

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1934-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TAB	LE 2	2:	_	40/4	14-P	IN SU	MMA	RY(PIC1	6(L)F1	934/7)							
0/	40-Pin PDIP	40-Pin UQFN	44-Pin TQFP	44-Pin QFN	ANSEL	A/D	Cap Sense	Comparator	SR Latch	Timers	ссь	EUSART	MSSP	гср	Interrupt	dn-Iluq	Basic
RA0	2	17	19	19	Y	AN0	—	C12IN0-/ C2OUT ⁽¹⁾	SRNQ ⁽¹⁾			—	SS ⁽¹⁾	SEG12	—		VCAP
RA1	3	18	20	20	Y	AN1	_	C12IN1-	_	-	_	_	_	SEG7	—	_	_
RA2	4	19	21	21	Y	AN2/ VREF-	—	C2IN+/ DACOUT	—	_	_	—	—	COM2	—	_	—
RA3	5	20	22	22	Y	AN3/ VREF+	—	C1IN+	—	_	_	—	—	SEG15	—	—	—
RA4	6	21	23	23	Y	—	CPS6	C10UT	SRQ	T0CKI		-	—	SEG4		I	_
RA5	7	22	24	24	Y	AN4	CPS7	C2OUT ⁽¹⁾	SRNQ ⁽¹⁾			—	SS ⁽¹⁾	SEG5	-	I	VCAP
RA6	14	29	31	33	_	-	_	_	_	_	_	_	_	SEG1		_	OSC2/ CLKOUT VCAP
RA7	13	28	30	32	—	—	—	-	—		-	—	—	SEG2	—	-	OSC1/ CLKIN
RB0	33	8	8	9	Y	AN12	CPS0	_	SRI	_	_	—	—	SEG0	INT/ IOC	Y	—
RB1	34	9	9	10	Y	AN10	CPS1	C12IN3-	—		_	—	—	VLCD1	IOC	Y	—
RB2	35	10	10	11	Y	AN8	CPS2		_			_	_	VLCD2	IOC	Υ	_
RB3	36	11	11	12	Y	AN9	CPS3	C12IN2-	—		CCP2 ⁽¹⁾ / P2A ⁽¹⁾	—	_	VLCD3	IOC	Y	_
RB4	37	12	14	14	Y	AN11	CPS4	_	—			—	—	COM0	IOC	Y	—
RB5	38	13	15	15	Y	AN13	CPS5		_	T1G ⁽¹⁾	CCP3 ⁽¹⁾ / P3A ⁽¹⁾	—	—	COM1	IOC	Y	—
RB6	39	14	16	16	—	-	—		_	—		—	—	SEG14	IOC	Y	ICSPCLK/ ICDCLK
RB7	40	15	17	17	_	_	_	_	_	_	_	_	—	SEG13	IOC	Y	ICSPDAT/ ICDDAT
RC0	15	30	32	34	-	—	—	-	_	T1OSO/ T1CKI	P2B ⁽¹⁾	—	—		—	-	—
RC1	16	31	35	35	-	_		_	_	T10SI	CCP2 ⁽¹⁾ / P2A ⁽¹⁾	_	_	_	_	-	_
RC2	17	32	36	36	-	-		_	_		CCP1/ P1A	—		SEG3	_	_	_
RC3	18	33	37	37	-	—	—	-	—		-	—	SCK/SCL	SEG6	_	_	_
RC4	23	38	42	42	—			—	_	T1G ⁽¹⁾	—	-	SDI/SDA	SEG11	—	_	—
RC5	24	39	43	43	—	_	_	_	_	_	_	-	SDO	SEG10	_	_	_
RC6	25	40	44	44		_		_		—	_	TX/CK	_	SEG9		_	
RC7	26	1	1	1					_	_		RX/DT	—	SEG8	_	_	
RD0 RD1	19 20	34 35	38 39	38 39	Y Y	_	CPS8 CPS9	_	_		CCP4	_		COM3	_	_	_
RD2	21	36	40	40	Y	_	CPS10	_	_	_	P2B ⁽¹⁾	_	_	_	_	_	_
RD3	22	37	41	41	Y	_	CPS11	_	_	-	P2C	_		SEG16	_	_	_
RD4	27	2	2	2	Y	_	CPS12	_	_	_	P2D		_	SEG17	-	_	_
RD5	28	3	3	3	Y	_	CPS13	_	_	_	P1B	_	_	SEG18	—	_	_
RD6	29	4	4	4	Y	_	CPS14	_	—	_	P1C	—	—	SEG19	—	_	_
RD7	30	5	5	5	Y	_	CPS15	_	—	_	P1D	—	—	SEG20	-	—	—
RE0	8	23	25	25	Y	AN5	—	_	_	_	CCP3 ⁽¹⁾ P3A ⁽¹⁾	_	—	SEG21	—	—	_
RE1	9	24	26	26	Y	AN6	—		—		P3B	—	—	SEG22	—		—
RE2	10	25	27	27	Y	AN7	—		_	_	CCP5	_		SEG23	—	I	
RE3	1	16	18	18	—	_	_	_	_	_	_	_	_	_	_	Y	MCLR/VPP
Vdd	11, 32	7, 26	7, 28	7,8, 28	—	—	—	—	—	—	—	—	—	_	—	—	VDD
Vss	12, 31	6, 27	6, 29	6,30, 31	—	—	-	_	-	_	_	—	_	_	—	—	Vss
Note	4.		un oti		hom	avad uai		FCON regis	tor								

