

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1937t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/AN0/C12IN0-/C2OUT ⁽¹⁾ /	RA0	TTL	CMOS	General purpose I/O.
SRNQ ⁽¹⁾ / SS⁽¹⁾/VCAP⁽²⁾/SEG12	AN0	AN	—	A/D Channel 0 input.
	C12IN0-	AN	_	Comparator C1 or C2 negative input.
	C2OUT		CMOS	Comparator C2 output.
	SRNQ	_	CMOS	SR Latch inverting output.
	SS	ST		Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1934/6/7 only).
	SEG12	_	AN	LCD Analog output.
RA1/AN1/C12IN1-/SEG7	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN	_	A/D Channel 1 input.
	C12IN1-	AN	_	Comparator C1 or C2 negative input.
	SEG7	_	AN	LCD Analog output.
RA2/AN2/C2IN+/VREF-/	RA2	TTL	CMOS	General purpose I/O.
DACOUT/COM2	AN2	AN	_	A/D Channel 2 input.
	C2IN+	AN	_	Comparator C2 positive input.
	VREF-	AN	_	A/D Negative Voltage Reference input.
	DACOUT	_	AN	Voltage Reference output.
	COM2		AN	LCD Analog output.
RA3/AN3/C1IN+/VREF+/	RA3	TTL	CMOS	General purpose I/O.
COM3 ⁽³⁾ /SEG15	AN3	AN	_	A/D Channel 3 input.
	C1IN+	AN	_	Comparator C1 positive input.
	VREF+	AN	—	A/D Voltage Reference input.
	COM3 ⁽³⁾	_	AN	LCD Analog output.
	SEG15		AN	LCD Analog output.
RA4/C1OUT/CPS6/T0CKI/SRQ/	RA4	TTL	CMOS	General purpose I/O.
CCP5/SEG4	C10UT		CMOS	Comparator C1 output.
	CPS6	AN	_	Capacitive sensing input 6.
	TOCKI	ST	—	Timer0 clock input.
	SRQ		CMOS	SR Latch non-inverting output.
	CCP5	ST	CMOS	Capture/Compare/PWM5.
	SEG4	_	AN	LCD Analog output.
RA5/AN4/C2OUT ⁽¹⁾ /CPS7/	RA5	TTL	CMOS	General purpose I/O.
SRNQ ⁽¹⁾ /SS ⁽¹⁾ /VCAP ⁽²⁾ /SEG5	AN4	AN	—	A/D Channel 4 input.
	C2OUT	_	CMOS	Comparator C2 output.
	CPS7	AN	_	Capacitive sensing input 7.
	SRNQ	_	CMOS	SR Latch inverting output.
	SS	ST	_	Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1934/6/7 only).
	SEG5	_	AN	LCD Analog output.

TABLE 1-2: PIC16(L)F1934/6/7 PINOUT DESCRIPTION

Legend:AN= Analog input or outputCMOS = CMOS compatible input or outputOD= Open DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levels l^2C^{TM} = Schmitt Trigger input with l²C

HV = High Voltage XTAL = Crystal

levels

Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1934/6/7 devices only.

3: PIC16(L)F1936 devices only.

4: PORTD is available on PIC16(L)F1934/7 devices only.

5: RE<2:0> are available on PIC16(L)F1934/7 devices only.

© 2008-2011 Microchip Technology Inc.

