

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1934t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IABL	E 1		28	5-PIN 3			-16(L)F	1936)						-	
0/1	28-Pin SPDIP	28-Pin QFN/UQFN	ANSEL	A/D	Cap Sense	Comparator	SR Latch	Timers	ССР	EUSART	MSSP	ГСD	Interrupt	Pull-up	Basic
RA0	2	27	Y	AN0	—	C12IN0-/ C2OUT ⁽¹⁾	SRNQ ⁽¹⁾		_	—	SS ⁽¹⁾	SEG12	—	—	VCAP ⁽²⁾
RA1	3	28	Y	AN1	_	C12IN1-	_	_	_	_	_	SEG7	_	_	—
RA2	4	1	Y	AN2/ VREF-	-	C2IN+/ DACOUT	—	-	_	-	—	COM2	—	-	—
RA3	5	2	Y	AN3/ VREF+	—	C1IN+	—		_	—	—	SEG15/ COM3	—	-	—
RA4	6	3	Y	—	CPS6	C10UT	SRQ	T0CKI	CCP5	—	—	SEG4	—		—
RA5	7	4	Y	AN4	CPS7	C2OUT ⁽¹⁾	SRNQ ⁽¹⁾	—	—	—	SS ⁽¹⁾	SEG5	_	_	VCAP ⁽²⁾
RA6	10	7		_	_	_	_			—	_	SEG1	_	—	OSC2/ CLKOUT V _{CAP} ⁽²⁾
RA7	9	6		-	—	_	—		_	-	—	SEG2	—	—	OSC1/ CLKIN
RB0	21	18	Y	AN12	CPS0	—	SRI	-	CCP4	-	—	SEG0	INT/ IOC	Y	—
RB1	22	19	Y	AN10	CPS1	C12IN3-	_	-	P1C	—	—	VLCD1	IOC	Y	—
RB2	23	20	Y	AN8	CPS2	_	_		P1B	_	_	VLCD2	IOC	Y	—
RB3	24	21	Y	AN9	CPS3	C12IN2-	_		CCP2 ⁽¹⁾ / P2A ⁽¹⁾	—	_	VLCD3	IOC	Y	—
RB4	25	22	Y	AN11	CPS4	—	_	_	P1D	_	—	COM0	IOC	Y	—
RB5	26	23	Y	AN13	CPS5	-	—	T1G ⁽¹⁾	P2B ⁽¹⁾ CCP3 ⁽¹⁾ / P3A ⁽¹⁾	—	—	COM1	IOC	Y	_
RB6	27	24	l	—	_	—	—			—	_	SEG14	IOC	Y	ICSPCLK/ ICDCLK
RB7	28	25		-	—	—	—	-	_	-	—	SEG13	IOC	Y	ICSPDAT/ ICDDAT
RC0	11	8	-	-	-	—	—	T1OSO/ T1CKI	P2B ⁽¹⁾	-	—	—	—	-	—
RC1	12	9	-	-	—	—	—	T10SI	CCP2 ⁽¹⁾ / P2A ⁽¹⁾	-	—	_	—	-	—
RC2	13	10	-	-	—	-	—	-	CCP1/ P1A	-	—	SEG3	—	-	—
RC3	14	11		—	_	—	_	-	-	—	SCK/SCL	SEG6	—		—
RC4	15	12		—	_	_	_	T1G ⁽¹⁾		_	SDI/SDA	SEG11	_	_	—
RC5	16	13		—	_	—	_	-	-	—	SDO	SEG10	—		—
RC6	17	14	l	—	_	_	—	1	CCP3 ⁽¹⁾ P3A ⁽¹⁾	TX/CK	_	SEG9	_	_	—
RC7	18	15	_			-		_	P3B	RX/DT		SEG8	—	_	
RE3	1	26					—				—		—	Y	MCLR/VPP
VDD	20	17	_	_	_	—	_	_	_	—	_	_	_	_	Vdd
Vss	8, 19	5, 16	_	-	-	-	-	—	—	-	_	—	-	-	Vss

20 DINI CLIMMADY (DIC46/L)E4026)

Note 1: Pin functions can be moved using the APFCON register.

PIC16F1936 devices only. 2:

Pin Diagram - 40-Pin PDIP (PIC16(L)F1934/7)

2: PIC16F1934/7 devices only.

7.6.4 PIE3 REGISTER

The PIE3 register contains the interrupt enable bits, as shown in Register 7-4.