Note 1: Pin functions can be moved using the APFCON register.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

The PIC16(L)F1934/6/7 are described within this data sheet. They are available in 28/40/44-pin packages. Figure 1-1 shows a block diagram of the PIC16(L)F1934/6/7 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral		PIC16F193X	PIC16LF193X		
ADC		•	•		
Capacitive Sensing Mod	dule	•	•		
Digital-to-Analog Conve	erter (DAC)	•	•		
EUSART		٠	•		
Fixed Voltage Reference	e (FVR)	•	•		
LCD		٠	•		
SR Latch		•	•		
Temperature Indicator		•	•		
Capture/Compare/PWM	Capture/Compare/PWM Modules				
	ECCP1	٠	•		
	ECCP2	•	•		
	ECCP3	•	•		
	CCP4	٠	•		
	CCP5	•	•		
Comparators					
	C1	٠	•		
	C2	•	•		
Operational Amplifiers					
	OPA1	•	•		
	OPA2	•	•		
Master Synchronous Se	erial Ports				
	MSSP1	•	•		
Timers					
	Timer0	٠	•		
	Timer1	•	•		
	Timer2	٠	•		
	Timer4	٠	•		
	Timer6	•	•		

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower 8 bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH directive will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants			
RETLW	DATA0	;Index0	data
RETLW	DATA1	;Index1	data
RETLW	DATA2		
RETLW	DATA3		
my_functi	on		
; LO	IS OF CODE.		
MOVLW	LOW cons	tants	
MOVWF	FSR1L		
MOVLW	HIGH con	stants	
MOVWF	FSR1H		
MOVIW	0[FSR1]		
;THE PROG	RAM MEMORY	IS IN W	

3.2 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-3):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.5** "Indirect Addressing" for more information.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation of the PIC16(L)F1934/6/7. These registers are listed below:

- INDF0
- INDF1
- PCL
- STATUS
- FSR0 Low
- FSR0 High
- FSR1 Low
- FSR1 High
- BSR
- WREG
- PCLATH
- INTCON

Note: The core registers are the first 12 addresses of every data memory bank.

