

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1934-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1934/6/7

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 4											_
200h ⁽²⁾	INDF0		this location u cal register)	ses contents c	of FSR0H/FSF	ROL to address	data memor	ý		XXXX XXXX	XXXX XXXX
201h ⁽²⁾	INDF1		this location u cal register)	ses contents c	of FSR1H/FSF	R1L to address	data memor	ý		XXXX XXXX	XXXX XXXX
202h ⁽²⁾	PCL	Program Co	ounter (PC) Le	ast Significant	Byte					0000 0000	0000 0000
203h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
204h ⁽²⁾	FSR0L	Indirect Data	a Memory Add	Iress 0 Low Po	ointer					0000 0000	uuuu uuuu
205h ⁽²⁾	FSR0H	Indirect Data	a Memory Add	lress 0 High P	ointer					0000 0000	0000 0000
206h ⁽²⁾	FSR1L	Indirect Data	a Memory Add	Iress 1 Low Po	pinter					0000 0000	uuuu uuuu
207h ⁽²⁾	FSR1H	Indirect Data	a Memory Add	lress 1 High P	ointer					0000 0000	0000 0000
208h ⁽²⁾	BSR	_	_	_		E	BSR<4:0>			0 0000	0 0000
209h ⁽²⁾	WREG	Working Re	gister							0000 0000	uuuu uuuu
20Ah ^(1, 2)	PCLATH	_	Write Buffer f	or the upper 7	bits of the Pro	ogram Counter	r			-000 0000	-000 0000
20Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
20Ch	—	Unimpleme	nted				•	•		_	—
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
20Eh		Unimpleme	nted							_	_
20Fh	_	Unimpleme	nted							_	_
210h	WPUE		_	_	_	WPUE3	_	_	_	1	1
211h	SSPBUF	Synchronou	us Serial Port F	Receive Buffer	/Transmit Reg	jister				xxxx xxxx	uuuu uuuu
212h	SSPADD				ADD<	7:0>				0000 0000	0000 0000
213h	SSPMSK				MSK<	7:0>				1111 1111	1111 1111
214h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
215h	SSPCON1	WCOL	SSPOV	SSPEN	CKP		SSPM<	:3:0>		0000 0000	0000 0000
216h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSPCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h	_	Unimpleme	nted				1	•		_	_
219h	_	Unimpleme	Unimplemented							_	_
21Ah	_	Unimpleme	Unimplemented							_	_
21Bh	_	Unimpleme	Unimplemented							_	_
21Ch	—	Unimpleme	Unimplemented							-	_
21Dh	—	Unimpleme	Unimplemented							_	_
21Eh	_	Unimpleme	nted							_	_
21Fh	_	Unimpleme	nted							_	_

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $Legend: \qquad x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.$

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'.

4: Unimplemented, read as '1'.

5.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

5.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Word 1) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Word 1 configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- Wake-up from Sleep.

TABLE 5-1: OSCI	LLATOR SWITCHING DELAYS
-----------------	-------------------------

Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay (Twarm)
Sleep/POR	EC, RC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Sleep/POR	Timer1 Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
Any clock source	Timer1 Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)

Note 1: PLL inactive.