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt.

|--|

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0
—	CCP5IE	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	—
bit 7							bit 0

Legend:			
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is uncha	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set		'0' = Bit is cleared	
bit 7	Unimplemen	ted: Read as '0'	
bit 6	CCP5IE: CCF	P5 Interrupt Enable bit	
	1 = Enables	the CCP5 interrupt	
	0 = Disables	the CCP5 interrupt	
bit 5	CCP4IE: CCF	P4 Interrupt Enable bit	
	1 = Enables 1	the CCP4 interrupt	
bit 4		22 Interrupt Enable bit	
DIL 4			
	0 = Disables	the CCP3 interrupt	
bit 3	TMR6IE: TMF	R6 to PR6 Match Interrupt Er	nable bit
	1 = Enables	the TMR6 to PR6 Match inte	rrupt
	0 = Disables	the TMR6 to PR6 Match inte	errupt
bit 2	Unimplemen	ted: Read as '0'	
bit 1	TMR4IE: TMF	R4 to PR4 Match Interrupt Er	nable bit
	1 = Enables	the TMR4 to PR4 Match inte	rrupt
	0 = Disables	the TMR4 to PR4 Match inte	rrupt
bit 0	Unimplemen	ted: Read as '0'	

10.0 WATCHDOG TIMER

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- · Independent clock source
- Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (typical)
- Multiple Reset conditions
- Operation during Sleep

FIGURE 10-1: WATCHDOG TIMER BLOCK DIAGRAM

11.0 DATA EEPROM AND FLASH PROGRAM MEMORY CONTROL

The data EEPROM and Flash program memory are readable and writable during normal operation (full VDD range). These memories are not directly mapped in the register file space. Instead, they are indirectly addressed through the Special Function Registers (SFRs). There are six SFRs used to access these memories:

- EECON1
- EECON2
- EEDATL
- EEDATH
- EEADRL
- EEADRH

When interfacing the data memory block, EEDATL holds the 8-bit data for read/write, and EEADRL holds the address of the EEDATL location being accessed. These devices have 256 bytes of data EEPROM with an address range from 0h to 0FFh.

When accessing the program memory block, the EEDATH:EEDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the EEADRL and EEADRH registers form a 2-byte word that holds the 15-bit address of the program memory location being read.

The EEPROM data memory allows byte read and write. An EEPROM byte write automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

Depending on the setting of the Flash Program Memory Self Write Enable bits WRT<1:0> of the Configuration Word 2, the device may or may not be able to write certain blocks of the program memory. However, reads from the program memory are always allowed.

When the device is code-protected, the device programmer can no longer access data or program memory. When code-protected, the CPU may continue to read and write the data EEPROM memory and Flash program memory.

11.1 EEADRL and EEADRH Registers

The EEADRH:EEADRL register pair can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 32K words of program memory.

When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADRL register. When selecting a EEPROM address value, only the LSB of the address is written to the EEADRL register.

11.1.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for EE memory accesses.

Control bit EEPGD determines if the access will be a program or data memory access. When clear, any subsequent operations will operate on the EEPROM memory. When set, any subsequent operations will operate on the program memory. On Reset, EEPROM is selected by default.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

Interrupt flag bit EEIF of the PIR2 register is set when write is complete. It must be cleared in the software.

Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence. To enable writes, a specific pattern must be written to EECON2.

24.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 24-25).

FIGURE 24-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

24.6.3 WCOL STATUS FLAG

If the user writes the SSPBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPBUF was attempted while the module was not Idle.

Note:	Because	quei	leing	of	even	ts	is	not
	allowed,	writing	g to	the	lower	5	bits	of
	SSPCON	l2 is	disa	bled	until	th	e S	Start
	condition	is con	nplet	e.				

24.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit of the SSPCON2 register is programmed high and the Master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSPCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPSTAT register will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

27.5 LCD Multiplex Types

The LCD driver module can be configured into one of four multiplex types:

- Static (only COM0 is used)
- 1/2 multiplex (COM<1:0> are used)
- 1/3 multiplex (COM<2:0> are used)
- 1/4 multiplex (COM<3:0> are used)

The LMUX<1:0> bit setting of the LCDCON register decides which of the LCD common pins are used (see Table 27-4 for details).

If the pin is a digital I/O, the corresponding TRIS bit controls the data direction. If the pin is a COM drive, then the TRIS setting of that pin is overridden.

Multiplex	LMUX <1:0>	СОМЗ	COM2	COM1
Static	00	Unused	Unused	Unused
1/2	01	Unused	Unused	Active
1/3	10	Unused	Active	Active
1/4	11	Active	Active	Active

TABLE 27-4: COMMON PIN USAGE

27.6 Segment Enables

The LCDSEn registers are used to select the pin function for each segment pin. The selection allows each pin to operate as either an LCD segment driver or as one of the pin's alternate functions. To configure the pin as a segment pin, the corresponding bits in the LCDSEn registers must be set to '1'.

