

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1937-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-11:PIC16(L)F1934/6/7 MEMORYMAP, BANK 31

		Bank 31	
	F8Ch		
		Unimplemented Read as '0'	
	FE3h		
	FE4h	STATUS_SHAD	
	FE5h	WREG_SHAD	
	FE6h	BSR_SHAD	
	FE7h	PCLATH_SHAD	
	FE8h	FSR0L_SHAD	
	FE9h	FSR0H_SHAD	
	FEAh	FSR1L_SHAD	
	FEBh	FSR1H_SHAD	
	FECh	—	
	FEDh	STKPTR	
	FEEh	TOSL	
	FEFh	TOSH	
Lege		= Unimplemented data '0'.	memory locations, read

3.2.6 SPECIAL FUNCTION REGISTERS SUMMARY

The Special Function Register Summary for the device family are as follows:

Device	Bank(s)	Page No.
	0	39
	1	40
	2	41
	3	42
	4	43
	5	44
PIC16(L)F1934/6/7	6	45
	7	46
	8	47
	9-14	48
	15	49
	16-30	51
	31	52

PIC16(L)F1934/6/7

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2											
100h ⁽²⁾	INDF0	Addressing (not a physi		ses contents o	of FSR0H/FSF	R0L to address	data memory	/		XXXX XXXX	XXXX XXXX
101h ⁽²⁾	INDF1		this location u cal register)	ses contents o	of FSR1H/FSF	R1L to address	data memory	/		XXXX XXXX	XXXX XXXX
102h ⁽²⁾	PCL	Program Co	ounter (PC) Le	ast Significant	t Byte					0000 0000	0000 0000
103h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
104h ⁽²⁾	FSR0L	Indirect Data	a Memory Add	Iress 0 Low Po	ointer		•	•	•	0000 0000	uuuu uuuu
105h ⁽²⁾	FSR0H	Indirect Data	a Memory Add	lress 0 High P	ointer					0000 0000	0000 0000
106h ⁽²⁾	FSR1L	Indirect Dat	a Memory Add	Iress 1 Low Po	ointer					0000 0000	uuuu uuuu
107h ⁽²⁾	FSR1H	Indirect Data	a Memory Add	lress 1 High P	ointer					0000 0000	0000 0000
108h ⁽²⁾	BSR	_	—	—		E	BSR<4:0>			0 0000	0 0000
109h ⁽²⁾	WREG	Working Re	gister							0000 0000	uuuu uuuu
10Ah ^(1, 2)	PCLATH	_	Write Buffer f	or the upper 7	bits of the Pr	ogram Counter	r			-000 0000	-000 0000
10Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
10Ch	LATA	PORTA Dat	a Latch							xxxx xxxx	uuuu uuuu
10Dh	LATB	PORTB Dat	a Latch							xxxx xxxx	uuuu uuuu
10Eh	LATC	PORTC Dat	ta Latch							xxxx xxxx	uuuu uuuu
10Fh ⁽³⁾	LATD	PORTD Dat	ta Latch							xxxx xxxx	uuuu uuuu
110h	LATE	_	—	—		_	LATE2 ⁽³⁾	LATE1 ⁽³⁾	LATE0 ⁽³⁾	xxx	uuu
111h	CM1CON0	C10N	C10UT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	0000 -100	0000 -100
112h	CM1CON1	C1INTP	C1INTN	C1PCH1	C1PCH0	_	_	C1NCI	H<1:0>	000000	000000
113h	CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	0000 -100	0000 -100
114h	CM2CON1	C2INTP	C2INTN	C2PCH1	C2PCH0	_	_	C2NCI	H<1:0>	000000	000000
115h	CMOUT	_	_	_		_	_	MC2OUT	MC10UT	00	00
116h	BORCON	SBOREN	_	_	_	_	_	—	BORRDY	1 q	uu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR1	CDAFVR0	ADFVI	R<1:0>	0q00 0000	0q00 0000
118h	DACCON0	DACEN	DACLPS	DACOE		DACPS	S<1:0>		DACNSS	000- 00-0	000- 00-0
119h	DACCON1					D	ACR<4:0>		-	0 0000	0 0000
11Ah	SRCON0	SRLEN	SRCLK2	SRCLK1	SRCLK0	SRQEN	SRNQEN	SRPS	SRPR	0000 0000	0000 0000
11Bh	SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	0000 0000	0000 0000
11Ch	—	Unimpleme	nted							—	—
11Dh	APFCON	_	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	-000 0000	-000 0000
11Eh	—	Unimpleme	nted		•			•		_	_
11Fh		Unimpleme	nted							_	_

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'. 3:

4: Unimplemented, read as '1'.