EXAMPLE 11-5: WRITING TO FLASH PROGRAM MEMORY

EXA	MPI	LE 11-5:	WRITING TO FLA	ASH PROGRAM MEMORY
;]	This	write rout	ine assumes the f	ollowing:
; 1	1. Tł	ne 16 bytes	of data are load	ed, starting at the address in DATA_ADDR
		_		en is made up of two adjacent bytes in DATA_ADDR,
;			ttle endian forma	
; 3	3. A	valid star	ting address (the	least significant bits = 000) is loaded in ADDRH:ADDRL
				n shared data memory $0x70 - 0x7F$ (common RAM)
;				
		BCF	INTCON, GIE	; Disable ints so required sequences will execute properly
		BANKSEL		<i>i</i> Bank 3
		MOVF		; Load initial address
		MOVWF		i
		MOVF		· /
		MOVWF	EEADRL	· /
		MOVLW		; Load initial data address
		MOVWF		i
		MOVLW		; Load initial data address
		MOVWF		i
		BSF		; Point to program memory
		BCF		; Not configuration space
		BSF		; Enable writes
		BSF		; Only Load Write Latches
LOC	OP		,	-
		MOVIW	FSR0++	; Load first data byte into lower
		MOVWF	EEDATL	- ;
		MOVIW		; Load second data byte into upper
		MOVWF		 ;
		MOVF	EEADRL,W	; Check if lower bits of address are '000'
1		XORLW	0x07	; Check if we're on the last of 8 addresses
		ANDLW	0x07	;
		BTFSC	STATUS, Z	; Exit if last of eight words,
		GOTO	START_WRITE	;
_				
		MOVLW	55h	; Start of required write sequence:
		MOVWF	EECON2	; Write 55h
	л ü	MOVLW	0AAh	;
	enc.	MOVWF	EECON2	; Write AAh
	Required Sequence	BSF	EECON1,WR	; Set WR bit to begin write
1	S, R	NOP		; Any instructions here are ignored as processor
				; halts to begin write sequence
		NOP		; Processor will stop here and wait for write to complete.
L				
				; After write processor continues with 3rd instruction.
		INCF		; Still loading latches Increment address
		GOTO	LOOP	; Write next latches
~ ~ ~				
S17	4K.I. [_] N	VRITE	BEGON1 INTO	· No would look a lot show . Notice like a tout Black we we we
		BCF		; No more loading latches - Actually start Flash program
				; memory write
Γ		MOLITIN	Г Г h	· Chart of manufactured and the semiconset
		MOVLW		; Start of required write sequence:
	<u>س</u>	MOVWF		; Write 55h
	no.	MOVLW MOVWF		; ; Write AAh
	Required Sequence	BSF		, write AAN ; Set WR bit to begin write
	Sec	NOP		-
		NOF		; Any instructions here are ignored as processor ; halts to begin write sequence
		NOP		; Processor will stop here and wait for write complete.
		NOF		, ridessor will stop here and wait for write compile.
				; after write processor continues with 3rd instruction
ı.		BCF		; Disable writes
ı.		BSF	•	; Enable interrupts

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
_	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL				
bit 7							bit 0				
Legend:											
R = Readabl		W = Writable		-	mented bit, read						
u = bit is unc	-	x = Bit is unk		-n/n = Value a	at POR and BOF	R/Value at all o	other Resets				
'1' = Bit is se	t	'0' = Bit is cle	ared								
bit 7	Unimplement	ed: Read as '0	,								
bit 6	•	CP3 Input/Out		ion bit							
		vices (PIC16F									
	0 = CCP3/P3	BA function is c	on RC6/TX/CK	C/CCP3/P3A/SE	EG9						
				CPS5/CCP3/P	3A/T1G/COM1						
	-	evices (PIC16F			~ /						
				CP3/P3A/SEG							
bit 5		 1 = CCP3/P3A function is on RB5/AN13/CPS5/CCP3/P3A/T1G/COM1 T1GSEL: Timer1 Gate Input Pin Selection bit 									
		tion is on RB5/AN13/CPS5/CCP3/P3A/T1G/COM1									
	1 = T1G fund	ction is on RC4	/SDI/SDA/T10	G/SEG11							
bit 4	P2BSEL: CC	P2 PWM B Ou	tput Pin Selec	ction bit							
	For 28-Pin De	evices (PIC16F	<u>1936)</u> :								
		tion is on RC0/T1OSO/T1CKI/P2B									
		tion is on RB5/AN13/P2B/CPS5/T1G/COM1 vices (PIC16F1934/7):									
		-	-	KI/P2B							
		0 = P2B function is on RC0/T1OSO/T1CKI/P2B 1 = P2B function is on RD2/CPS10/P2B									
bit 3	SRNQSEL: S	R Latch nQ O	utput Pin Sele	ction bit							
	0 = SRnQ function is on RA5/AN4/C2OUT/SRnQ/SS/CPS7/SEG5/Vcap 1 = SRnQ function is on RA0/AN0/C12IN0-/C2OUT/SRnQ/SS/SEG12/Vcap										
					nQ/SS/SEG12/V	CAP					
bit 2		C2OUTSEL: Comparator C2 Output Pin Selection bit									
		0 = C2OUT function is on RA5/AN4/C2OUT/SRnQ/SS/CPS7/SEG5/Vcap 1 = C2OUT function is on RA0/AN0/C12IN0-/C2OUT/SRnQ/SS/SEG12/Vcap									
bit 1		nput Pin Select		N0-/C2001/Sr	(IIQ/33/3EG12/	VCAP					
				RNQ/SS/CPS	7/SEG5/VCAP						
					/SS/SEG12/Vca	P					
bit 0		CP2 Input/Out									
	0 = CCP2/P2	2A function is c	on RC1/T1OS	/CCP2/P2A							
	1 = CCP2/P2	2A function is c	n RB3/AN9/C	12IN2-/CPS3/0	CCP2/P2A/VLCI	03					

