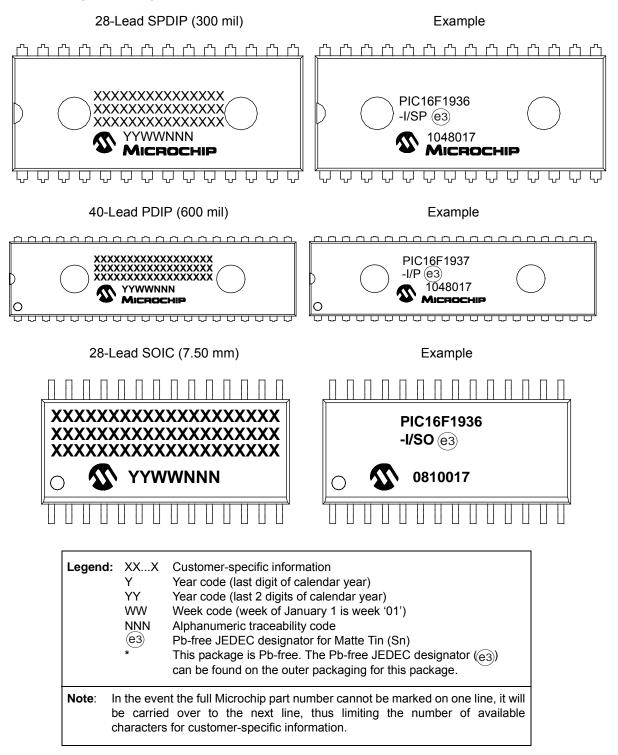
2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


4: Including OSC2 in CLKOUT mode.

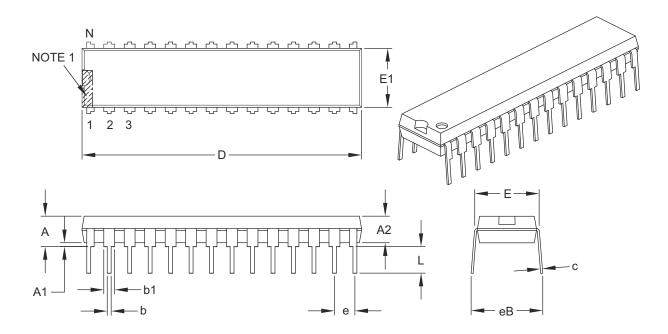
PIC16(L)F1934/6/7





33.0 PACKAGING INFORMATION

33.1 Package Marking Information


* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

33.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES			
	MIN	NOM	MAX	
Number of Pins	N		28	
Pitch	е	.100 BSC		
Top to Seating Plane	A	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width		.014	.018	.022
Overall Row Spacing §		_	_	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B