5.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.

Internal clock sources are contained internally within the oscillator module. The internal oscillator block has two internal oscillators and a dedicated Phase-Lock Loop (HFPLL) that are used to generate three internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC), 500 kHz (MFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See **Section 5.3 "Clock Switching"** for additional information.

5.2.1 EXTERNAL CLOCK SOURCES

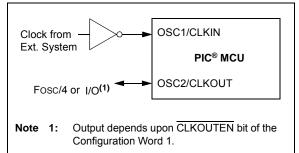
An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in the Configuration Word 1 to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Timer1 Oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

See Section 5.3 "Clock Switching" for more information.

5.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode.


EC mode has 3 power modes to select from through Configuration Word 1:

- High power, 4-32 MHz (FOSC = 111)
- Medium power, 0.5-4 MHz (FOSC = 110)
- Low power, 0-0.5 MHz (FOSC = 101)

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 5-2:

EXTERNAL CLOCK (EC) MODE OPERATION

5.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 5-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 5-3 and Figure 5-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

5.2.2.6 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4X PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Word 1 must be set to use the INTOSC source as the device system clock (FOSC<2:0> = 100).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<2:0> in Configuration Word 1 (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4xPLL, or the PLLEN bit of the Configuration Word 2 must be programmed to a '1'.
- Note: When using the PLLEN bit of the Configuration Word 2, the 4xPLL cannot be disabled by software and the 8 MHz HFINTOSC option will no longer be available.

The 4xPLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4xPLL with the internal oscillator.

5.2.2.7 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-7). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 5-7 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-1.

Start-up delay specifications are located in the oscillator tables in the applicable Electrical Specifications Chapter.

PIC16(L)F1934/6/7

FIGURE 5-7:	INTERNAL OSCILLATOR SWITCH TIMING
HEINTOSC/	SINTOSC (SOCH and WOY (Exabled) Otartup TimeCoycle Oycc
IRCF <3:0>	$\neq 0$ $\chi = 0$
System Clock	
NENNIOSCI L MENIIOSC	FINTOSC (Either FSCM of WDT snabled)
HFINTOSC/ MEINTOSC	2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-
LFINTOSC -	
IRCF <3:0>	$\neq 0$ $X = 0$
System Clock	
LEINTOSO F LEINTOSO -	IFINTOSC/MFINTOSC
BEENTOSC/ MENTOSC	
\$PCF <3:0>	• 6 X # 0
System Crock	

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_			TUN	<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimpleme	nted: Read as '	0'				
bit 5-0	TUN<4:0>: F	Frequency Tunir	ng bits				
		laximum freque	ncy				
	011110 =						
	•						
	•						
	000001 =						
	000000 = C	scillator module	e is running at	the factory-cali	brated frequen	cy.	
	111111 =						
	•						
	•						
	100000 = N	linimum frequer	псу				

REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER

TABLE 5-2:	SUM	IARY OF	REGISTEI	RS ASSO	CIATED WI		ES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF	-<3:0>			SCS	<1:0>	81
OSCSTAT	T1OSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	82
OSCTUNE	_			TUN<5:0>					83
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE ⁽¹⁾	100
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF ⁽¹⁾	103
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	203

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

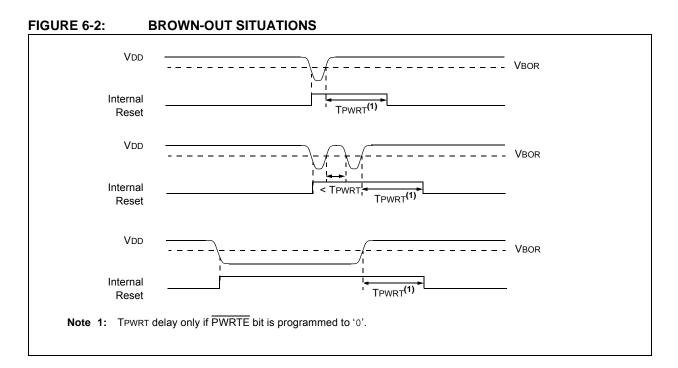

Note 1: PIC16F1934 only.