If the pin is a digital I/O, the corresponding TRIS bit controls the data direction. Any bit set in the LCDSEn registers overrides any bit settings in the corresponding TRIS register.

Note: On a Power-on Reset, these pins are configured as normal I/O, not LCD pins.

27.7 Pixel Control

The LCDDATAx registers contain bits which define the state of each pixel. Each bit defines one unique pixel.

Register 27-6 shows the correlation of each bit in the LCDDATAx registers to the respective common and segment signals.

Any LCD pixel location not being used for display can be used as general purpose RAM.

27.8 LCD Frame Frequency

The rate at which the COM and SEG outputs change is called the LCD frame frequency.

TABLE 27-5: FRAME FREQUENCY FORMULAS

Multiplex	Frame Frequency =
Static	Clock source/(4 x 1 x (LPD Prescaler) x 32))
1/2	Clock source/(2 x 2 x (LPD Prescaler) x 32))
1/3	Clock source/(1 x 3 x (LPD Prescaler) x 32))
1/4	Clock source/(1 x 4 x (LPD Prescaler) x 32))

Note: Clock source is Fosc/256, T1OSC or LFINTOSC.

TABLE 27-6: APPROXIMATE FRAME FREQUENCY (IN Hz) USING Fosc @ 8 MHz, TIMER1 @ 32.768 kHz OR LFINTOSC

LP<3:0>	Static	1/2	1/3	1/4
2	122	122	162	122
3	81	81	108	81
4	61	61	81	61
5	49	49	65	49
6	41	41	54	41
7	35	35	47	35

28.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC16(L)F1934/6/7 devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Word 2 is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.3 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

28.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6 pin, 6 connector) configuration. See Figure 28-2.

FIGURE 28-2: ICD RJ-11 STYLE CONNECTOR INTERFACE

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 28-3.

FIGURE 28-3: PICkit[™] STYLE CONNECTOR INTERFACE

29.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn				
Syntax:	[label]ADDFSR FSRn, k				
Operands:	$-32 \le k \le 31$ n \in [0, 1]				
Operation:	$FSR(n) + k \rightarrow FSR(n)$				
Status Affected:	None				
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.				

FSRn is limited to the range 0000h -FFFFh. Moving beyond these bounds will cause the FSR to wrap around.

ANDLW	AND literal with W				
Syntax:	[<i>label</i>] ANDLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .AND. (k) \rightarrow (W)				
Status Affected:	Z				
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.				

ADDLW	Add literal and W	
Syntax:	[<i>label</i>] ADDLW k	
Operands:	$0 \leq k \leq 255$	
Operation:	$(W) + k \to (W)$	
Status Affected:	C, DC, Z	
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.	

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Ζ
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f	
Syntax:	[<i>label</i>] ADDWF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	
Operation:	(W) + (f) \rightarrow (destination)	
Status Affected:	C, DC, Z	
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.	

ASRF	Arithmetic Right Shift
Syntax:	[<i>label</i>] ASRF f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in reg-

ister 'f'.

-	٠	register f	-	С	

ADDWFC	ADD W and CARRY bit to f	
Syntax:	[<i>label</i>] ADDWFC f {,d}	
Operands:	$0 \le f \le 127$ $d \in [0,1]$	
Operation:	$(W) + (f) + (C) \rightarrow dest$	
Status Affected:	C, DC, Z	
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is	

placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

DECFSZ	Decrement f, Skip if 0	
Syntax:	[label] DECFSZ f,d	
Operands:	$0 \le f \le 127$ $d \in [0,1]$	
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0	
Status Affected:	None	
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.	

GOTO	Unconditional Branch	
Syntax:	[<i>label</i>] GOTO k	
Operands:	$0 \leq k \leq 2047$	
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>	
Status Affected:	None	
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.	

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.

IORLW	Inclusive OR literal with W	
Syntax:	[<i>label</i>] IORLW k	
Operands:	$0 \leq k \leq 255$	
Operation:	(W) .OR. $k \rightarrow$ (W)	
Status Affected:	Z	
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.	