REGISTER 12-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0				CHS<4:0>			GO/DONE	ADON	163
ADCON1	ADFM		ADCS<2:0>		—	ADNREF	ADPRE	F<1:0>	164
ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	134
APFCON	-	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	131
CM1CON0	C10N	C1OUT	C10E	C1POL	—	C1SP	C1HYS	C1SYNC	183
CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2SP	C2HYS	C2SYNC	183
CM1CON1	C1NTP	C1INTN	C1PCI	H<1:0>	—	—	C1NCI	H<1:0>	184
CM2CON1	C2NTP	C2INTN	C2PCI	H<1:0>	—	—	C2NCH<1:0>		184
CPSCON0	CPSON	—	_	—	CPSRN	IG<1:0>	CPSOUT	TOXCS	323
CPSCON1	_	—	_	—		CPSCI		324	
DACCON0	DACEN	DACLPS	DACOE		DACPS	SS<1:0>		DACNSS	176
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	133
LCDCON	LCDEN	SLPEN	WERR	—	CS<	CS<1:0> LMUX<1:0>			329
LCDSE0	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	333
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	333
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		193
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	133
SRCON0	SRLEN		SRCLK<2:0>	•	SRQEN	SRNQEN	SRPS	SRPR	189
SSPCON1	WCOL	SSPOV	SSPEN	CKP		SSPM	1	287	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	133

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
0015104	13:8	_	_	FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD	
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE<1:0>			62		
0015100	13:8	_	_	LVP	DEBUG	_	BORV	STVREN	PLLEN	
CONFIG2	7:0	_	_	VCAPEN<1:0> ⁽¹⁾		_	_	WRT	<1:0>	64

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

Legend: — = unimplemented lo Note 1: PIC16F1934/6/7 only.

12.5 PORTD Registers

PORTD is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISD (Register 12-14). Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTD register (Register 12-14) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATD).

Note:	PORTD is available on PIC16(L)F1934
	and PIC16(L)F1937 only.

The TRISD register (Register 12-15) controls the PORTD pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISD register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.5.1 ANSELD REGISTER

The ANSELD register (Register 12-17) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELD bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELD bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELD bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

12.5.2 PORTD FUNCTIONS AND OUTPUT PRIORITIES

Each PORTD pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-9.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in Table 12-9.

Pin Name	Function Priority ⁽¹⁾
RD0	COM3 (LCD) RD0
RD1	CCP4 (CCP) RD1
RD2	P2B (CCP) RD2
RD3	SEG16 (LCD) P2C (CCP) RD3
RD4	SEG17 (LCD) P2D (CCP) RD4
RD5	SEG18 (LCD) P1B (CCP) RD5
RD6	SEG19 (LCD) P1C (CCP) RD6
RD7	SEG20 (LCD) P1D (CCP) RD7

TABLE 12-9: PORTD OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0			
bit 7 b										
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea								

REGISTER 12-17: ANSELD: PORTD ANALOG SELECT REGISTER⁽²⁾

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

- 2: ANSELD register is not implemented on the PIC16(L)F1936. Read as '0'.
- 3: PORTD implemented on PIC16(L)F1934/7 devices only.

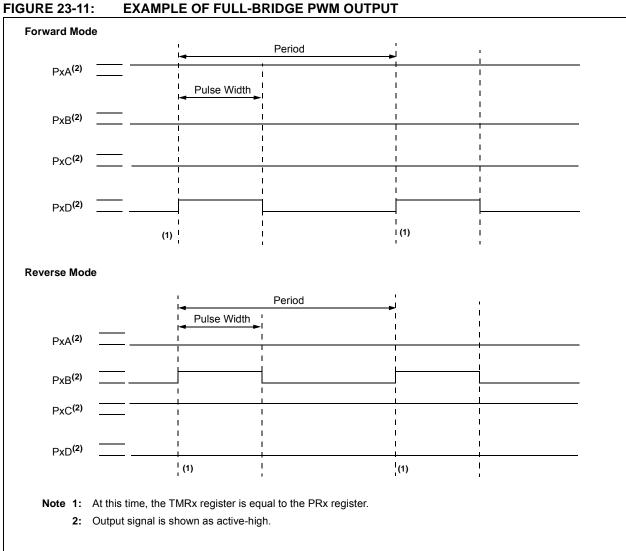
TABLE 12-10): SUMM	ARY OF F	REGISTER	S ASSOC	IATED W	ITH PORT	'D ⁽¹⁾	
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	E

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	146
CCPxCON	PxM<	<1:0>	DCxB	<1:0>	0> CCPxM<3:0>				234
CPSCON0	CPSON	_	_		CPSRNG<1:0>		G<1:0> CPSOUT		323
CPSCON1	_	_	_		CPSCH<3:0>				324
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	145
LCDCON	LCDEN	SLPEN	WERR	_	CS<	1:0>	LMUX	(<1:0>	329
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	333
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	145
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	145

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

Note 1: These registers are not implemented on the PIC16(L)F1936 devices, read as '0'.

bit 7-0 ANSD<7:0>: Analog Select between Analog or Digital Function on Pins RD<7:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function.


Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

PxM<	1:0>	Signal	0 Pulse Width	—	
00	(Single Output)	PxA Modulated		Period —	
00	(Single Output)		-	 : :	
		PxA Modulated	Delay	 Delay	i
10	(Half-Bridge)	PxB Modulated			<u>_</u>
		PxA Active	- : - : :		
01	(Full-Bridge, Forward)	PxB Inactive	- ' - ' '		
		PxC Inactive	- 1		
		PxD Modulated		I	
		PxA Inactive	- <u> </u>		<u> </u>
11	(Full-Bridge, Reverse)	PxB Modulated	- - ¦	<u> </u>	
		PxC Active			
		PxD Inactive	-		1
Rola	ionships:				

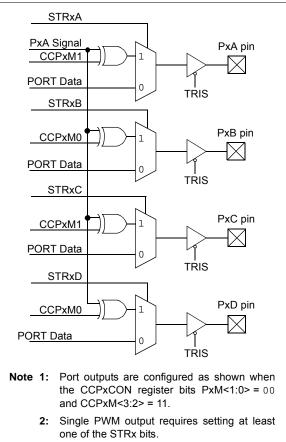
FIGURE 23-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

CPxCON<5:4>) * (TMRx Prescale Value)

Pulse Width = IOSC * (CCPRXL<7:0>:C
Delay = 4 * Tosc * (PWMxCON<6:0>)

23.4.6 PWM STEERING MODE

In Single Output mode, PWM steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.

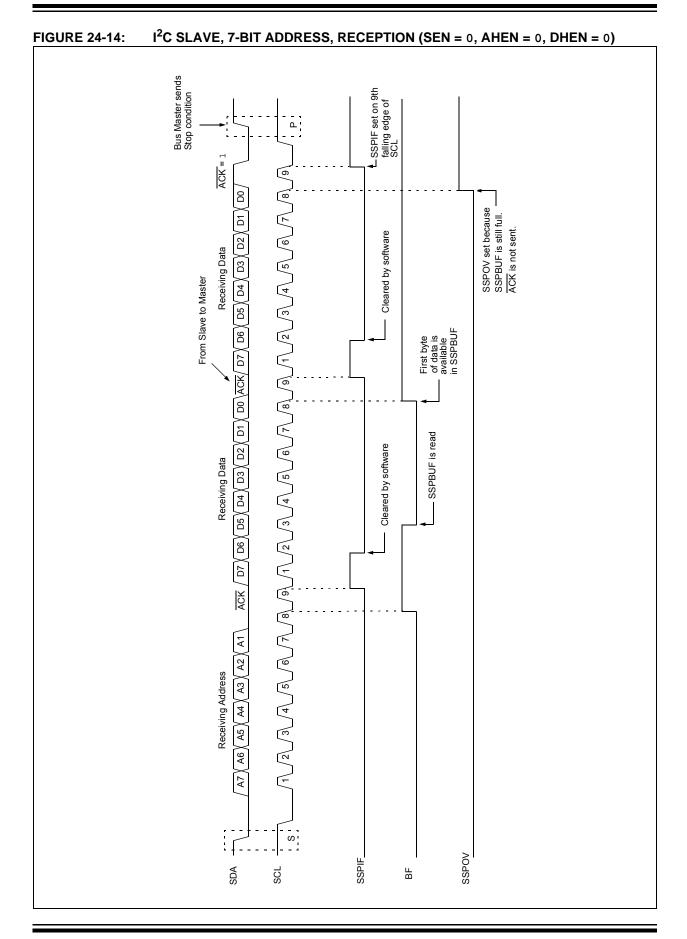

Once the Single Output mode is selected (CCPxM<3:2> = 11 and PxM<1:0> = 00 of the CCPxCON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STRx<D:A> bits of the PSTRxCON register, as shown in Table 23-9.

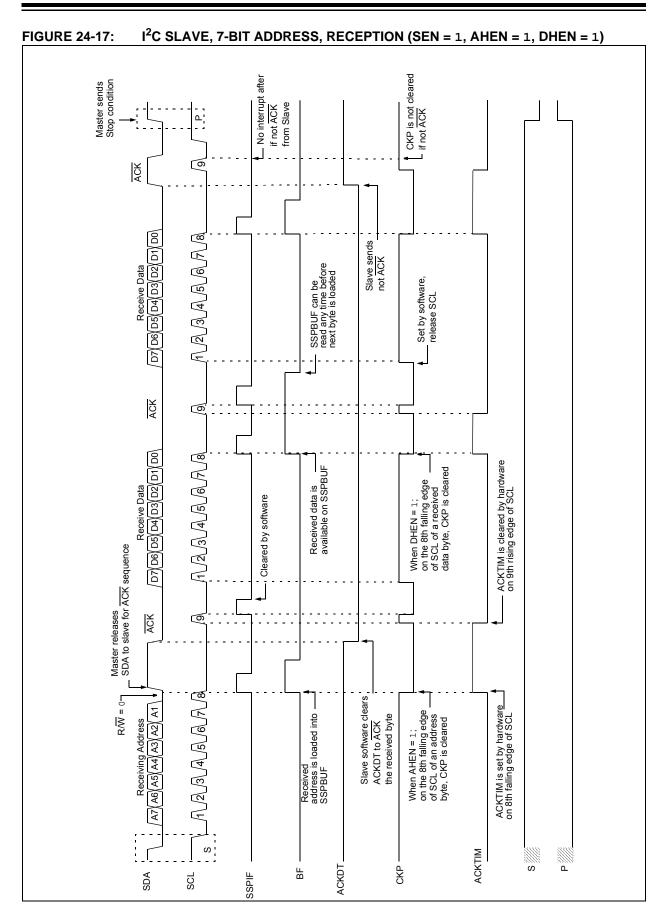
Note: The associated TRIS bits must be set to output ('0') to enable the pin output driver in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCPxM<1:0> bits of the CCPxCON register select the PWM output polarity for the Px<D:A> pins.

The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 23.4.3 "Enhanced PWM Auto-shutdown mode"**. An auto-shutdown event will only affect pins that have PWM outputs enabled.

FIGURE 23-18: SIMPLIFIED STEERING BLOCK DIAGRAM




R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
PxRSEN				PxDC<6:0>					
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set	t	'0' = Bit is clea	ared						
bit 7	PxRSEN: P	WM Restart Ena	ıble bit						
	the PWI	M restarts auton	natically	oit clears automa			ent goes away;		
	0 = Upon au	uto-shutdown, C	CPxASE mus	st be cleared in s	software to rest	tart the PWM			
bit 6-0	PxDC<6:0>:	: PWM Delay Co	ount bits						
			. ,	cycles between e actual time it ti			a PWM signal		

REGISTER 23-5: PWMxCON: ENHANCED PWM CONTROL REGISTER

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

PIC16(L)F1934/6/7

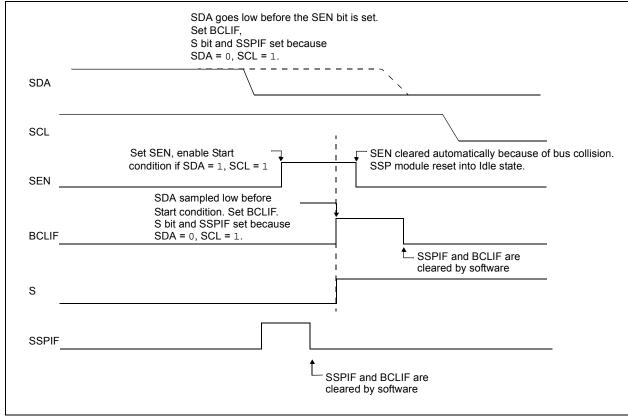
PIC16(L)F1934/6/7

24.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 24-32).
- b) SCL is sampled low before SDA is asserted low (Figure 24-33).

During a Start condition, both the SDA and the SCL pins are monitored.


If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted,
- the BCLIF flag is set and
- the MSSP module is reset to its Idle state (Figure 24-32).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 24-34). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 24-33: BUS COLLISION DURING START CONDITION (SDA ONLY)

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate			Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

TABLE 25-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD Fosc = 8.000 M) MHz	Fos	c = 4.000) MHz	Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	_	—	_

25.3.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 25-9 for the timing of the Break character sequence.

25.3.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.

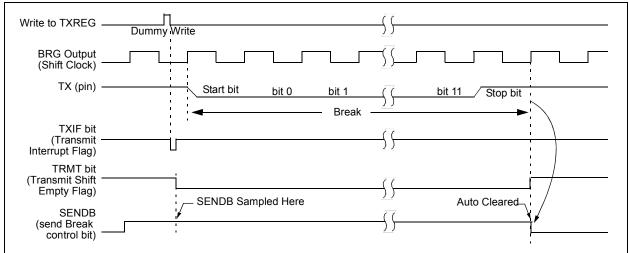
5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

25.3.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTA register and the Received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.


A Break character has been received when;

- · RCIF bit is set
- FERR bit is set
- RCREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 25.3.3** "Auto-Wake-up on **Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCON register before placing the EUSART in Sleep mode.

FIGURE 25-9: SEND BREAK CHARACTER SEQUENCE

27.10 LCD Interrupts

The LCD module provides an interrupt in two cases. An interrupt when the LCD controller goes from active to inactive controller. An interrupt also provides unframed boundaries for Type B waveform. The LCD timing generation provides an interrupt that defines the LCD frame timing.

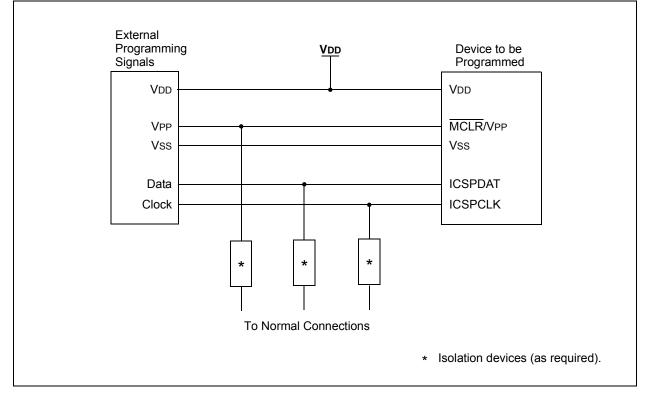
27.10.1 LCD INTERRUPT ON MODULE SHUTDOWN

An LCD interrupt is generated when the module completes shutting down (LCDA goes from '1' to '0').

27.10.2 LCD FRAME INTERRUPTS

A new frame is defined to begin at the leading edge of the COM0 common signal. The interrupt will be set immediately after the LCD controller completes accessing all pixel data required for a frame. This will occur at a fixed interval before the frame boundary (TFINT), as shown in Figure 27-19. The LCD controller will begin to access data for the next frame within the interval from the interrupt to when the controller begins to access data after the interrupt (TFWR). New data must be written within TFWR, as this is when the LCD controller will begin to access the data for the next frame.

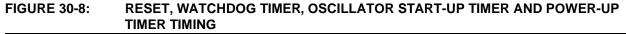
When the LCD driver is running with Type-B waveforms and the LMUX<1:0> bits are not equal to '00' (static drive), there are some additional issues that must be addressed. Since the DC voltage on the pixel takes two frames to maintain zero volts, the pixel data must not change between subsequent frames. If the pixel data were allowed to change, the waveform for the odd frames would not necessarily be the complement of the waveform generated in the even frames and a DC component would be introduced into the panel. Therefore, when using Type-B waveforms, the user must synchronize the LCD pixel updates to occur within a subframe after the frame interrupt.

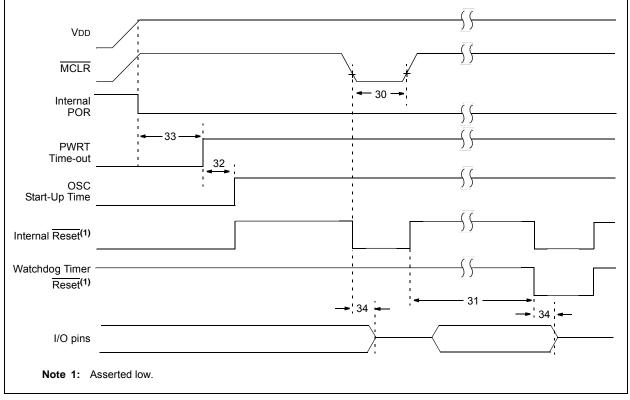

To correctly sequence writing while in Type-B, the interrupt will only occur on complete phase intervals. If the user attempts to write when the write is disabled, the WERR bit of the LCDCON register is set and the write does not occur.

Note:	The LCD frame interrupt is not generated
	when the Type-A waveform is selected
	and when the Type-B with no multiplex
	(static) is selected.

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

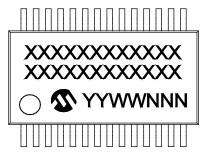
It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 28-4 for more information.

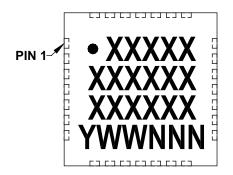

TABLE 30-4: CLKOUT AND I/O TIMING PARAMETERS
--


	Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾		_	70	ns	VDD = 3.3-5.0V				
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—	_	72	ns	VDD = 3.3-5.0V				
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	_	20	ns					
OS14	TioV2ckH	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns	_	_	ns					
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-5.0V				
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	_	_	ns	VDD = 3.3-5.0V				
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	_	_	ns					
OS18	TioR	Port output rise time	_	40 15	72 32	ns	VDD = 1.8V VDD = 3.3-5.0V				
OS19	TioF	Port output fall time	_	28 15	55 30	ns	VDD = 1.8V VDD = 3.3-5.0V				
OS20*	Tinp	INT pin input high or low time	25	—		ns					
OS21*	Tioc	Interrupt-on-change new input level time	25	_	_	ns					

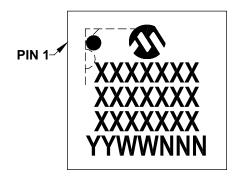
* These parameters are characterized but not tested.

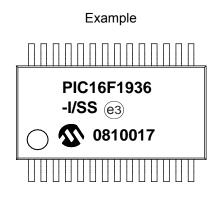
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.


Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

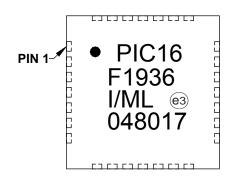


Package Marking Information (Continued)

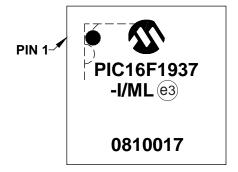

28-Lead SSOP (5.30 mm)



28-Lead UQFN (4x4x0.5 mm)



40-Lead UQFN (5x5x0.5 mm)



Example

Example