	<u> </u>							/	1		1
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 6	ank 6										
300h ⁽²⁾	INDF0	Addressing (not a physi	this location u cal register)	ses contents o	of FSR0H/FSR	OL to address	data memor	y		XXXX XXXX	XXXX XXXX
301h ⁽²⁾	INDF1	Addressing (not a physi	dressing this location uses contents of FSR1H/FSR1L to address data memory t a physical register)							XXXX XXXX	XXXX XXXX
302h ⁽²⁾	PCL	Program Co	ounter (PC) Le	ast Significant	t Byte					0000 0000	0000 0000
303h ⁽²⁾	STATUS	—	—	—	TO	PD	Z	DC	С	1 1000	q quuu
304h ⁽²⁾	FSR0L	Indirect Dat	a Memory Ado	dress 0 Low P	ointer					0000 0000	uuuu uuuu
305h ⁽²⁾	FSR0H	Indirect Dat	a Memory Add	dress 0 High P	ointer					0000 0000	0000 0000
306h ⁽²⁾	FSR1L	Indirect Dat	a Memory Ado	dress 1 Low P	ointer					0000 0000	uuuu uuuu
307h ⁽²⁾	FSR1H	Indirect Dat	a Memory Add	dress 1 High P	ointer					0000 0000	0000 0000
308h ⁽²⁾	BSR	—	—	_		I	BSR<4:0>			0 0000	0 0000
309h ⁽²⁾	WREG	Working Re	gister							0000 0000	uuuu uuuu
30Ah ^(1, 2)	PCLATH	_	Write Buffer for the upper 7 bits of the Program Counter							-000 0000	-000 0000
30Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
30Ch	—	Unimpleme	Unimplemented							_	_
30Dh	—	Unimpleme	Jnimplemented							_	_
30Eh	_	Unimpleme	Jnimplemented							_	_
30Fh	_	Unimpleme	nted							_	_
310h	—	Unimpleme	nted							_	-
311h	CCPR3L	Capture/Co	mpare/PWM F	Register 3 (LSI	B)					xxxx xxxx	uuuu uuuu
312h	CCPR3H	Capture/Co	mpare/PWM F	Register 3 (MS	iB)					xxxx xxxx	uuuu uuuu
313h	CCP3CON	P3N	l<1:0>	DC3E	3<1:0>		CCP3M	<1:0>		0000 0000	0000 0000
314h	PWM3CON	P3RSEN			F	23DC<6:0>				0000 0000	0000 0000
315h	CCP3AS	CCP3ASE		CCP3AS<2:0	>	PSS3A	C<1:0>	PSS3B	D<1:0>	0000 0000	0000 0000
316h	PSTR3CON	_	_	_	STR3SYNC	STR3D	STR3C	STR3B	STR3A	0 0001	0 0001
317h	—	Unimpleme	nted	•	•		•	•	•	_	_
318h	CCPR4L	Capture/Co	mpare/PWM F	Register 4 (LSI	B)					xxxx xxxx	uuuu uuuu
319h	CCPR4H	Capture/Co	mpare/PWM F	Register 4 (MS	B)					xxxx xxxx	uuuu uuuu
31Ah	CCP4CON	_	_	DC4E	3<1:0>		CCP4M	<3:0>		00 0000	00 0000
31Bh	—	Unimpleme	nted	•						_	_
31Ch	CCPR5L	Capture/Co	mpare/PWM F	Register 5 (LSI	B)					xxxx xxxx	uuuu uuuu
31Dh	CCPR5H	Capture/Co	mpare/PWM F	Register 5 (MS	6B)					xxxx xxxx	uuuu uuuu
31Eh	CCP5CON		—	DC5E	3<1:0>		CCP5M	<3:0>		00 0000	00 0000
31Fh	_	Unimpleme	nted							—	_

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-12

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'. 3:

4: Unimplemented, read as '1'.

3.5.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

FIGURE 3-11: LINEAR DATA MEMORY MAP

3.5.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower 8 bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished via the FSR/INDF interface. All instructions that access program Flash memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-12: PROGRAM FLASH MEMORY MAP

6.11 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- Stack Overflow Reset (STKOVF)
- Stack Underflow Reset (STKUNF)
- MCLR Reset (RMCLR)

The PCON register bits are shown in Register 6-2.

