

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1937-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram - 40-Pin PDIP (PIC16(L)F1934/7)

2: PIC16F1934/7 devices only.

Name	Function	Input Type	Output Type	Description
RA0/AN0/C12IN0-/C2OUT ⁽¹⁾ /	RA0	TTL	CMOS	General purpose I/O.
SRNQ ⁽¹⁾ / SS⁽¹⁾/VCAP⁽²⁾/SEG12	AN0	AN	—	A/D Channel 0 input.
	C12IN0-	AN	_	Comparator C1 or C2 negative input.
	C2OUT		CMOS	Comparator C2 output.
	SRNQ	_	CMOS	SR Latch inverting output.
	SS	ST		Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1934/6/7 only).
	SEG12	_	AN	LCD Analog output.
RA1/AN1/C12IN1-/SEG7	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN	_	A/D Channel 1 input.
	C12IN1-	AN	_	Comparator C1 or C2 negative input.
	SEG7	_	AN	LCD Analog output.
RA2/AN2/C2IN+/VREF-/	RA2	TTL	CMOS	General purpose I/O.
DACOUT/COM2	AN2	AN	_	A/D Channel 2 input.
	C2IN+	AN	_	Comparator C2 positive input.
	VREF-	AN	_	A/D Negative Voltage Reference input.
	DACOUT	_	AN	Voltage Reference output.
	COM2		AN	LCD Analog output.
RA3/AN3/C1IN+/VREF+/	RA3	TTL	CMOS	General purpose I/O.
COM3 ⁽³⁾ /SEG15	AN3	AN	_	A/D Channel 3 input.
	C1IN+	AN	_	Comparator C1 positive input.
	VREF+	AN	—	A/D Voltage Reference input.
	COM3 ⁽³⁾	_	AN	LCD Analog output.
	SEG15		AN	LCD Analog output.
RA4/C1OUT/CPS6/T0CKI/SRQ/	RA4	TTL	CMOS	General purpose I/O.
CCP5/SEG4	C10UT		CMOS	Comparator C1 output.
	CPS6	AN	_	Capacitive sensing input 6.
	TOCKI	ST	—	Timer0 clock input.
	SRQ		CMOS	SR Latch non-inverting output.
	CCP5	ST	CMOS	Capture/Compare/PWM5.
	SEG4	_	AN	LCD Analog output.
RA5/AN4/C2OUT ⁽¹⁾ /CPS7/	RA5	TTL	CMOS	General purpose I/O.
SRNQ ⁽¹⁾ /SS ⁽¹⁾ /VCAP ⁽²⁾ /SEG5	AN4	AN	—	A/D Channel 4 input.
	C2OUT	_	CMOS	Comparator C2 output.
	CPS7	AN	_	Capacitive sensing input 7.
	SRNQ	_	CMOS	SR Latch inverting output.
	SS	ST	_	Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1934/6/7 only).
	SEG5	_	AN	LCD Analog output.

TABLE 1-2: PIC16(L)F1934/6/7 PINOUT DESCRIPTION

Legend:AN= Analog input or outputCMOS = CMOS compatible input or outputOD= Open DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levels l^2C^{TM} = Schmitt Trigger input with l²C

HV = High Voltage XTAL = Crystal

levels

Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1934/6/7 devices only.

3: PIC16(L)F1936 devices only.

4: PORTD is available on PIC16(L)F1934/7 devices only.

5: RE<2:0> are available on PIC16(L)F1934/7 devices only.

© 2008-2011 Microchip Technology Inc.

