

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1934-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE	3-1Z. C	SPECIAL	FUNCTIC	IN REGIS	DIER SUN	INIART (C		בט)					
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		Value oth Res	ner
Banks 1	6-30												
x00h/ x80h ⁽²⁾	INDF0	Addressing (not a physi		ses contents o	of FSR0H/FSF	R0L to address	data memor	ý		xxxx	xxxx	xxxx	xxxx
x00h/ x81h ⁽²⁾	INDF1	Addressing (not a physi		ses contents o	of FSR1H/FSF	R1L to address	data memor	y		xxxx	XXXX	xxxx	xxxx
x02h/ x82h ⁽²⁾	PCL	Program Co	ounter (PC) Le	ast Significant	t Byte					0000	0000	0000	0000
x03h/ x83h ⁽²⁾	STATUS	-	—	_	TO	PD	Z	DC	С	1	1000	d	quuu
x04h/ x84h ⁽²⁾	FSR0L	Indirect Dat	a Memory Add	Iress 0 Low P	ointer					0000	0000	uuuu	uuuu
x05h/ x85h (2)	FSR0H	Indirect Dat	a Memory Add	lress 0 High P	Pointer					0000	0000	0000	0000
x06h/ x86h ⁽²⁾	FSR1L	Indirect Data	a Memory Ado	Iress 1 Low P	ointer					0000	0000	uuuu	uuuu
x07h/ x87h ⁽²⁾	FSR1H	Indirect Data	a Memory Add	lress 1 High P	Pointer					0000	0000	0000	0000
x08h/ x88h (2)	BSR	_	—	—			BSR<4:0>			0	0000	0	0000
x09h/ x89h ⁽²⁾	WREG	Working Re	Working Register						0000	0000	uuuu	uuuu	
x0Ah/ x8Ah ^{(1),(2)}	PCLATH	-	Write Buffer f	or the upper 7	bits of the Pro	ogram Counter	r			-000	0000	-000	0000
x0Bh/ x8Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000	0000	0000	0000
x0Ch/ x8Ch	—	Unimpleme	nted							-	-	_	-
x1Fh/ x9Fh													

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-12.

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'. 3:

4: Unimplemented, read as '1'.

R-1/q	R-0/q	R-q/q	R-0/q	R-0/q	R-q/q	R-0/0	R-0/q
T1OSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS
bit 7							bit 0
Legend:							
R = Readable		W = Writable		-	mented bit, read		
u = Bit is uncl	•	x = Bit is unk			at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Condition	al		
bit 7	<u>If T1OSCEN</u> 1 = Timer1 0 = Timer1 <u>If T1OSCEN</u>	oscillator is rea oscillator is not	dy ready				
bit 6	PLLR 4x PL 1 = 4x PLL	L Ready bit					
bit 5	1 = Runnin	llator Start-up T g from the clocl g from an interr	c defined by the	e FOSC<2:0>		guration Word	1
bit 4	1 = HFINTC	gh-Frequency Iı DSC is ready DSC is not ready		or Ready bit			
bit 3	1 = HFINTC	gh-Frequency Ir DSC is at least 2 DSC is not 2% a	2% accurate	or Locked bit			
bit 2	1 = MFINTO	edium-Frequen DSC is ready DSC is not read	-	illator Ready b	it		
bit 1	1 = LFINTO	w-Frequency In SC is ready SC is not ready		r Ready bit			
bit 0	1 = HFINTC	gh-Frequency Ir DSC is at least 0 DSC is not 0.5%).5% accurate	or Stable bit			

REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER

12.4 PORTC Registers

PORTC is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISC (Register 12-12). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTC register (Register 12-11) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATC).

The TRISC register (Register 12-12) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.4.1 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each PORTC pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-7.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in Table 12-7.

Pin Name	Function Priority ⁽¹⁾
RC0	T1OSO (Timer1 Oscillator) CCP2/P2B RC0
RC1	T1OSI (Timer1 Oscillator) CCP2/P2A RC1
RC2	SEG3 (LCD) CCP1/P1A RC2
RC3	SEG6 (LCD) SCL (MSSP) SCK (MSSP) RC3
RC4	SEG11 (LCD) SDA (MSSP) RC4
RC5	SEG10 (LCD) SDO (MSSP) RC5
RC6	ISEG9 (LCD) TX (EUSART) CK (EUSART) CCP3/P3A, 28-pin only RC6
RC7	SEG8 (LCD) DT (EUSART) CCP3/P3B, 28 pin only RC7

TABLE 12-7: PORTC OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	_	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	139
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	152
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	152
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	152
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	138

 TABLE 13-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Interrupt-on-Change.