REGISTER 6-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	—	RMCLR	RI	POR	BOR
bit 7						•	bit 0

Lanandi							
Legend:							
HC = Bit is clea	ared by hardwa	are	HS = Bit is set by hardware				
R = Readable	oit	W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			-m/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition				
bit 7	STKOVF: Sta	ick Overflow Flag bit					
	1 = A Stack C	Overflow occurred					
0 = A Stack Overflow has not occurred or set to '0' by firmware							
bit 6 STKUNF: Stack Underflow Flag bit							
	1 = A Stack L	Jnderflow occurred					
0 = A Stack Underflow has not occurred or set to '0' by firmware							
bit 5-4	Unimplemented: Read as '0'						
bit 3	RMCLR: MCL	_R Reset Flag bit					
	$1 = A \overline{MCLR}$	Reset has not occurred or se	t to '1' by firmware				
		Reset has occurred (set to '0	in hardware when a MCLR Reset occurs)				
bit 2	RI: RESET INS	struction Flag bit					
	1 = A reset	instruction has not been exe	cuted or set to '1' by firmware				
	0 = A reset i	nstruction has been executed	I (set to '0' in hardware upon executing a RESET instruction)				
bit 1	POR: Power-	on Reset Status bit					
	1 = No Power	r-on Reset occurred					
	0 = A Power-	on Reset occurred (must be	set in software after a Power-on Reset occurs)				
bit 0	BOR: Brown-	out Reset Status bit					
	1 = No Brown	n-out Reset occurred					
	0 = A Brown-c	out Reset occurred (must be	set in software after a Power-on Reset or Brown-out Reset				
occurs)							

10.0 WATCHDOG TIMER

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- · Independent clock source
- Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (typical)
- Multiple Reset conditions
- Operation during Sleep

FIGURE 10-1: WATCHDOG TIMER BLOCK DIAGRAM

15.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

Please refer to **Section 15.1.5 "Interrupts"** for more information.

FIGURE 15-3: 10-BIT A/D CONVERSION RESULT FORMAT

15.1.6 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 15-3 shows the two output formats.

NOTES:

R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0
CxON	CxOUT	CxOE	CxPOL	_	CxSP	CxHYS	CxSYNC
bit 7 bit							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7 CxON: Comparator Enable bit 1 = Comparator is enabled and consumes no active power							
bit 6	CxOUT: Com	ion is disabled	bit				
$\frac{ f CxPOL = 1 \text{ (inverted polarity):}}{1 = CxVP < CxVN}$ $0 = CxVP > CxVN$ $\frac{ f CxPOL = 0 \text{ (non-inverted polarity):}}{1 = CxVP > CxVN}$ $0 = CxVP > CxVN$							
bit 5	CxOE: Comp	arator Output I	Enable bit				
 1 = CxOUT is present on the CxOUT pin. Requires that the associated TRIS bit be cleared to actua drive the pin. Not affected by CxON. 0 = CxOUT is internal only 						red to actually	
bit 4	bit 4 CxPOL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted						
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	CxSP: Comp	arator Speed/F	ower Select b	it			
	 1 = Comparator operates in normal power, higher speed mode 0 = Comparator operates in low-power, low-speed mode 						
bit 1	CxHYS: Com 1 = Compara 0 = Compara	nparator Hyster ator hysteresis ator hysteresis	esis Enable bi enabled disabled	t			
bit 0	 0 = Comparator nysteresis disabled CxSYNC: Comparator Output Synchronous Mode bit 1 = Comparator output to Timer1 and I/O pin is synchronous to changes on Timer1 clock source. Output updated on the falling edge of Timer1 clock source. 0 = Comparator output to Timer1 and I/O pin is asynchronous. 						

REGISTER 18-1: CMxCON0: COMPARATOR X CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CM1CON0	C10N	C10UT	C10E	C1POL		C1SP	C1HYS	C1SYNC	183
CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	183
CM1CON1	C1NTP	C1INTN	C1PCI	H<1:0>	_	_	C1NCI	H<1:0>	184
CM2CON1	C2NTP	C2INTN	C2PCI	H<1:0>	_	—	C2NCI	H<1:0>	184
CMOUT	_	_	_	_	_	—	MC2OUT	MC10UT	184
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVF	R<1:0>	156
DACCON0	DACEN	DACLPS	DACOE	_	DACPS	S<1:0>	_	DACNSS	176
DACCON1	_	_	_			DACR<4:0>			176
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	100
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	103
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	133
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	138
ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	134
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	139

TABLE 18-2: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODUL

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

23.4.2 FULL-BRIDGE MODE

In Full-Bridge mode, all four pins are used as outputs. An example of Full-Bridge application is shown in Figure 23-10.

In the Forward mode, pin CCPx/PxA is driven to its active state, pin PxD is modulated, while PxB and PxC will be driven to their inactive state as shown in Figure 23-11.

In the Reverse mode, PxC is driven to its active state, pin PxB is modulated, while PxA and PxD will be driven to their inactive state as shown Figure 23-11.

PxA, PxB, PxC and PxD outputs are multiplexed with the PORT data latches. The associated TRIS bits must be cleared to configure the PxA, PxB, PxC and PxD pins as outputs.

FIGURE 23-10: EXAMPLE OF FULL-BRIDGE APPLICATION

24.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 24.5.6** "**Clock Stretching**" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then the SCL pin should be released by setting the CKP bit of the SSPCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This ACK value is copied to the ACKSTAT bit of the SSPCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes Idle and waits for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared by software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

24.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPCON3 register is set, the BCLIF bit of the PIR register is set. Once a bus collision is detected, the slave goes Idle and waits to be addressed again. User software can use the BCLIF bit to handle a slave bus collision.

24.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 24-17 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPIF bit.
- 4. Slave hardware generates an ACK and sets SSPIF.
- 5. SSPIF bit is cleared by user.
- 6. Software reads the received address from SSPBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - **Note 1:** If the master ACKs the clock will be stretched.
 - ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

24.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is a reserved address in the I²C protocol, defined as address 0x00. When the GCEN bit of the SSPCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave read SSPBUF software can and respond. Figure 24-23 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the 8th falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

24.5.9 SSP MASK REGISTER

An SSP Mask (SSPMSK) register (Register 24-5) is available in I²C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero ('0') bit in the SSPMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

© 2008-2011 Microchip Technology Inc.

FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file regis	ster op 7 6	eratio	ons	0
OPCODE	d	t	f (FILE #)	
d = 0 for destination d = 1 for destination f = 7-bit file register	d = 0 for destination W d = 1 for destination f f = 7-bit file register address			
Bit-oriented file registe	er oper	ation	S	0
OPCODE	b (BIT :	#)	f (FILE #)	
b = 3-bit bit addres f = 7-bit file registe	ss er addre	ess		
Literal and control ope	eration	S		
General	0 -			•
	8 /		k (litoral)	0
OFCODE			K (IIIEIAI)	
k = 8-bit immediate	e value			
CALL and GOTO instruct	ions on	ly		
13 11 10				0
OPCODE		k (liter	al)	
k = 11-bit immedia	te value	е		
MOVLP instruction only				
13	7	6		0
OPCODE			k (literal)	
k = 7-bit immediate	e value			
MOVLB instruction only				
13		5 4	4	0
OPCODE			k (literal)	
k = 5-bit immediate	e value	÷		
BRA instruction only				
13 9	8			0
OPCODE			k (literal)	
k = 9-bit immediat	e value	•		
FSR Offset instructions		_		
	76	5	k (literal)	0
OPCODE	n		k (literal)	
n = appropriate FS k = 6-bit immediat	sr e value	•		
FSR Increment instruction	ons			
		3	2 1	
n = appropriate E	SR			oue)
m = 2-bit mode va	lue			
OPCODE only				
13	0005			0
0	PCOD	<u> </u>		

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALLW	Subroutine Call With W	COMF		
Syntax:	[label] CALLW	Syntax:		
Operands:	None	Operands:		
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>	Operation: Status Affec		
Status Affected:	None	Description:		
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a two-cycle instruction.			

COMF	Complement f				
Syntax:	[label] COMF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(\overline{f}) \rightarrow (destination)$				
Status Affected:	Z				
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.				

CLRF	Clear f	
Syntax:	[label] CLRF f	
Operands:	$0 \leq f \leq 127$	
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$	
Status Affected:	Z	
Description:	The contents of register 'f' are cleared and the Z bit is set.	

Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

Decrement f

DECF

CLRW	Clear W [label] CLRW			
Syntax:				
Operands:	None			
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ 1 \rightarrow \text{Z} \end{array}$			
Status Affected:	Z			
Description:	W register is cleared. Zero bit (Z) is set.			

MOVIW	Move INDFn to W			
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]			
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31			
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{• FSR + 1 (preincrement)} \\ &\text{• FSR - 1 (predecrement)} \\ &\text{• FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be} \\ &\text{either:} \\ &\text{• FSR + 1 (all increments)} \\ &\text{• FSR - 1 (all decrements)} \\ &\text{• Unchanged} \end{split}$			
Status Affected:	Z			

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap around.

MOVLB Move literal to BSR

Syntax:	[<i>label</i>] MOVLB k	
Operands:	$0 \le k \le 15$	
Operation:	$k \rightarrow BSR$	
Status Affected:	None	
Description:	The five-bit literal 'k' is loaded into the Bank Select Register (BSR).	

MOVLP	Move literal to PCLATH				
Syntax:	[<i>label</i>]MOVLP k				
Operands:	$0 \le k \le 127$				
Operation:	$k \rightarrow PCLATH$				
Status Affected:	None				
Description:	The seven-bit literal 'k' is loaded into the PCLATH register.				
MOVLW	Move literal to W				
Syntax:	[<i>label</i>] MOVLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$k \rightarrow (W)$				
Status Affected:	None				
Description:	The eight-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.				
Words:	1				
Cycles:	1				
Example:	MOVLW 0x5A				

After Ins	tructio	on	
	W	=	0x5A

MOVWF	Move W to f			
Syntax:	[<i>label</i>] MOVWF f			
Operands:	$0 \leq f \leq 127$			
Operation:	$(W) \rightarrow (f)$			
Status Affected:	None			
Description:	Move data from W register to register 'f'.			
Words:	1			
Cycles:	1			
Example:	MOVWF OPTION_REG			
	Before Instruction OPTION_REG = 0xFF W = 0x4F			
	After Instruction OPTION_REG = 0x4F W = 0x4F			

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	Vінн	Voltage on MCLR/VPP/RE3 pin	8.0	—	9.0	V	(Note 3, Note 4)
D111	IDDP	Supply Current during Programming	—	—	10	mA	
D112		VDD for Bulk Erase	2.7	—	VDD max.	V	
D113	VPEW	VDD for Write or Row Erase	Vdd min.	_	V _{DD} max.	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/ Write	-	—	1.0	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—		5.0	mA	
		Data EEPROM Memory					
D116	ED	Byte Endurance	100K	—	—	E/W	-40°C to +85°C
D117	Vdrw	VDD for Read/Write	Vdd min.	—	VDD max.	V	
D118	TDEW	Erase/Write Cycle Time	—	4.0	5.0	ms	
D119	TRETD	Characteristic Retention	_	40	_	Year	Provided no other specifications are violated
D120	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	—	—	E/W	-40°C to +85°C (Note 1)
D122	Vpr	VDD for Read	VDD min.	—	VDD max.	V	
D123	Tiw	Self-timed Write Cycle Time	_	2	2.5	ms	
D124	TRETD	Characteristic Retention	-	40	_	Year	Provided no other specifications are violated

30.5 Memory Programming Requirements

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Refer to Section 11.2 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the ICD 2 VPP voltage must be placed between the ICD 2 and target system when programming or debugging with the ICD 2.

FIGURE 30-17: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

For the most current package drawings, please see the Microchip Packaging Specification located at

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	Units		MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	0.65 BSC			
Overall Height	Α	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	Е	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	с	0.09	-	0.25	
Foot Angle	¢	0°	4°	8°	
Lead Width	b	0.22	_	0.38	

Notes:

Note:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B