TABLE 3-8: PIC16(L)F1934/6/7 MEMORY MAP, BANKS 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	INDF0	C80h	INDF0	D00h	INDF0	D80h	INDF0	E00h	INDF0	E80h	INDF0	F00h	INDF0	F80h	INDF0
C01h	INDF1	C81h	INDF1	D01h	INDF1	D81h	INDF1	E01h	INDF1	E81h	INDF1	F01h	INDF1	F81h	INDF1
C02h	PCL	C82h	PCL	D02h	PCL	D82h	PCL	E02h	PCL	E82h	PCL	F02h	PCL	F82h	PCL
C03h	STATUS	C83h	STATUS	D03h	STATUS	D83h	STATUS	E03h	STATUS	E83h	STATUS	F03h	STATUS	F83h	STATUS
C04h	FSR0L	C84h	FSR0L	D04h	FSR0L	D84h	FSR0L	E04h	FSR0L	E84h	FSR0L	F04h	FSR0L	F84h	FSR0L
C05h	FSR0H	C85h	FSR0H	D05h	FSR0H	D85h	FSR0H	E05h	FSR0H	E85h	FSR0H	F05h	FSR0H	F85h	FSR0H
C06h	FSR1L	C86h	FSR1L	D06h	FSR1L	D86h	FSR1L	E06h	FSR1L	E86h	FSR1L	F06h	FSR1L	F86h	FSR1L
C07h	FSR1H	C87h	FSR1H	D07h	FSR1H	D87h	FSR1H	E07h	FSR1H	E87h	FSR1H	F07h	FSR1H	F87h	FSR1H
C08h	BSR	C88h	BSR	D08h	BSR	D88h	BSR	E08h	BSR	E88h	BSR	F08h	BSR	F88h	BSR
C09h	WREG	C89h	WREG	D09h	WREG	D89h	WREG	E09h	WREG	E89h	WREG	F09h	WREG	F89h	WREG
C0Ah	PCLATH	C8Ah	PCLATH	D0Ah	PCLATH	D8Ah	PCLATH	E0Ah	PCLATH	E8Ah	PCLATH	F0Ah	PCLATH	F8Ah	PCLATH
C0Bh	INTCON	C8Bh	INTCON	D0Bh	INTCON	D8Bh	INTCON	E0Bh	INTCON	E8Bh	INTCON	F0Bh	INTCON	F8Bh	INTCON
C0Ch	—	C8Ch	_	D0Ch	_	D8Ch	_	E0Ch	_	E8Ch	—	F0Ch	_	F8Ch	
C0Dh	—	C8Dh	_	D0Dh	_	D8Dh	_	E0Dh	—	E8Dh	—	F0Dh	_	F8Dh	
C0Eh	—	C8Eh	_	D0Eh	—	D8Eh	_	E0Eh	—	E8Eh	—	F0Eh	_	F8Eh	
C0Fh	—	C8Fh	_	D0Fh	—	D8Fh	_	E0Fh	—	E8Fh	—	F0Fh	_	F8Fh	
C10h	—	C90h	_	D10h	—	D90h	_	E10h	—	E90h	—	F10h	_	F90h	
C11h	—	C91h	_	D11h	_	D91h	_	E11h	—	E91h	—	F11h	_	F91h	
C12h	—	C92h	_	D12h	_	D92h	_	E12h	—	E92h	—	F12h	_	F92h	
C13h	_	C93h	_	D13h	_	D93h	_	E13h	_	E93h	—	F13h	_	F93h	
C14h	_	C94h	_	D14h	_	D94h	_	E14h	_	E94h	—	F14h	_	F94h	
C15h	_	C95h	_	D15h	—	D95h	—	E15h	_	E95h	—	F15h	—	F95h	
C16h	—	C96h	_	D16h	—	D96h	—	E16h	_	E96h	—	F16h	—	F96h	
C17h	_	C97h	_	D17h	—	D97h	—	E17h	_	E97h	—	F17h	—	F97h	
C18h	—	C98h	_	D18h	—	D98h	—	E18h	_	E98h	—	F18h	—	F98h	See Table 3-11
C19h	—	C99h	_	D19h	_	D99h	_	E19h	_	E99h	—	F19h	_	F99h	
C1Ah	_	C9Ah	_	D1Ah	_	D9Ah	_	E1Ah	_	E9Ah	—	F1Ah	_	F9Ah	
C1Bh	—	C9Bh	_	D1Bh	_	D9Bh	_	E1Bh	_	E9Bh	—	F1Bh	_	F9Bh	
C1Ch	_	C9Ch	_	D1Ch	—	D9Ch	—	E1Ch	_	E9Ch	—	F1Ch	—	F9Ch	
C1Dh	_	C9Dh	_	D1Dh	—	D9Dh	—	E1Dh	_	E9Dh	—	F1Dh	—	F9Dh	
C1Eh	_	C9Eh	_	D1Eh	—	D9Eh	—	E1Eh	_	E9Eh	—	F1Eh	—	F9Eh	
C1Fh	_	C9Fh	_	D1Fh	—	D9Fh	—	E1Fh	_	E9Fh	—	F1Fh	—	F9Fh	
C20h		CA0h		D20h		DA0h		E20h		EA0h		F20h		FA0h	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		
C6Eb		CEEh		D6Fh		DEE		F6Fh		FFFh		F6Fb		FFFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
0.011	Accesses	5. 0.1	Accesses	2.011	Accesses	2. 011	Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	

Legend: = Unimplemented data memory locations, read as '0'.