TABLE 5-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_		FCMEN	IESO	CLKOUTEN	BOREI	N<1:0>	CPD	00
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE	=<1:0>		FOSC<2:0>		62
	13:8	_	_	LVP	DEBUG	_	BORV	STVREN	PLLEN	
CONFIG2	7:0	_	_	VCAPEN	I<1:0> ⁽¹⁾	_	_	WRT	<1:0>	64

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

Note 1: PIC16F1934/6/7 only.

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	U-0	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	—	—	_	—	—	—	BORRDY
bit 7	-						bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	<pre>SBOREN: Software Brown-out Reset Enable bit If BOREN <1:0> in Configuration Word 1 ≠ 01: SBOREN is read/write, but has no effect on the BOR. If BOREN <1:0> in Configuration Word 1 = 01: 1 = BOR Enabled 0 = BOR Disabled</pre>
bit 6-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit 1 = The Brown-out Reset circuit is active 0 = The Brown-out Reset circuit is inactive

9.0 POWER-DOWN MODE (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. $\overline{\text{TO}}$ bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Timer1 oscillator is unaffected and peripherals that operate from it may continue operation in Sleep.
- 7. ADC is unaffected, if the dedicated FRC clock is selected.
- 8. Capacitive Sensing oscillator is unaffected.
- 9. I/O ports maintain the status they had before SLEEP was executed (driving high, low or highimpedance).
- 10. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- · Internal circuitry sourcing current from I/O pins
- · Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- Modules using Timer1 oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 17.0 "Digital-to-Analog Converter (DAC) Module" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

9.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 6.10** "**Determining the Cause of a Reset**".

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

11.3.2 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the EEADRH:EEADRL register pair with the address of new row to be erased.
- 2. Clear the CFGS bit of the EECON1 register.
- 3. Set the EEPGD, FREE, and WREN bits of the EECON1 register.
- 4. Write 55h, then AAh, to EECON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the EECON1 register to begin the erase operation.
- 6. Poll the FREE bit in the EECON1 register to determine when the row erase has completed.

See Example 11-4.

After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.

11.3.3 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the starting address of the word(s) to be programmed.
- 2. Load the write latches with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 11-2 (block writes to program memory with 8 write latches) for more details. The write latches are aligned to the address boundary defined by EEADRL as shown in Table 11-1. Write operations do not cross these boundaries. At the completion of a program memory write operation, the write latches are reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a block of program memory. These steps are divided into two parts. First, all write latches are loaded with data except for the last program memory location. Then, the last write latch is loaded and the programming sequence is initiated. A special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. This unlock sequence should not be interrupted.

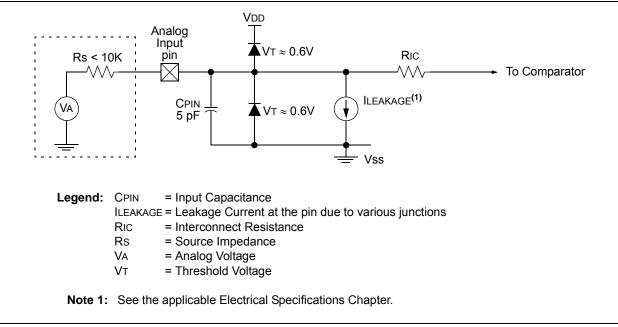
- 1. Set the EEPGD and WREN bits of the EECON1 register.
- 2. Clear the CFGS bit of the EECON1 register.
- Set the LWLO bit of the EECON1 register. When the LWLO bit of the EECON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the EEADRH:EEADRL register pair with the address of the location to be written.
- 5. Load the EEDATH:EEDATL register pair with the program memory data to be written.
- Write 55h, then AAh, to EECON2, then set the WR bit of the EECON1 register (Flash programming unlock sequence). The write latch is now loaded.
- 7. Increment the EEADRH:EEADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the EECON1 register. When the LWLO bit of the EECON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the EEDATH:EEDATL register pair with the program memory data to be written.
- 11. Write 55h, then AAh, to EECON2, then set the WR bit of the EECON1 register (Flash programming unlock sequence). The entire latch block is now written to Flash program memory.

It is not necessary to load the entire write latch block with user program data. However, the entire write latch block will be written to program memory.

An example of the complete write sequence for eight words is shown in Example 11-5. The initial address is loaded into the EEADRH:EEADRL register pair; the eight words of data are loaded using indirect addressing.

Note: The code sequence provided in Example 11-5 must be repeated multiple times to fully program an erased program memory row.

11.6 Write Verify


Depending on the application, good programming practice may dictate that the value written to the data EEPROM or program memory should be verified (see Example 11-6) to the desired value to be written. Example 11-6 shows how to verify a write to EEPROM.

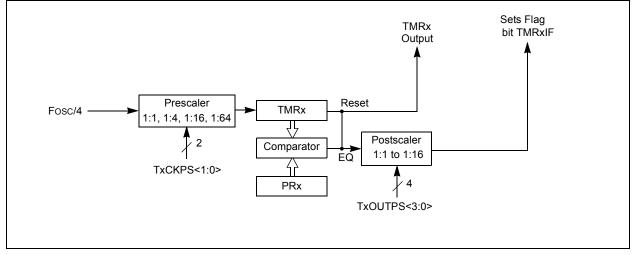
EXAMPLE 11-6: EEPROM WRITE VERIFY

BANKSEI	L EEDATL		;
MOVF	EEDATL,	W	;EEDATL not changed
			;from previous write
BSF	EECON1,	RD	;YES, Read the
			;value written
XORWF	EEDATL,	W	;
BTFSS	STATUS,	Ζ	;Is data the same
GOTO	WRITE_ER	R	;No, handle error
:			;Yes, continue
1			

PIC16(L)F1934/6/7

22.0 TIMER2/4/6 MODULES

There are up to three identical Timer2-type modules available. To maintain pre-existing naming conventions, the Timers are called Timer2, Timer4 and Timer6 (also Timer2/4/6).


Note:	The 'x' variable used in this section is used to designate Timer2, Timer4, or Timer6. For example, TxCON references T2CON, T4CON, or T6CON. PRx refer-
	ences PR2, PR4, or PR6.

The Timer2/4/6 modules incorporate the following features:

- 8-bit Timer and Period registers (TMRx and PRx, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMRx match with PRx, respectively
- Optional use as the shift clock for the MSSP modules (Timer2 only)

See Figure 22-1 for a block diagram of Timer2/4/6.

23.4.3 ENHANCED PWM AUTO-SHUTDOWN MODE

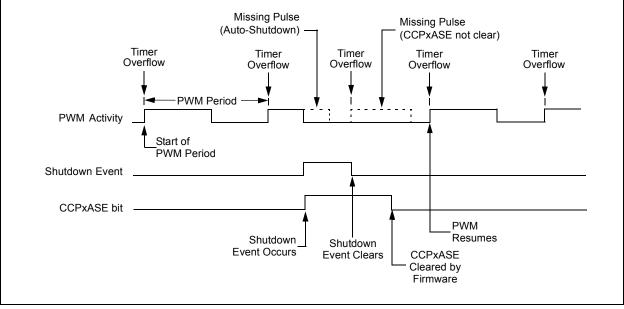
The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are selected using the CCPxAS<2:0> bits of the CCPxAS register. A shutdown event may be generated by:

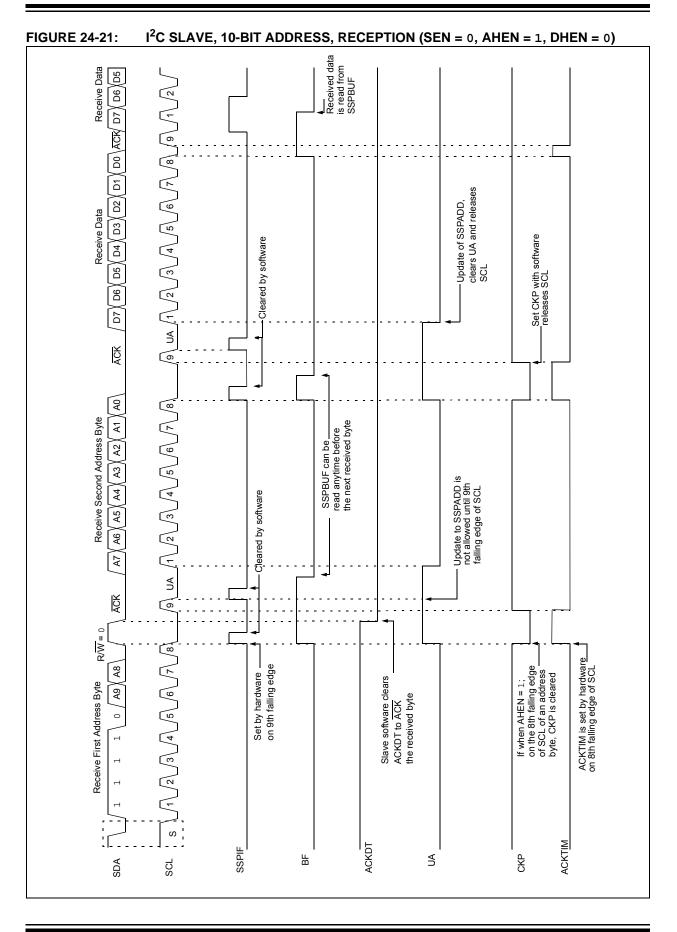
- A logic '0' on the INT pin
- A logic '1' on a Comparator (Cx) output

A shutdown condition is indicated by the CCPxASE (Auto-Shutdown Event Status) bit of the CCPxAS register. If the bit is a '0', the PWM pins are operating normally. If the bit is a '1', the PWM outputs are in the shutdown state.

When a shutdown event occurs, two things happen:


The CCPxASE bit is set to '1'. The CCPxASE will remain set until cleared in firmware or an auto-restart occurs (see Section 23.4.4 "Auto-Restart Mode").

The enabled PWM pins are asynchronously placed in their shutdown states. The PWM output pins are grouped into pairs [PxA/PxC] and [PxB/PxD]. The state of each pin pair is determined by the PSSxAC and PSSxBD bits of the CCPxAS register. Each pin pair may be placed into one of three states:


- Drive logic '1'
- Drive logic '0'
- Tri-state (high-impedance)

- Note 1: The auto-shutdown condition is a level-based signal, not an edge-based signal. As long as the level is present, the auto-shutdown will persist.
 - Writing to the CCPxASE bit is disabled while an auto-shutdown condition persists.
 - 3: Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart) the PWM signal will always restart at the beginning of the next PWM period.
 - 4: Prior to an auto-shutdown event caused by a comparator output or INT pin event, a software shutdown can be triggered in firmware by setting the CCPxASE bit of the CCPxAS register to '1'. The Auto-Restart feature tracks the active status of a shutdown caused by a comparator output or INT pin event only. If it is enabled at this time, it will immediately clear this bit and restart the ECCP module at the beginning of the next PWM period.

PIC16(L)F1934/6/7

26.1 Analog MUX

The CPS module can monitor up to 16 inputs. The capacitive sensing inputs are defined as CPS<15:0>. To determine if a frequency change has occurred the user must:

- Select the appropriate CPS pin by setting the CPSCH<3:0> bits of the CPSCON1 register.
- Set the corresponding ANSEL bit.
- Set the corresponding TRIS bit.
- Run the software algorithm.

Selection of the CPSx pin while the module is enabled will cause the capacitive sensing oscillator to be on the CPSx pin. Failure to set the corresponding ANSEL and TRIS bits can cause the capacitive sensing oscillator to stop, leading to false frequency readings.

26.2 Capacitive Sensing Oscillator

The capacitive sensing oscillator consists of a constant current source and a constant current sink, to produce a triangle waveform. The CPSOUT bit of the CPSCON0 register shows the status of the capacitive sensing oscillator, whether it is a sinking or sourcing current. The oscillator is designed to drive a capacitive load (single PCB pad) and at the same time, be a clock source to either Timer0 or Timer1. The oscillator has three different current settings as defined by CPSRNG<1:0> of the CPSCON0 register. The different current settings for the oscillator serve two purposes:

- Maximize the number of counts in a timer for a fixed time base.
- Maximize the count differential in the timer during a change in frequency.

26.3 Voltage References

The capacitive sensing oscillator uses voltage references to provide two voltage thresholds for oscillation. The upper voltage threshold is referred to as Ref+ and the lower voltage threshold is referred to as Ref-.

The Vss voltage determines the lower threshold level (Ref-) and the VDD voltage determines the upper threshold level (Ref+).

26.4 Power Ranges

The capacitive sensing oscillator can operate in one of three different power modes.

There are three distinct power ranges; low, medium and high. Current consumption is dependent upon the range selected. See Table 26-1 for proper power range selection.

The remaining mode is a Noise Detection mode that resides within the high range. The Noise Detection mode is unique in that it disables the sinking and sourcing of current on the analog pin but leaves the rest of the oscillator circuitry active. This reduces the oscillation frequency on the analog pin to zero and also greatly reduces the current consumed by the oscillator module.

When noise is introduced onto the pin, the oscillator is driven at the frequency determined by the noise. This produces a detectable signal at the comparator output, indicating the presence of activity on the pin.

Figure 26-2 shows a more detailed drawing of the current sources and comparators associated with the oscillator.

TABLE 26-1: POWER RANGE SELECTION

CPSRNG<1:0>	Mode	Nominal Current ⁽¹⁾
00	Off	0.0 μA
01	Low	0.1 μA
10	Medium	1.2 μA
11	High	18 μA

Note 1: See the applicable Electrical Specifications Chapter for more information.

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0
LCDIRE	LCDIRS	LCDIRI	_	VLCD3PE	VLCD2PE	VLCD1PE	_
bit 7							bit 0
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
u = Bit is und	•	x = Bit is unkr				R/Value at all ot	her Resets
'1' = Bit is se	et	'0' = Bit is clea	ared	C = Only clea	rable bit		
bit 7	I CDIRE: C	D Internal Refer	ence Enable	• hit			
				and connected to	the Internal Co	ontrast Control o	circuit
	0 = Internal	LCD Reference	is disabled				
bit 6		D Internal Refer	ence Source	e bit			
	If LCDIRE =				_		
				powered by VD powered by a 3		f the FVR	
	If LCDIRE =			, ponoloù sy a e			
	Internal LCD	Contrast Contro	ol is unconne	ected. LCD band	lgap buffer is di	sabled.	
bit 5		Internal Refere					
				wn when the LC			
				s in power mode s the LCD Refe			
bit 4		nted: Read as '	•				
bit 3	VLCD3PE: V	LCD3 Pin Enab	ole bit				
	1 = The VLC	D3 pin is conne	ected to the i	nternal bias volt	age LCDBIAS3	(1)	
		CD3 pin is not co					
bit 2	VLCD2PE: VLCD2 Pin Enable bit						
		CD2 pin is conne CD2 pin is not co		nternal bias volt	age LCDBIAS2	(1)	
bit 1	VLCD1PE: VLCD1 Pin Enable bit						
				nternal bias volt	age LCDBIAS1	(1)	
		D1 pin is not co			0		
bit 0	Unimplemer	nted: Read as ')'				
	la una al usia, a a ustua						

REGISTER 27-3: LCDREF: LCD REFERENCE VOLTAGE CONTROL REGISTER

Note 1: Normal pin controls of TRISx and ANSELx are unaffected.

REGISTER 27-4: LCDCST: LCD CONTRAST CONTROL REGISTER

U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 - - - - LCDCST<2:0> bit 7 bit 0	P = Poodoblo bi	+	M = M/ritabla	hit	II – Unimplor	monted bit read	0,	
LCDCST<2:0>	Legend:							
LCDCST<2:0>	DIL 7							
	h:t 7							h:+ 0
U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0	_	_	_	_	_		LCDCST<2:0>	
	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0

R = Readable bit	VV = VVritable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	C = Only clearable bit

bit 7-3 Unimplemented: Read as '0'

bit 2-0 LCDCST<2:0>: LCD Contrast Control bits

Selects the resistance of the LCD contrast control resistor ladder

Bit Value = Resistor ladder

000 = Minimum Resistance (Maximum contrast). Resistor ladder is shorted.

001 = Resistor ladder is at 1/7th of maximum resistance

010 = Resistor ladder is at 2/7th of maximum resistance

011 = Resistor ladder is at 3/7th of maximum resistance

100 = Resistor ladder is at 4/7th of maximum resistance

101 = Resistor ladder is at 5/7th of maximum resistance

110 = Resistor ladder is at 6/7th of maximum resistance

111 = Resistor ladder is at maximum resistance (Minimum contrast).

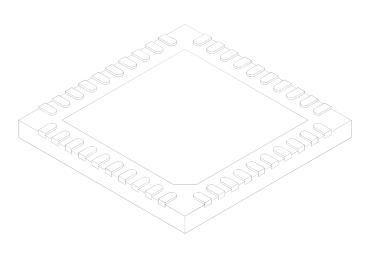
30.3 DC Characteristics: PIC16(L)F1934/6/7-I/E (Power-Down) (Continued)

PIC16LF1	Standard Operating Cond Operating temperature			litions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended						
PIC16F1934/36/37			Standard Operating Cond Operating temperature			litions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param	Device Characteristics	Min.	Typt Max.	Max.	Units	Conditions				
No.	Device onarablensitos		וקני	+85°C	+125°C	Onito	VDD	Note		
Power-down Base Current (IPD) ⁽²⁾										
D028		_	0.1	4.0	8.0	μA	1.8	A/D Current (Note 1, Note 3), no		
			0.1	5.0	9.0	μA	3.0	conversion in progress		
D028		_	22	56	63	μΑ	1.8	A/D Current (Note 1, Note 3), no		
		—	26	58	78	μA	3.0	conversion in progress		
		—	27	61	88	μA	5.0			
D029		_	250	_	_	μA	1.8	A/D Current (Note 1, Note 3),		
		_	250	—	—	μA	3.0	conversion in progress		
D029		_	280	_	_	μΑ	1.8	A/D Current (Note 1, Note 3,		
		_	280	_	_	μA	3.0	Note 4), conversion in progress		
			280	_		μA	5.0]		
D030		_	2	7	11	μA	1.8	Cap Sense, Low-Power mode		
			3	9	13	μA	3.0			
D030		—	21	61	63	μA	1.8	Cap Sense, Low-Power mode		
		—	27	63	78	μA	3.0			
		_	28	66	88	μA	5.0			
D031		_	1	—	—	μA	3.0	LCD Bias Ladder, Low-power		
		—	10	—	—	μA	3.0	LCD Bias Ladder, Medium-power		
		—	75	_	_	μA	3.0	LCD Bias Ladder, High-power		
D031		—	1	—	_	μA	5.0	LCD Bias Ladder, Low-power		
		_	10	—	_	μA	5.0	LCD Bias Ladder, Medium-power		
		_	75	_		μA	5.0	LCD Bias Ladder, High-power		
D032		—	7.6	22	25	μA	1.8	Comparator, Low-Power mode		
		—	8.0	23	27	μA	3.0			
D032		_	24	65	75	μA	1.8	Comparator, Low-Power mode		
		_	26	75	88	μA	3.0			
			28	77	97	μA	5.0			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.


2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

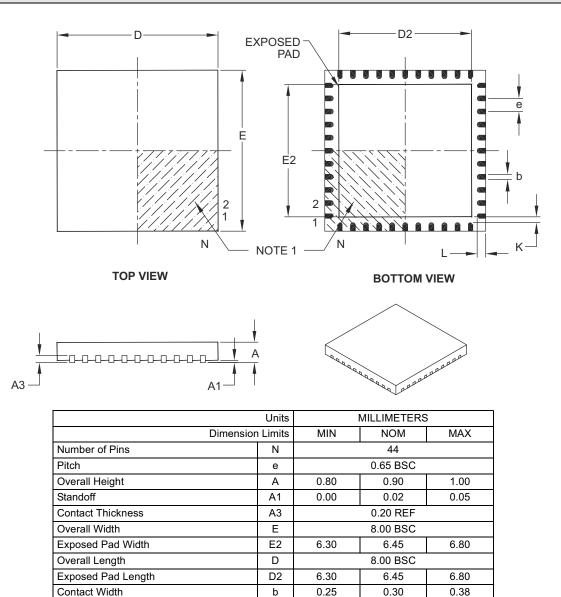
3: A/D oscillator source is FRC.

4: 0.1 μF capacitor on VCAP (RA0).

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dime	nsion Limits	MIN	NOM	MAX	
Number of Pins	N		40		
Pitch	е		0.40 BSC		
Overall Height	A	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	E	5.00 BSC			
Exposed Pad Width	E2	3.60 3.70 3.8		3.80	
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.60	3.70	3.80	
Contact Width	b	0.15 0.20 0.25			
Contact Length	L	0.30 0.40 0.50			
Contact-to-Exposed Pad	K	0.20	-	-	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

L

Κ

0.30

0.20

0.40

_

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

Contact Length

Contact-to-Exposed Pad

- BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

0.50

_