15.2 ADC Operation

15.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 15.2.6 "A/D Conver-
	sion Procedure".

15.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

15.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

15.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

15.2.5 SPECIAL EVENT TRIGGER

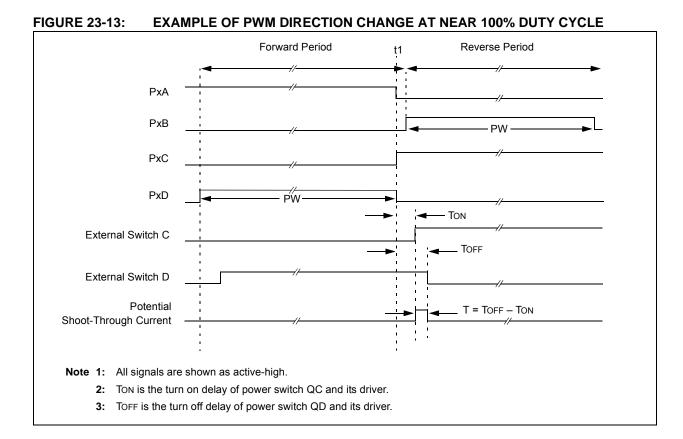
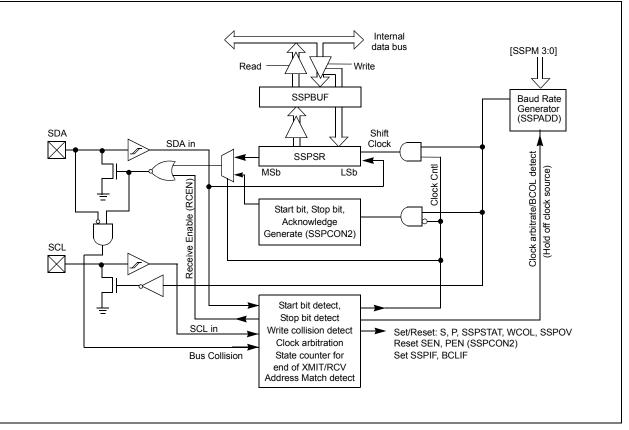

The Special Event Trigger of the CCPx/ECCPX module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

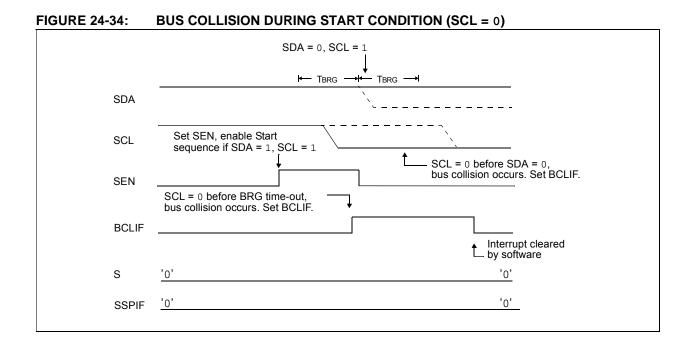
TABLE 15-2: SPECIAL EVENT TRIGGER

Device	CCPx/ECCPx
PIC16(L)F1934/6/7	CCP5

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to Section 23.0 "Capture/Compare/PWM Modules" for more information.




The I²C interface supports the following modes and features:

- · Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited Multi-master support
- 7-bit and 10-bit addressing
- · Start and Stop interrupts
- · Interrupt masking
- Clock stretching
- · Bus collision detection
- · General call address matching
- Address masking
- · Address Hold and Data Hold modes
- Selectable SDA hold times

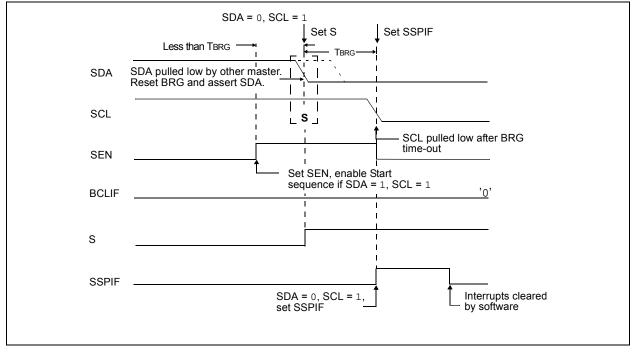

Figure 24-2 is a block diagram of the I^2C interface module in Master mode. Figure 24-3 is a diagram of the I^2C interface module in Slave mode.