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 15	Bank 15 (Continued)										
7A6h	LCDDATA6	SEG7 COM2	SEG6 COM2	SEG5 COM2	SEG4 COM2	SEG3 COM2	SEG2 COM2	SEG1 COM2	SEG0 COM2	XXXX XXXX	uuuu uuuu
7A7h	LCDDATA7	SEG15 COM2	SEG14 COM2	SEG13 COM2	SEG12 COM2	SEG11 COM2	SEG10 COM2	SEG9 COM2	SEG8 COM2	XXXX XXXX	uuuu uuuu
7A8h	LCDDATA8 ⁽ 3)	SEG23 COM2	SEG22 COM2	SEG21 COM2	SEG20 COM2	SEG19 COM2	SEG18 COM2	SEG17 COM2	SEG16 COM2	XXXX XXXX	uuuu uuuu
7A9h	LCDDATA9	SEG7 COM3	SEG6 COM3	SEG5 COM3	SEG4 COM3	SEG3 COM3	SEG2 COM3	SEG1 COM3	SEG0 COM3	XXXX XXXX	uuuu uuuu
7AAh	LCDDATA1 0	SEG15 COM3	SEG14 COM3	SEG13 COM3	SEG12 COM3	SEG11 COM3	SEG10 COM3	SEG9 COM3	SEG8 COM3	XXXX XXXX	uuuu uuuu
7ABh	LCDDATA11 ⁽ 3)	SEG23 COM3	SEG22 COM3	SEG21 COM3	SEG20 COM3	SEG19 COM3	SEG18 COM3	SEG17 COM3	SEG16 COM3	XXXX XXXX	uuuu uuuu
7ACh — 7EFh	_	Unimplemen	nted							_	_

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred Note 1: to the upper byte of the program counter.

2: These registers can be addressed from any bank.

These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'. 3:

4: Unimplemented, read as '1'.

REGISTER 4-1: CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0
- FOSC<2:0>: Oscillator Selection bits
 - 111 = ECH: External Clock, High-Power mode: CLKIN on RA7/OSC1/CLKIN
 - 110 = ECM: External Clock, Medium-Power mode: CLKIN on RA7/OSC1/CLKIN
 - 101 = ECL: External Clock, Low-Power mode: CLKIN on RA7/OSC1/CLKIN
 - 100 = INTOSC oscillator: I/O function on RA7/OSC1/CLKIN
 - 011 = EXTRC oscillator: RC function on RA7/OSC1/CLKIN
 - 010 = HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN
 - 001 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN
 - 000 = LP oscillator: Low-power crystal on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN
- **Note 1:** Enabling Brown-out Reset does not automatically enable Power-up Timer.
 - 2: The entire data EEPROM will be erased when the code protection is turned off during an erase.
 - 3: The entire program memory will be erased when the code protection is turned off.

5.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources

The oscillator module can be configured in one of eight clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium-Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 32 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (up to 4 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (4 MHz to 20 MHz)
- 7. RC External Resistor-Capacitor (RC).
- 8. INTOSC Internal oscillator (31 kHz to 32 MHz).

Clock Source modes are selected by the FOSC<2:0> bits in the Configuration Word 1. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The EC clock mode relies on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The RC clock mode requires an external resistor and capacitor to set the oscillator frequency.

The INTOSC internal oscillator block produces low, medium, and high frequency clock sources, designated LFINTOSC, MFINTOSC, and HFINTOSC. (see Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these three clock sources.

5.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

5.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word 1, or the internal oscillator.