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

30.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +6.5V
Voltage on VCAP pin with respect to Vss	0.3V to +4.0V
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on MCLR with respect to Vss	0.3V to +9.0V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss ⁽²⁾ pin, -40°C \leq TA \leq +85°C for industrial	255 mA
Maximum current out of Vss ⁽²⁾ pin, -40°C \leq TA \leq +125°C for extended	105 mA
Maximum current into VDD ⁽²⁾ pin, -40°C \leq TA \leq +85°C for industrial	170 mA
Maximum current into VDD ⁽²⁾ pin, -40°C \leq TA \leq +125°C for extended	70 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VDD $-\sum$ IOH} + \sum {(VD $-\sum$ IOH} + \sum {(VD $-\sum$ IOH} + \sum {(VD $-\sum$ IOH} + \sum	– Vон) x Iон} + ∑(Vol x Iol)
2: For 28-pin devices.	
+ NOTICE: Stresses shows these listed under "Absolute Maximum Defines" may source he	rmonont domago to the

[†] NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

30.3 DC Characteristics: PIC16(L)F1934/6/7-I/E (Power-Down)

PIC16LF1934/36/37			Standard Operating Condition Operating temperature -40 -40				tions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended			
PIC16F1934/36/37			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					erwise stated) C for industrial i°C for extended		
Param	Device Characteristics	Min.	Тур†	Max.	Max.	Units		Conditions		
NO.				+05 C	+125 C		Vdd	Note		
	Power-down Base Current	(IPD) ⁽²⁾	1	1		1		1		
D023			0.06	1.0	8.0	μA	1.8	WDT, BOR, FVR, and T1OSC		
			0.08	2.0	9.0	μA	3.0	disabled, all Peripherals Inactive		
D023			21	55	63	μA	1.8	WDT, BOR, FVR, and T1OSC		
			25	58	78	μA	3.0	disabled, all Peripherals Inactive		
		—	27	60	88	μA	5.0			
D024			0.5	4.0	9.0	μA	1.8	LPWDT Current (Note 1)		
		—	0.8	5.0	10	μA	3.0			
D024			23	57	65	μA	1.8	LPWDT Current (Note 1)		
			26	59	80	μA	3.0			
		—	28	61	90	μA	5.0			
D025		—	15	28	30	μA	1.8	FVR current		
		—	15	30	33	μA	3.0			
D025		—	38	96	100	μA	1.8	FVR current (Note 4)		
		—	45	110	120	μA	3.0			
		—	90	140	155	μA	5.0			
D026		—	13	25	28	μA	3.0	BOR Current (Note 1)		
D026		—	40	110	120	μA	3.0	BOR Current (Note 1, Note 4)		
		—	87	140	155	μA	5.0			
D027		—	0.6	5.0	9.0	μA	1.8	T1OSC Current (Note 1)		
		—	1.8	7.0	12	μA	3.0]		
D027		_	22	57	60	μA	1.8	T1OSC Current (Note 1)		
		_	29	62	70	μA	3.0			
		_	35	66	85	μA	5.0			
*	These perspeters are share	o to rizo d	hut not t	aatad						

These parameters are characterized but not tested.

t Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: A/D oscillator source is FRC.

4: 0.1 μ F capacitor on VCAP (RA0).

TABLE 30-4: CL	KOUT AND	I/O TIMING	PARAMETERS
----------------	----------	------------	------------

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—		70	ns	VDD = 3.3-5.0V
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—		72	ns	VDD = 3.3-5.0V
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—		20	ns	
OS14	TioV2ckH	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns		_	ns	
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-5.0V
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	—	—	ns	VDD = 3.3-5.0V
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	_	—	ns	
OS18	TioR	Port output rise time	—	40	72	ns	VDD = 1.8V
			—	15	32		VDD = 3.3-5.0V
OS19	TioF	Port output fall time	—	28	55	ns	VDD = 1.8V
			—	15	30		VDD = 3.3-5.0V
OS20*	Tinp	INT pin input high or low time	25		—	ns	
OS21*	Tioc	Interrupt-on-change new input level time	25		—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

FIGURE 31-7: PIC16F1934/6/7 COMPARATOR HYSTERESIS, LOW-POWER MODE

FIGURE 31-27: PIC16LF1937 HS OSCILLATOR MODE, Fosc = 32 MHz

32.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

32.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

32.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES				
Dimensio	n Limits	MIN	NOM	MAX			
Number of Pins	Ν		40				
Pitch	е		.100 BSC				
Top to Seating Plane	А	-	-	.250			
Molded Package Thickness	A2	.125	-	.195			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.590	-	.625			
Molded Package Width	E1	.485	-	.580			
Overall Length	D	1.980	-	2.095			
Tip to Seating Plane	L	.115	-	.200			
Lead Thickness	с	.008	-	.015			
Upper Lead Width	b1	.030	-	.070			
Lower Lead Width	b	.014	_	.023			
Overall Row Spacing §	eB	-	-	.700			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B