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 15	Bank 15 (Continued)										
7A6h	LCDDATA6	SEG7 COM2	SEG6 COM2	SEG5 COM2	SEG4 COM2	SEG3 COM2	SEG2 COM2	SEG1 COM2	SEG0 COM2	XXXX XXXX	uuuu uuuu
7A7h	LCDDATA7	SEG15 COM2	SEG14 COM2	SEG13 COM2	SEG12 COM2	SEG11 COM2	SEG10 COM2	SEG9 COM2	SEG8 COM2	XXXX XXXX	uuuu uuuu
7A8h	LCDDATA8 ⁽ 3)	SEG23 COM2	SEG22 COM2	SEG21 COM2	SEG20 COM2	SEG19 COM2	SEG18 COM2	SEG17 COM2	SEG16 COM2	XXXX XXXX	uuuu uuuu
7A9h	LCDDATA9	SEG7 COM3	SEG6 COM3	SEG5 COM3	SEG4 COM3	SEG3 COM3	SEG2 COM3	SEG1 COM3	SEG0 COM3	XXXX XXXX	uuuu uuuu
7AAh	LCDDATA1 0	SEG15 COM3	SEG14 COM3	SEG13 COM3	SEG12 COM3	SEG11 COM3	SEG10 COM3	SEG9 COM3	SEG8 COM3	XXXX XXXX	uuuu uuuu
7ABh	LCDDATA11 ⁽ 3)	SEG23 COM3	SEG22 COM3	SEG21 COM3	SEG20 COM3	SEG19 COM3	SEG18 COM3	SEG17 COM3	SEG16 COM3	XXXX XXXX	uuuu uuuu
7ACh	—	Unimplemer	nted							-	—
 7EFh											

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

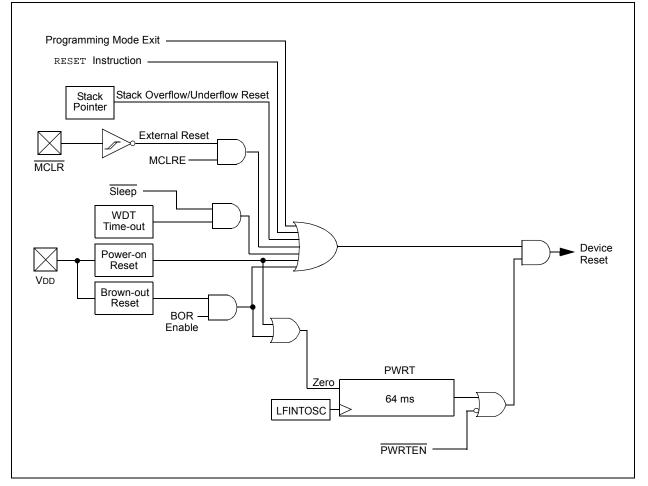
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred Note 1: to the upper byte of the program counter.

2: These registers can be addressed from any bank.

These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'. 3:

4: Unimplemented, read as '1'.

6.0 RESETS


There are multiple ways to reset this device:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- Stack Underflow
- Programming mode exit

To allow VDD to stabilize, an optional power-up timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 6-1.

FIGURE 6-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

15.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- · ADC voltage reference selection
- ADC conversion clock source
- · Interrupt control
- Result formatting

15.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 12.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input buf-
	fer to conduct excess current.

15.1.2 CHANNEL SELECTION

There are 17 channel selections available:

- AN<13:0> pins
- · Temperature Indicator
- DAC Output
- FVR (Fixed Voltage Reference) Output

Refer to Section 16.0 "Temperature Indicator Module", Section 17.0 "Digital-to-Analog Converter (DAC) Module" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these channel selections.

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 15.2 "ADC Operation"** for more information.

15.1.3 ADC VOLTAGE REFERENCE

The ADPREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

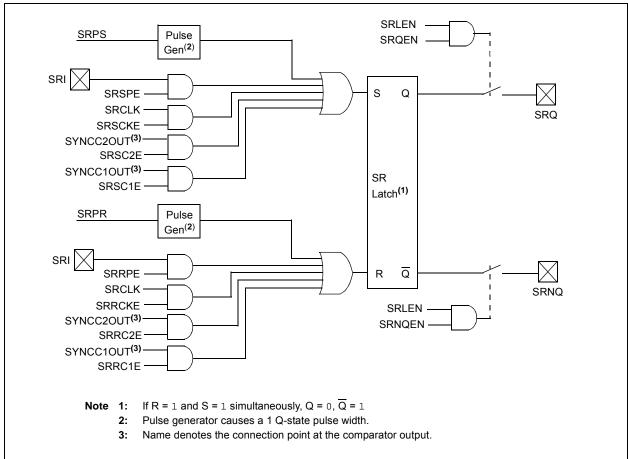
- VREF+ pin
- Vdd
- FVR 2.048V
- FVR 4.096V (Not available on LF devices)

The ADNREF bits of the ADCON1 register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See **Section 14.0** "Fixed Voltage Reference (FVR)" for more details on the fixed voltage reference.

15.1.4 CONVERSION CLOCK


The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- · Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 15-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the A/D conversion requirements in the applicable Electrical Specifications Chapter for more information. Table 15-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

FIGURE 19-1: SR LATCH SIMPLIFIED BLOCK DIAGRAM

23.1 Capture Mode

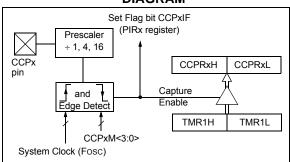
The Capture mode function described in this section is available and identical for CCP modules ECCP1, ECCP2, ECCP3, CCP4 and CCP5.

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the CCPx pin, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- · Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Figure 23-1 shows a simplified diagram of the Capture operation.


23.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Also, the CCPx pin function can be moved to alternative pins using the APFCON register. Refer to **Section 12.1 "Alternate Pin Function"** for more details.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 23-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

23.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 21.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

23.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in Operating mode.

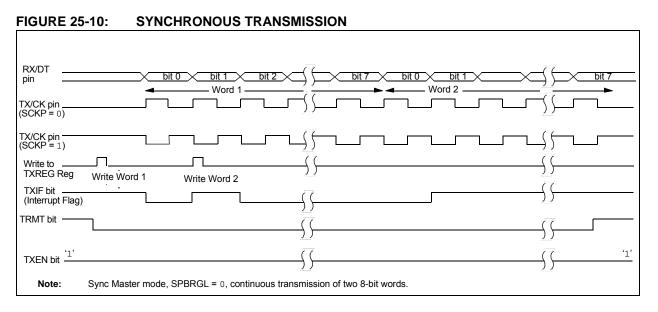
Note:	Clocking Timer1 from the system clock
	(Fosc) should not be used in Capture
	mode. In order for Capture mode to
	recognize the trigger event on the CCPx
	pin, Timer1 must be clocked from the
	instruction clock (Fosc/4) or from an
	external clock source.

23.1.4 CCP PRESCALER

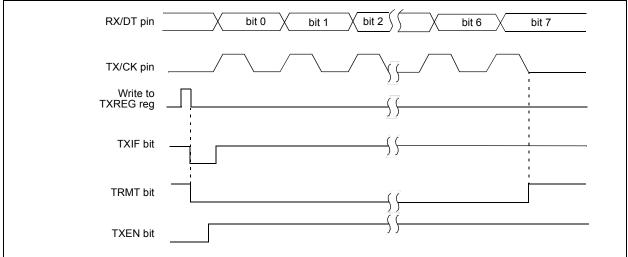
There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler. Example 23-1 demonstrates the code to perform this function.

EXAMPLE 23-1: CHANGING BETWEEN CAPTURE PRESCALERS


BANKSEL CCPxCON	;Set Bank bits to point
	;to CCPxCON
CLRF CCPxCON	;Turn CCP module off
MOVLW NEW_CAPT_P	5;Load the W reg with
	;the new prescaler
	;move value and CCP ON
MOVWF CCPxCON	;Load CCPxCON with this
	;value

23.1.5 CAPTURE DURING SLEEP


Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (Fosc/4), or by an external clock source.

When Timer1 is clocked by Fosc/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

TABLE 25-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	-	WUE	ABDEN	302
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	99
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	102
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	301
SPBRGL				BRG	<7:0>				303*
SPBRGH				BRG<	:15:8>				303*
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
TXREG	EUSART Transmit Data Register							293*	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	300

Legend: — = unimplemented read as '0'. Shaded cells are not used for synchronous master transmission.

* Page provides register information.

REGISTER 27-2: LCDPS: LCD PHASE REGISTER

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1			
WFT	BIASMD	LCDA	WA		LP<	3:0>				
bit 7							bit C			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
u = Bit is unc	hanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is se	t	'0' = Bit is cle	ared	C = Only clea	arable bit					
		T T T T								
bit 7	WFT: Wavefo	• •	on oosh from							
		phase changes phase changes								
bit 6	BIASMD: Bia	as Mode Select	bit							
	When LMUX	<1:0> = 00:								
	0 = Static Bia When LMUX	as mode (do no	t set this bit to	oʻ1')						
	1 = 1/2 Bias mode 0 = 1/3 Bias mode									
	<u>When LMUX<1:0> = 10:</u>									
	1 = 1/2 Bias mode									
	0 = 1/3 Bias mode When LMUX<1:0> = 11:									
	0 = 1/3 Bias mode (do not set this bit to '1')									
bit 5	LCDA: LCD Active Status bit									
	1 = LCD Driv	iver module is active								
	0 = LCD Driv	er module is in	active							
bit 4	WA: LCD Wr	ite Allow Status	s bit							
		o the LCDDATA								
bit 3-0	LP<3:0>: LC	D Prescaler Se	election bits							
	1111 = 1 : 1 6									
	1110 = 1:15									
	1101 = 1:14 1100 = 1:13									
	1011 = 1:12									
	1010 = 1:11									
	1001 = 1:10 1000 = 1:9									
	1000 = 1.9 0111 = 1.8									
	0110 = 1:7									
	0101 = 1:6									
	0100 = 1:5									
	0011 = 1:4 0010 = 1:3									
	0001 = 1:2									
	0000 = 1:1									

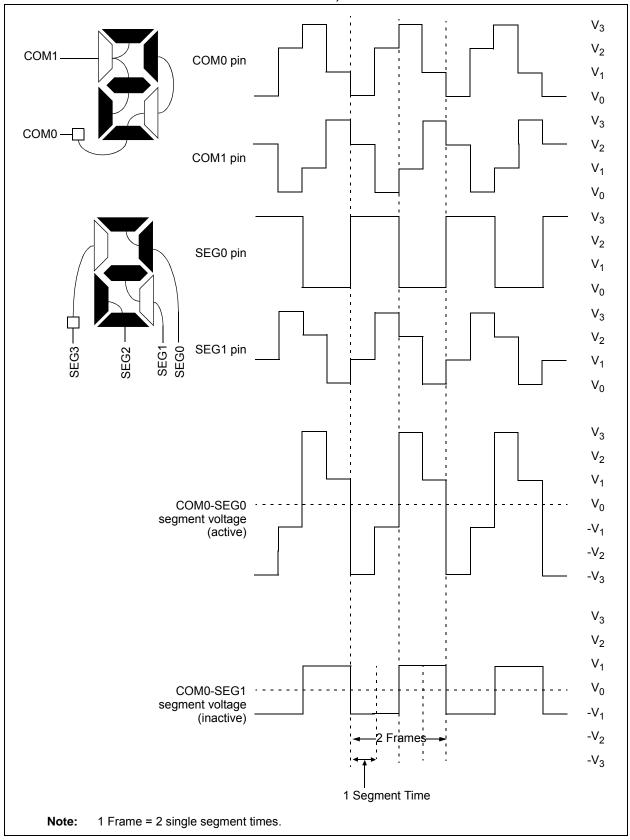
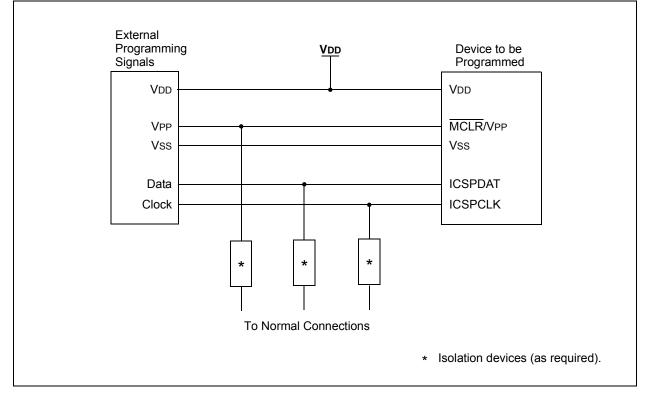



FIGURE 27-12: TYPE-B WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 28-4 for more information.

ΜΟΥΨΙ	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	$\begin{array}{l} n \in [0,1] \\ mm \in [00,01,10,11] \\ -32 \leq k \leq 31 \end{array}$
Operation:	$\label{eq:W} \begin{split} W &\rightarrow INDFn \\ \text{Effective address is determined by} \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR + 1 \ (\text{predecrement}) \\ \bullet \ FSR + k \ (\text{relative offset}) \\ \text{After the Move, the FSR value will be} \\ \text{either:} \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \text{Unchanged} \end{split}$
Status Affected:	None

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	
Syntax:	

Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

No Operation

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \rightarrow OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.
Words:	1
Cycles:	1
Example:	OPTION
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft- ware.

30.1 DC Characteristics: PIC16(L)F1934/6/7-I/E (Industrial, Extended)

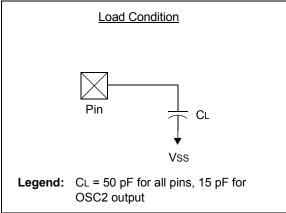
PIC16LF1934/36/37			$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$					
PIC16F1	934/36/37	Standard Operating Conditions (unless otherwise states of the conditions)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for induction of the conditions $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended of the conditions						
Param. No.	Sym.	Characteristic	Min. Typ† Max. Units			Units	Conditions	
D001	Vdd	Supply Voltage						
		PIC16LF1934/36/37	1.8 2.3	_	3.6 3.6	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)	
D001		PIC16F1934/36/37	1.8 2.3	_	5.5 5.5	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾						
		PIC16LF1934/36/37	1.5	_	_	V	Device in Sleep mode	
D002*		PIC16F1934/36/37	1.7	_	_	V	Device in Sleep mode	
	VPOR*	Power-on Reset Release Voltage		1.6	_	V		
	VPORR*	Power-on Reset Rearm Voltage						
		PIC16LF1934/36/37	_	0.8	—	V	Device in Sleep mode	
		PIC16F1934/36/37	_	1.7	—	V	Device in Sleep mode	
D003	VADFVR	Fixed Voltage Reference Voltage for ADC	-8		6	%	$\begin{array}{l} 1.024V, \ V\text{DD} \geq 2.5V \\ 2.048V, \ V\text{DD} \geq 2.5V \\ 4.096V, \ V\text{DD} \geq 4.75V \end{array}$	
D003A	VCDAFVR	Fixed Voltage Reference Voltage for Comparator and DAC	-11		7	%	$\begin{array}{l} 1.024V, \ VDD \geq 2.5V\\ 2.048V, \ VDD \geq 2.5V\\ 4.096V, \ VDD \geq 4.75V \end{array}$	
D003B	VLCDFVR	Fixed Voltage Reference Voltage for LCD Bias	-11	—	10	%	$3.072V, \text{VDD} \geq 3.6V$	
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	_	_	V/ms	See Section 6.1 "Power-on Reset (POR)" for details.	

* These parameters are characterized but not tested.

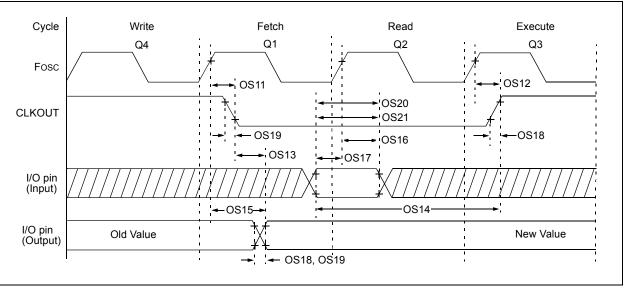
† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: PLL required for 32 MHz operation.


30.7 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:


- 1. TppS2ppS
- 2. TppS

<u>z. 1ppo</u>			
т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 30-5: LOAD CONDITIONS

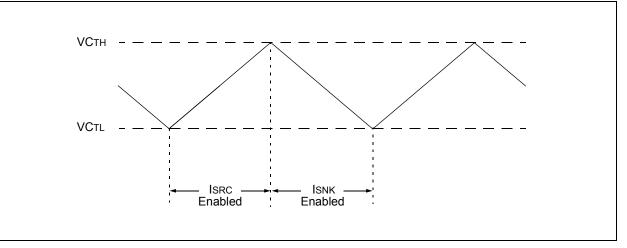

Param. No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
CS01	ISRC	Current Source	High	-3	-8	-15	μA	
			Medium	-0.8	-1.5	-3	μA	
			Low	-0.1	-0.3	-0.4	μA	
CS02	Isnk	Current Sink	High	2.5	7.5	14	μA	
			Medium	0.6	1.5	2.9	μA	
			Low	0.1	0.25	0.6	μA	
CS03	VСтн	Cap Threshold		_	0.8	—	mV	
CS04	VCTL	Cap Threshold			0.4	—	mV	
CS05	VCHYST	Cap Hysteresis	High	350	525	725	mV	
		(VCTH-VCTL)	Medium Low	250 175	375 300	500 425	mV mV	

TABLE 30-17: CAP SENSE OSCILLATOR SPECIFICATIONS

* These parameters are characterized but not tested.

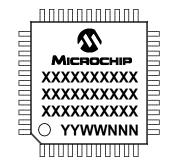
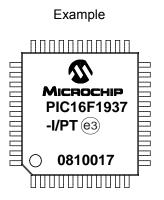
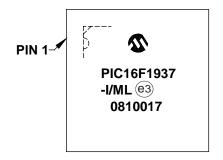

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

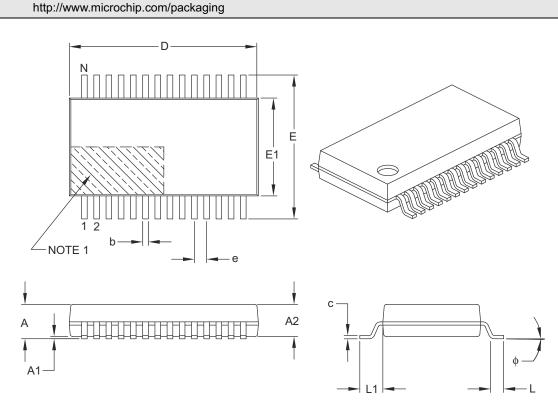
FIGURE 30-22: CAP SENSE OSCILLATOR




Package Marking Information (Continued)

44-Lead TQFP (10x10x1 mm)




44-Lead QFN (8x8x0.9 mm)

Example

For the most current package drawings, please see the Microchip Packaging Specification located at

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	Units			MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е		0.65 BSC				
Overall Height	А	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	С	0.09	-	0.25			
Foot Angle	ф	0°	4°	8°			
Lead Width	b	0.22	-	0.38			

Notes:

Note:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B