FIGURE 5-8: TWO-SPEED START-UP

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared			_	
bit 7	Unimplement	ed: Read as '0	•				
bit 6	CCP3SEL: C	CP3 Input/Outp	out Pin Select	ion bit			
	For 28-Pin De	evices (PIC16F	<u>1936)</u> :				
	0 = CCP3/P3	BA function is o	n RC6/TX/CK	CCP3/P3A/SE			
	I = CCF3/F3		1024/7)·	CF35/CCF3/F3	SA/TIG/CONT		
	0 = CCP3/P3	A function is o	<u>1954/1)</u> . n RE0/AN5/C	CP3/P3A/SEG	21		
	1 = CCP3/P3	BA function is o	n RB5/AN13/	CPS5/CCP3/P3	A/T1G/COM1		
bit 5	T1GSEL: Tim	er1 Gate Input	Pin Selection	n bit			
	0 = T1G fund	tion is on RB5	AN13/CPS5/	CCP3/P3A/T10	G/COM1		
	1 = T1G func	tion is on RC4	/SDI/SDA/T10	G/SEG11			
bit 4	P2BSEL: CC	P2 PWM B Ou	tput Pin Selec	tion bit			
	For 28-Pin De	evices (PIC16F	<u>1936)</u> :				
	0 = P2B func 1 = P2B func	tion is on RC0 tion is on RB5	T10S0/T1C	<1/P2B PS5/T1C/COM	1		
	r = 1.20 functions For 40-Pin De	vices (PIC16F	1034/7)·	33/110/001	1		
	0 = P2B function	tion is on RC0	<u>1304/1)</u> . /T10S0/T1CI	<i p2b<="" td=""><td></td><td></td><td></td></i>			
	1 = P2B func	tion is on RD2	CPS10/P2B				
bit 3	SRNQSEL: S	R Latch nQ Ou	Itput Pin Sele	ction bit			
	0 = SRnQ fu	nction is on RA	5/AN4/C2OU	T/SRnQ/ <u>SS</u> /CF	PS7/SEG5/VCAF	>	
	1 = SRnQ fu	nction is on RA	0/AN0/C12IN	0-/C2OUT/SRr	nQ/SS/SEG12/V	CAP	
bit 2	C2OUTSEL:	Comparator C2	2 Output Pin S	Selection bit			
	0 = C2OUT f	unction is on R	A5/AN4/C2O	UT/SRnQ/SS/C	CPS7/SEG5/VC/	λP Δ (ο ι p	
b :4	1 = 0.2001 f		AU/ANU/C121	NU-/C2001/SF	(nQ/SS/SEG12	VCAP	
DIC	355EL: 55 If	on is on PA5/A					
	$1 = \overline{SS}$ functi	on is on RA0/A	N0/C12IN0-/(C2OUT/SRNQ/	SS/SEG12/VCAP	P	
bit 0	CCP2SEL: C	CP2 Input/Outr	out Pin Select	ion bit			
	0 = CCP2/P2	A function is o	n RC1/T1OSI	/CCP2/P2A			
	1 = CCP2/P2	A function is o	n RB3/AN9/C	12IN2-/CPS3/0	CCP2/P2A/VLCI	D3	

REGISTER 12-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER

12.5 PORTD Registers

PORTD is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISD (Register 12-14). Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTD register (Register 12-14) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATD).

Note:	PORTD is available on PIC16(L)F1934
	and PIC16(L)F1937 only.

The TRISD register (Register 12-15) controls the PORTD pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISD register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.5.1 ANSELD REGISTER

The ANSELD register (Register 12-17) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELD bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELD bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELD bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

12.5.2 PORTD FUNCTIONS AND OUTPUT PRIORITIES

Each PORTD pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-9.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in Table 12-9.

Pin Name	Function Priority ⁽¹⁾
RD0	COM3 (LCD) RD0
RD1	CCP4 (CCP) RD1
RD2	P2B (CCP) RD2
RD3	SEG16 (LCD) P2C (CCP) RD3
RD4	SEG17 (LCD) P2D (CCP) RD4
RD5	SEG18 (LCD) P1B (CCP) RD5
RD6	SEG19 (LCD) P1C (CCP) RD6
RD7	SEG20 (LCD) P1D (CCP) RD7

TABLE 12-9: PORTD OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

15.3 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 15-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 15-4. The maximum recommended impedance for analog sources is 10 k Ω . As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 15-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 15-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED} \\V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) \quad ;combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

$$Tc = -CHOLD(RIC + RSS + RS) ln(1/511)$$

= -10pF(1k\Omega + 7k\Omega + 10k\Omega) ln(0.001957)
= 1.12\mus

Therefore:

$$TACQ = 2\mu s + 1.12\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.42\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

FIGURE 21-4: TIMER1 GATE TOGGLE MODE

23.2 Compare Mode

The Compare mode function described in this section is available and identical for CCP modules ECCP1, ECCP2, ECCP3, CCP4 and CCP5.