FIGURE 24-2: MSSP BLOCK DIAGRAM (I²C[™] MASTER MODE)

FIGURE 24-35: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

REGISTER 24-1: SSPSTAT: SSP STATUS REGISTER

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7					•		bit 0
Legend:							
R = Readable bit		W = Writable bi			ented bit, read as		
u = Bit is uncha	inged		x = Bit is unknown -n/n = Value at POR and BOR/Value at all othe				
'1' = Bit is set		'0' = Bit is clear	ed				
bit 7	SMD. SDI Data	a Input Sample bi	+				
	SPI Master mo		l l				
		sampled at end c	of data output tir	ne			
	0 = Input data	sampled at middl	e of data outpu	t time			
		cleared when SP	is used in Slav	re mode			
	$\frac{\ln l^2 C \text{ Master c}}{1 = Slew rate}$	or Slave mode: control disabled f	or standard so	ed mode (100 k	Hz and 1 MHz)		
		control enabled f	•				
bit 6	CKE: SPI Cloc	k Edge Select bit	(SPI mode onl	y)			
	In SPI Master of		- f				
		ccurs on transitio ccurs on transitio					
	In I ² C™ mode						
	1 = Enable inp			mpliant with SM	Bus specification		
bit 5	D/A: Data/Add	ress bit (I ² C mod	e only)				
		nat the last byte r nat the last byte r					
bit 4	P: Stop bit	lat the last byte i			1035		
	•	. This bit is clear	ed when the MS	SSP module is d	sabled, SSPEN is	cleared.)	
	1 = Indicates th	nat a Stop bit has is not detected la	been detected			,	
bit 3	S: Start bit						
					sabled, SSPEN is	cleared.)	
		nat a Start bit has is not detected la		last (this bit is '0	o' on Reset)		
bit 2		ite bit information					
	This bit holds the to the next Star	rt bit, Stop bit, or	atio <u>n foll</u> owing t not ACK bit	he last address r	natch. This bit is c	nly valid from the	address match
	1 = Read	oue.					
	0 = Write						
	In I ² C Master n						
	1 = Transmit i 0 = Transmit i	s not in progress					
				CEN or ACKEN	will indicate if the	MSSP is in Idle n	node.
bit 1		ldress bit (10-bit					
		nat the user need bes not need to b	•	address in the S	SSPADD register		
bit 0	BF: Buffer Full						
		ind I ² C modes):					
		mplete, SSPBUF ot complete, SSP					
	0 = Receive not <u>Transmit (I²C not</u>						
	1 = Data transr	mit in progress (d			op bits), SSPBUF		
	0 = Data transr	mit complete (doe	es not include th	ne ACK and Stop	bits), SSPBUF is	empty	

25.3.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 25-9 for the timing of the Break character sequence.

25.3.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.

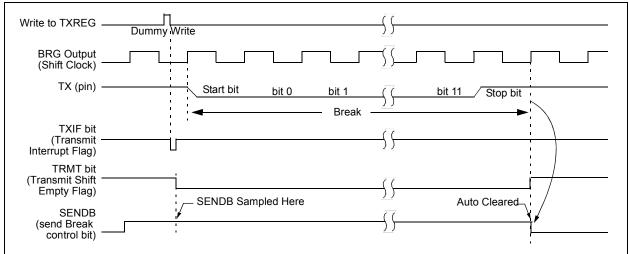
5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

25.3.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTA register and the Received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.


A Break character has been received when;

- · RCIF bit is set
- FERR bit is set
- RCREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 25.3.3** "Auto-Wake-up on **Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCON register before placing the EUSART in Sleep mode.

FIGURE 25-9: SEND BREAK CHARACTER SEQUENCE

			U-0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	
R/W-0/0	R/W-0/0	R/C-0/0	0-0	11/00-0/0	10.00 0/0			
LCDEN	SLPEN	WERR		CS<	:1:0>	LMUX	<1:0>	
bit 7							bit (
Legend:								
R = Readable	e bit	W = Writable bit		U = Unimplen	nented bit, read	l as '0'		
u = Bit is unch	nanged	x = Bit is unknow	vn	-n/n = Value a	t POR and BO	R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is cleare	d	C = Only clea	rable bit			
bit 7		Driver Enable bit						
	-	= LCD Driver module is enabled						
bit 6		er module is disat		- hit				
		Driver Enable in	•					
		 = LCD Driver module is disabled in Sleep mode = LCD Driver module is enabled in Sleep mode 						
			led in Sleer	o mode				
bit 5	0 = LCD Driv		•	p mode				
bit 5	0 = LCD Drive WERR: LCD	er module is enab	bit		E LCDPS regis	ter = 0 (must	be cleared in	
bit 5	0 = LCD Drive WERR: LCD 1 = LCDDAT software	er module is enab Write Failed Error An register writte)	bit		ECDPS regis	ter = 0 (must	be cleared in	
	0 = LCD Drive WERR: LCD 1 = LCDDAT software 0 = No LCD v	er module is enab Write Failed Error An register writte) vrite error	bit		e LCDPS regis	ter = 0 (must	be cleared in	
bit 4	0 = LCD Driv WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen	er module is enab Write Failed Error An register writte) vrite error ted: Read as '0'	bit n while the		ECDPS regis	ter = 0 (must	be cleared in	
bit 4	0 = LCD Driv WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clo	er module is enab Write Failed Error An register writte) vrite error t ed: Read as '0' ock Source Select	bit n while the		ECDPS regis	ter = 0 (must	be cleared in	
bit 4	0 = LCD Driv WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25	er module is enab Write Failed Error An register writte) vrite error ted: Read as '0' ock Source Select	bit n while the		ECDPS regis	ter = 0 (must	be cleared in	
bit 4	0 = LCD Driv WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC	er module is enab Write Failed Error An register writte vrite error ted: Read as '0' ock Source Select 66 (Timer1)	bit n while the		ELCDPS regis	ter = 0 (must	be cleared in	
bit 5 bit 4 bit 3-2 bit 1-0	0 = LCD Drive WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO	er module is enab Write Failed Error An register writte vrite error ted: Read as '0' ock Source Select 66 (Timer1)	bit n while the bits		ECDPS regis	ter = 0 (must	be cleared ir	
bit 4 bit 3-2	0 = LCD Driv WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	er module is enab Write Failed Error An register writte vrite error ted: Read as '0' ock Source Select 66 (Timer1) SC (31 kHz)	bit n while the bits	e WA bit of the	LCDPS regis		be cleared ir	
bit 4 bit 3-2	0 = LCD Drive WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO	er module is enab Write Failed Error An register writte vrite error ted: Read as '0' ock Source Select 66 (Timer1) SC (31 kHz)	bit n while the bits bits	e WA bit of the Maximum N	lumber of Pixe	ls	be cleared ir	
bit 4 bit 3-2	0 = LCD Drivi WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>	er module is enab Write Failed Error An register writte write error ted: Read as '0' ted: Read as '0' ted: Read as '0' bock Source Select G (Timer1) SC (31 kHz) Commons Select Multiplex	bit n while the bits bits	e WA bit of the Maximum Maximum	lumber of Pixe	ls L)F1934/7	– Bias	
bit 4 bit 3-2	0 = LCD Driv WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	er module is enab Write Failed Error An register writte vrite error ted: Read as '0' ock Source Select 66 (Timer1) SC (31 kHz) Commons Select Multiplex Static (COM0)	bit n while the bits bits	Maximum M	lumber of Pixe	ls L)F1934/7 24		
bit 4 bit 3-2	0 = LCD Driv WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0> 00	er module is enab Write Failed Error An register writte write error ted: Read as '0' ted: Read as '0' ted: Read as '0' bock Source Select G (Timer1) SC (31 kHz) Commons Select Multiplex	bit n while the bits bits	e WA bit of the Maximum Maximum	lumber of Pixe	ls L)F1934/7	- Bias Static	

REGISTER 27-1: LCDCON: LIQUID CRYSTAL DISPLAY (LCD) CONTROL REGISTER

Note 1: On these devices, COM3 and SEG15 are shared on one pin, limiting the device from driving 64 pixels.

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$0 \le f \le 127$ $0 \le b \le 7$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k
Operands:	-256 ≤ label - PC + 1 ≤ 255 -256 ≤ k ≤ 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a two-cycle instruc- tion. This branch has a limited range.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label]BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BRW	Relative Branch with W		
Syntax:	[label] BRW		
Operands:	None		
Operation:	$(PC) + (W) \rightarrow PC$		
Status Affected:	None		
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be $PC + 1 + (W)$. This instruction is a two-cycle instruc- tion.		

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

CALL	Call Subroutine				
Syntax:	[<i>label</i>] CALL k				
Operands:	$0 \leq k \leq 2047$				
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>				
Status Affected:	None				
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruc- tion.				

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALLW Subroutine Call With W		COMF	
Syntax:	[label] CALLW	Syntax:	
Operands:	None	Operands:	
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>	Operation: Status Affect	
Status Affected:	None	Description:	
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a two-cycle instruction.		

COMF	Complement f				
Syntax:	[<i>label</i>] COMF f,d				
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$				
Operation:	$(\overline{f}) \rightarrow (destination)$				
Status Affected:	Z				
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.				

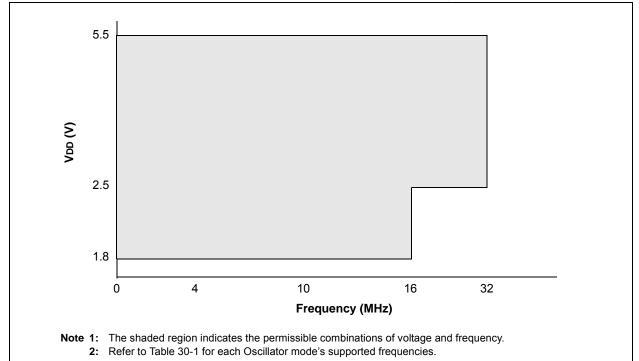
CLRF	Clear f		
Syntax:	[<i>label</i>] CLRF f		
Operands:	$0 \leq f \leq 127$		
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$		
Status Affected:	Z		
Description:	The contents of register 'f' are cleared and the Z bit is set.		

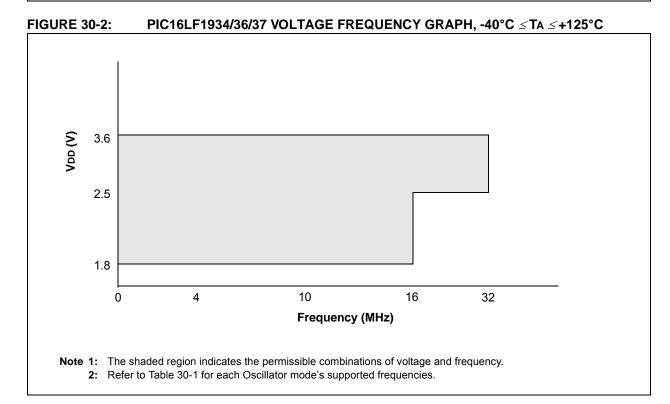
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

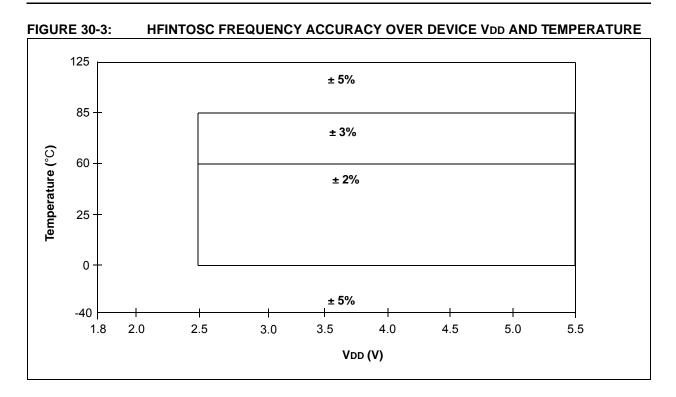
Decrement f

DECF

CLRW	Clear W				
Syntax:	[label] CLRW				
Operands:	None				
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ \text{1} \rightarrow \text{Z} \end{array}$				
Status Affected:	Z				
Description:	W register is cleared. Zero bit (Z) is set.				

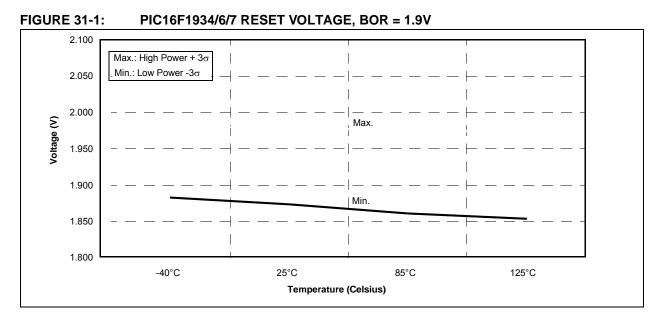

30.0 ELECTRICAL SPECIFICATIONS


Absolute Maximum Ratings^(†)

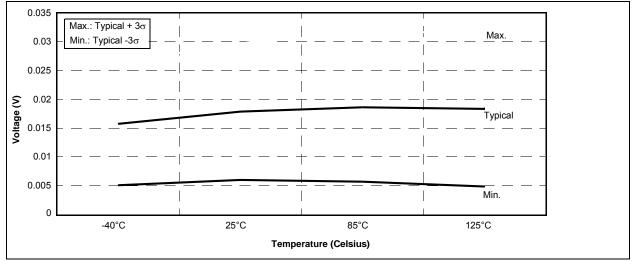

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +6.5V
Voltage on VCAP pin with respect to Vss	-0.3V to +4.0V
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on MCLR with respect to Vss	0.3V to +9.0V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	
Maximum current out of Vss ⁽²⁾ pin, -40°C \leq TA \leq +85°C for industrial	
Maximum current out of Vss ⁽²⁾ pin, -40°C \leq TA \leq +125°C for extended	105 mA
Maximum current into VDD ⁽²⁾ pin, -40°C \leq TA \leq +85°C for industrial	170 mA
Maximum current into VDD ⁽²⁾ pin, -40°C \leq TA \leq +125°C for extended	70 mA
Clamp current, Iк (VPIN < 0 or VPIN > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VDD x = VDD x (IDD $-\sum$ IOH) + \sum {(VDD x = VDD x	о – Vон) х Iон} + ∑(Vol х Iо∟)
2: For 28-pin devices.	
+ NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause r	permanent damage to the

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy			
SP101*	TLOW	Clock low time	100 kHz mode	4.7		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3		μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	—		
SP102*	TR	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall	100 kHz mode	—	250	ns	
		time	400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μS	
SP107*	TSU:DAT	Data input setup	100 kHz mode	250	_	ns	(Note 2)
	time	400 kHz mode	100	_	ns		
SP109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)
		clock	400 kHz mode	—	_	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmission can start
SP111	Св	Bus capacitive loadir	ng	_	400	pF	


TABLE 30-16: I²C[™] BUS DATA REQUIREMENTS

These parameters are characterized but not tested.


Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C[™] bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

31.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

FIGURE 31-2: PIC16F1934/6/7 HYSTERESIS, BOR = 1.9V

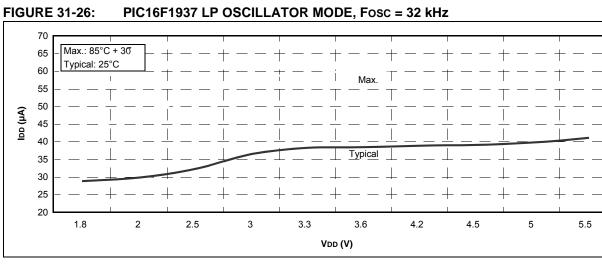
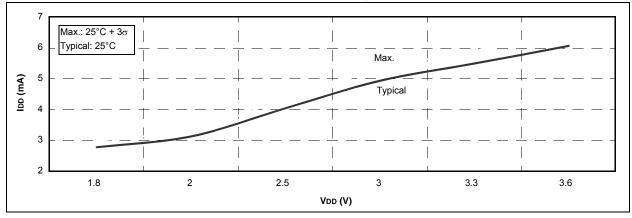
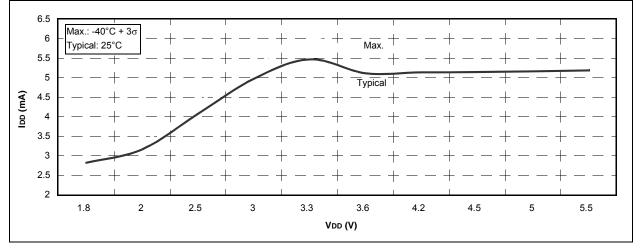




FIGURE 31-27: PIC16LF1937 HS OSCILLATOR MODE, Fosc = 32 MHz

32.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

32.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

32.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.