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur:

- Toggle the CCPx output
- · Set the CCPx output
- · Clear the CCPx output
- · Generate a Special Event Trigger
- Generate a Software Interrupt

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 23-2 shows a simplified diagram of the Compare operation.

FIGURE 23-2: COMPARE MODE OPERATION BLOCK DIAGRAM

23.2.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Also, the CCPx pin function can be moved to alternative pins using the APFCON register. Refer to **Section 12.1 "Alternate Pin Function**" for more details.

Note:	Clearing the CCPxCON register will force
	the CCPx compare output latch to the
	default low level. This is not the PORT I/O
	data latch.

23.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See Section 21.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, TImer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

23.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPx module does not assert control of the CCPx pin (see the CCPxCON register).

23.2.4 SPECIAL EVENT TRIGGER

When Special Event Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

- Resets Timer1
- · Starts an ADC conversion if ADC is enabled

The CCPx module does not assert control of the CCPx pin in this mode.

The Special Event Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. The Special Event Trigger output starts an A/D conversion (if the A/D module is enabled). This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

TABLE 23-3: SPECIAL EVENT TRIGGER

Device	CCPx/ECCPx				
PIC16(L)F1934/6/7	CCP5				

Refer to **Section 15.2.5** "**Special Event Trigger**" for more information.

Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMR1IF of the PIR1 register.
 2: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will

preclude the Reset from occurring.

24.0 MASTER SYNCHRONOUS SERIAL PORT MODULE

24.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

The SPI interface supports the following modes and features:

- Master mode
- · Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- Daisy-chain connection of slave devices

Figure 24-1 is a block diagram of the SPI interface module.

REGISTER 24-2: SSPCON1: SSP CONTROL REGISTER 1

R/C/HS-0/0) R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
WCOL	SSPOV	SSPEN	СКР	1	SSPM<	<3:0>		
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemen	ted bit, read as '0'			
u = Bit is unch	anged	x = Bit is unknowr	ı	-n/n = Value at P	OR and BOR/Value a	t all other Resets		
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by	hardware	C = User cleared		
bit 7	WCOL: Write Co <u>Master mode:</u> 1 = A write to ti 0 = No collision <u>Slave mode:</u> 1 = The SSPBL 0 = No collision	Illision Detect bit he SSPBUF register 1 JF register is written v 1	r was attempted v vhile it is still transi	while the I ² C condit nitting the previous v	ions were not valid fo vord (must be cleared i	r a transmission to in software)	b be started	
bit 6	SSPOV: Receive In SPI mode: 1 = A new byte Overflow cas setting over SSPBUF re 0 = No overflow In I ² C mode: 1 = A byte is re (must be cl 0 = No overflow	e Overflow Indicator is received while the an only occur in Slave flow. In Master mode gister (must be clear v ecceived while the Si eared in software). v	bit ⁽¹⁾ SSPBUF register e mode. In Slave i , the overflow bit i ed in software). SPBUF register i	r is still holding the p mode, the user mus s not set since each s still holding the p	revious data. In case of read the SSPBUF, ev new reception (and tran revious byte. SSPOV	of overflow, the data ren if only transmitti nsmission) is initiate / is a "don't care"	a in SSPSR is lost. ing data, to avoid ed by writing to the in Transmit mode	
bit 5	 SSPEN: Synchronous Serial Port Enable bit In both modes, when enabled, these pins must be properly configured as input or output In SPI mode: Enables serial port and configures SCK, SDO, SDI and SS as the source of the serial port pins⁽²⁾ Disables serial port and configures these pins as I/O port pins In I²C mode: Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins⁽³⁾ Enables serial port and configures these pins as I/O port pins 							
bit 4	 Disables serial port and configures these pins as I/O port pins CKP: Clock Polarity Select bit In SPI mode: I = Idle state for clock is a high level I = Idle state for clock is a low level In I²C Slave mode: SCL release control I = Enable clock Holds clock low (clock stretch). (Used to ensure data setup time.) In I²C Master mode: 							
bit 3-0	$\begin{array}{l} \textbf{SSPM<3:0>:} Syr} \\ 0000 = SPI Masi \\ 0001 = SPI Masi \\ 0010 = SPI Masi \\ 0011 = SPI Masi \\ 0100 = SPI Masi \\ 0100 = SPI Slav \\ 0101 = SPI Slav \\ 1001 = Reserve \\ 1001 = Reserve \\ 1010 = SPI Masi \\ 1001 = Reserve \\ 1011 = I^2C Slave \\ 1101 = Reserve \\ 1110 = I^2C Slave \\ 1111 = I^2C Sl$	nchronous Serial Po ter mode, clock = Fc ter mode, clock = Fc ter mode, clock = Fc ter mode, clock = CC e mode, clock = SC e mode, clock = SC e mode, 10-bit addres e mode, 10-bit addres ter mode, clock = Fc d ter mode, clock = Fc d e mode, 7-bit addres e mode, 7-bit addres e mode, 7-bit addres	rt Mode Select b DSC/4 DSC/16 DSC/64 MR2 output/2 K pin, <u>SS</u> pin cor SS DSC / (4 * (SSPAE DSC/(4 * (SSPAD er mode (Slave I SS with Start and SSS with Start and SSS with Start and	its htrol enabled htrol disabled, SS c h(D+1)) ⁽⁴⁾ D+1)) ⁽⁵⁾ dle) Stop bit interrupts e l Stop bit interrupts e	an be used as I/O pin nabled enabled			
Note 1: 2: \ 3: \ 4: \$ 5: \$	n Master mode, the ov When enabled, these p When enabled, the SD/ SSPADD values of 0, 1 SSPADD value of '0' is	erflow bit is not set ins must be properly A and SCL pins mus or 2 are not suppor not supported. Use	since each new r y configured as ir st be configured a ted for I ² C Mode SSPM = 0000 ir	eception (and trans put or output. as inputs.	mission) is initiated b	y writing to the SS	PBUF register.	

REGISTER 24-5: SSPMSK: SSP MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
-			MSK	<7:0>					
bit 7							bit 0		
									
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set	t	'0' = Bit is cle	ared						
bit 7-1	MSK<7:1>:	Mask bits							
	1 = The rec 0 = The rec	eived address b eived address b	it n is compar it n is not use	ed to SSPADD d to detect I ² C	<n> to detect I² address match</n>	C address mat	tch		
bit 0	MSK<0>: M I ² C Slave m 1 = The rec 0 = The rec	ask bit for I ² C S ode, 10-bit addr eived address b eived address b	lave mode, 10 ess (SSPM<3 it 0 is compar it 0 is not use	0-bit Address :0> = 0111 or ed to SSPADD d to detect I ² C	1111): <0> to detect l ² address match	C address mat	tch		

I²C Slave mode, 7-bit address, the bit is ignored

'0' = Bit is cleared

REGISTER 24-6: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets

Master mode:

1' = Bit is set

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode — Most Significant Address byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode — Least Significant Address byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

25.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the EUSART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note:	If all receive characters in the receive
	FIFO have framing errors, repeated reads
	of the RCREG will not clear the FERR bit.

25.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCSTA register or by resetting the EUSART by clearing the SPEN bit of the RCSTA register.

25.1.2.6 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift 9 bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the 8 Least Significant bits from the RCREG.

25.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

ΜΟΥΨΙ	Move W to INDFn		
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]		
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31		
Operation:	$\label{eq:W} \begin{split} W &\rightarrow INDFn \\ \text{Effective address is determined by} \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR + k \ (\text{relative offset}) \\ \text{After the Move, the FSR value will be either:} \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \text{Unchanged} \end{split}$		
Status Affected:	None		

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	
Syntax:	

Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

No Operation

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \to OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.
Words:	1
Cycles:	1
Example:	OPTION
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft- ware

FIGURE 30-17: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

NOTES: