

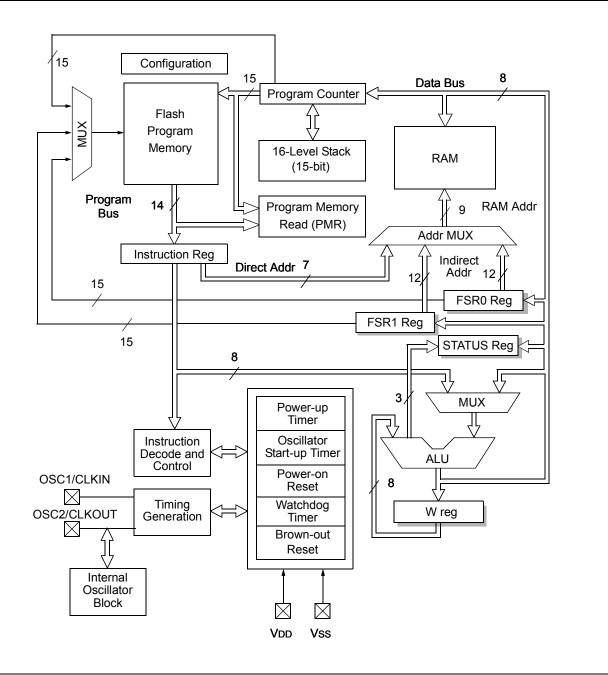
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1934t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-6:PIC16(L)F1936/1937 MEMORY MAP, BANKS 8-15

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	INDF0	480h	INDF0	500h	INDF0	580h	INDF0	600h	INDF0	680h	INDF0	700h	INDF0	780h	INDF0
401h	INDF1	481h	INDF1	501h	INDF1	581h	INDF1	601h	INDF1	681h	INDF1	701h	INDF1	781h	INDF1
402h	PCL	482h	PCL	502h	PCL	582h	PCL	602h	PCL	682h	PCL	702h	PCL	782h	PCL
403h	STATUS	483h	STATUS	503h	STATUS	583h	STATUS	603h	STATUS	683h	STATUS	703h	STATUS	783h	STATUS
404h	FSR0L	484h	FSR0L	504h	FSR0L	584h	FSR0L	604h	FSR0L	684h	FSR0L	704h	FSR0L	784h	FSR0L
405h	FSR0H	485h	FSR0H	505h	FSR0H	585h	FSR0H	605h	FSR0H	685h	FSR0H	705h	FSR0H	785h	FSR0H
406h	FSR1L	486h	FSR1L	506h	FSR1L	586h	FSR1L	606h	FSR1L	686h	FSR1L	706h	FSR1L	786h	FSR1L
407h	FSR1H	487h	FSR1H	507h	FSR1H	587h	FSR1H	607h	FSR1H	687h	FSR1H	707h	FSR1H	787h	FSR1H
408h	BSR	488h	BSR	508h	BSR	588h	BSR	608h	BSR	688h	BSR	708h	BSR	788h	BSR
409h	WREG	489h	WREG	509h	WREG	589h	WREG	609h	WREG	689h	WREG	709h	WREG	789h	WREG
40Ah	PCLATH	48Ah	PCLATH	50Ah	PCLATH	58Ah	PCLATH	60Ah	PCLATH	68Ah	PCLATH	70Ah	PCLATH	78Ah	PCLATH
40Bh	INTCON	48Bh	INTCON	50Bh	INTCON	58Bh	INTCON	60Bh	INTCON	68Bh	INTCON	70Bh	INTCON	78Bh	INTCON
40Ch	_	48Ch	—	50Ch	_	58Ch	_	60Ch	_	68Ch	_	70Ch	—	78Ch	_
40Dh	_	48Dh		50Dh	_	58Dh	_	60Dh	—	68Dh	—	70Dh	—	78Dh	_
40Eh	_	48Eh		50Eh	_	58Eh	_	60Eh	—	68Eh	—	70Eh	—	78Eh	_
40Fh	_	48Fh		50Fh	_	58Fh	_	60Fh	—	68Fh	—	70Fh	—	78Fh	
410h	—	490h	—	510h	_	590h	—	610h	—	690h	—	710h	—	790h	—
411h	—	491h	—	511h	_	591h	—	611h	—	691h	—	711h	—	791h	
412h	—	492h	—	512h	—	592h	—	612h	—	692h	—	712h	—	792h	
413h		493h		513h	—	593h		613h	—	693h	—	713h	—	793h	
414h	_	494h		514h	_	594h		614h	_	694h	_	714h		794h	
415h	TMR4	495h	—	515h	_	595h	_	615h	_	695h	_	715h	—	795h	
416h	PR4	496h		516h	_	596h		616h	_	696h		716h		796h	
417h	T4CON	497h	_	517h	_	597h	_	617h	_	697h	_	717h	_	797h	
418h	_	498h	_	518h	—	598h	_	618h	_	698h	_	718h	—	798h	
419h	_	499h	_	519h	_	599h	_	619h	_	699h	_	719h	_	799h	
41Ah	_	49Ah		51Ah	_	59Ah	_	61Ah		69Ah	—	71Ah		79Ah	See Table 3-9 or
41Bh		49Bh		51Bh	_	59Bh		61Bh		69Bh	_	71Bh		79Bh	Table 3-10
41Ch	TMR6	49Ch	_	51Ch	_	59Ch		61Ch	_	69Ch	_	71Ch	_	79Ch	
41Dh	PR6	49Dh		51Dh	—	59Dh	_	61Dh	_	69Dh	—	71Dh		79Dh	
41Eh	T6CON	49Eh		51Eh	—	59Eh	—	61Eh	—	69Eh		71Eh		79Eh	
41Fh	—	49Fh	—	51Fh	—	59Fh	_	61Fh	—	69Fh	—	71Fh	—	79Fh	
420h		4A0h		520h		5A0h		620h		6A0h		720h		7A0h	
	Unimplemented Read as '0'														
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h	Accesses 70h – 7Fh	4F0h	Accesses 70h – 7Fh	570h	Accesses 70h – 7Fh	5F0h	Accesses 70h – 7Fh	670h	Accesses 70h – 7Fh	6F0h	Accesses 70h – 7Fh	770h	Accesses 70h – 7Fh	7F0h	Accesses 70h – 7Fh
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

Legend: = Unimplemented data memory locations, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 8											
400h ⁽²⁾	INDF0	Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)									XXXX XXXX
401h ⁽²⁾	INDF1	Addressing (not a physi		ses contents o	of FSR1H/FSF	R1L to address	data memory	/		XXXX XXXX	XXXX XXXX
402h ⁽²⁾	PCL	Program Co	ounter (PC) Le	ast Significant	t Byte					0000 0000	0000 0000
403h ⁽²⁾	STATUS	_	_	—	TO	PD	Z	DC	С	1 1000	q quuu
404h ⁽²⁾	FSR0L	Indirect Data	a Memory Add	Iress 0 Low Po	ointer	•	•	•	•	0000 0000	uuuu uuuu
405h ⁽²⁾	FSR0H	Indirect Data	a Memory Add	lress 0 High P	ointer					0000 0000	0000 0000
406h ⁽²⁾	FSR1L	Indirect Data	a Memory Add	Iress 1 Low Po	ointer					0000 0000	uuuu uuuu
407h ⁽²⁾	FSR1H	Indirect Date	a Memory Add	Iress 1 High P	ointer					0000 0000	0000 0000
408h ⁽²⁾	BSR	_	—	—		E	BSR<4:0>			0 0000	0 0000
409h ⁽²⁾	WREG	Working Re	gister							0000 0000	uuuu uuuu
40Ah ^(1, 2)	PCLATH	_	Write Buffer for the upper 7 bits of the Program Counter								-000 0000
40Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
40Ch		Unimpleme	nted							_	_
40Dh	_	Unimpleme	Jnimplemented								_
40Eh	_	Unimpleme	Jnimplemented								_
40Fh	_	Unimpleme	nted							_	_
410h	—	Unimpleme	nted							_	_
411h	_	Unimpleme	nted							_	_
412h	_	Unimpleme	nted							_	_
413h	—	Unimpleme	nted							_	_
414h	—	Unimpleme	nted							_	_
415h	TMR4	Timer4 Mod	ule Register							0000 0000	0000 0000
416h	PR4	Timer4 Peri	od Register							1111 1111	1111 1111
417h	T4CON	_		T4OUT	PS<3:0>		TMR40N	T4CKF	PS<1:0>	-000 0000	-000 0000
418h	—	Unimpleme	nted							_	—
419h	—	Unimpleme	nted							_	_
41Ah	—	Unimpleme	nted							_	—
41Bh	—	Unimpleme	nted							_	—
41Ch	TMR6	Timer6 Mod	ule Register							0000 0000	0000 0000
41Dh	PR6	Timer6 Peri	od Register							1111 1111	1111 1111
41Eh	T6CON	_		T6OUT	PS<3:0>		TMR6ON	T6CKF	PS<1:0>	-000 0000	-000 0000
41Fh	—	Unimpleme	nted							_	_

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-12

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'. 3:

4: Unimplemented, read as '1'.

5.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.

Internal clock sources are contained internally within the oscillator module. The internal oscillator block has two internal oscillators and a dedicated Phase-Lock Loop (HFPLL) that are used to generate three internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC), 500 kHz (MFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See **Section 5.3 "Clock Switching"** for additional information.

5.2.1 EXTERNAL CLOCK SOURCES

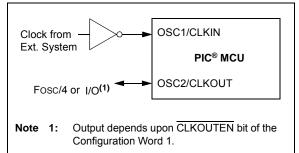
An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in the Configuration Word 1 to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Timer1 Oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

See Section 5.3 "Clock Switching" for more information.

5.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode.


EC mode has 3 power modes to select from through Configuration Word 1:

- High power, 4-32 MHz (FOSC = 111)
- Medium power, 0.5-4 MHz (FOSC = 110)
- Low power, 0-0.5 MHz (FOSC = 101)

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 5-2:

EXTERNAL CLOCK (EC) MODE OPERATION

5.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 5-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 5-3 and Figure 5-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

5.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits:

- Default system oscillator determined by FOSC bits in Configuration Word 1
- Timer1 32 kHz crystal oscillator
- Internal Oscillator Block (INTOSC)

5.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS) bits of the OSCCON register selects the system clock source that is used for the CPU and peripherals.

- When the SCS bits of the OSCCON register = 00, the system clock source is determined by value of the FOSC<2:0> bits in the Configuration Word 1.
- When the SCS bits of the OSCCON register = 01, the system clock source is the Timer1 oscillator.
- When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared.

Note:	Any automatic clock switch, which may
	occur from Two-Speed Start-up or
	Fail-Safe Clock Monitor, does not update
	the SCS bits of the OSCCON register. The
	user can monitor the OSTS bit of the
	OSCSTAT register to determine the current
	system clock source.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.

5.3.2 OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT

The Oscillator Start-up Time-out Status (OSTS) bit of the OSCSTAT register indicates whether the system clock is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word 1, or from the internal clock source. In particular, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes. The OST does not reflect the status of the Timer1 oscillator.

5.3.3 TIMER1 OSCILLATOR

The Timer1 oscillator is a separate crystal oscillator associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the T1OSO and T1OSI device pins.

The Timer1 oscillator is enabled using the T1OSCEN control bit in the T1CON register. See **Section 21.0 "Timer1 Module with Gate Control"** for more information about the Timer1 peripheral.

5.3.4 TIMER1 OSCILLATOR READY (T1OSCR) BIT

The user must ensure that the Timer1 oscillator is ready to be used before it is selected as a system clock source. The Timer1 Oscillator Ready (T1OSCR) bit of the OSCSTAT register indicates whether the Timer1 oscillator is ready to be used. After the T1OSCR bit is set, the SCS bits can be configured to select the Timer1 oscillator.

6.10 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RMCLR	RI	POR	BOR	то	PD	Condition	
0	0	1	1	0	x	1	1	Power-on Reset	
0	0	1	1	0	x	0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$	
0	0	1	1	0	x	x	0	Illegal, \overline{PD} is set on \overline{POR}	
0	0	1	1	u	0	1	1	Brown-out Reset	
u	u	u	u	u	u	0	u	WDT Reset	
u	u	u	u	u	u	0	0	WDT Wake-up from Sleep	
u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep	
u	u	0	u	u	u	u	u	MCLR Reset during normal operation	
u	u	0	u	u	u	1	0	MCLR Reset during Sleep	
u	u	u	0	u	u	u	u	RESET Instruction Executed	
1	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)	
u	1	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)	

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS⁽²⁾

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

2: If a Status bit is not implemented, that bit will be read as '0'.

FIGURE 7	7-2: I	NTERRUPT	LATENCY					
OSC1								
CLKOUT			Interru during	pt Sampled Q1				
Interrupt								
GIE								
PC	PC-1	PC	PC	+1	0004h	0005h		
Execute	1 Cycle Inst	ruction at PC	Inst(PC)	NOP	NOP	Inst(0004h)	L	
Interrupt								
GIE								
PC	PC-1	PC	PC+1/FSR ADDR	New PC/ PC+1	0004h	0005h		
Execute-	2 Cycle Inst	ruction at PC	Inst(PC)	NOP	NOP	Inst(0004h)		
				1				
Interrupt								
GIE								(
PC	PC-1	PC	FSR ADDR	PC+1	PC+2	0004h	0005h)
Execute	3 Cycle Inst	ruction at PC	INST(PC)	NOP	NOP	NOP	Inst(0004h)	Inst(0005h)
Interrupt					-			
GIE								
PC	PC-1	РС	FSR ADDR	PC+1	PC	+2	0004h	0005h
Execute	3 Cycle Inst	ruction at PC	INST(PC)	NOP	NOP	NOP	NOP	Inst(0004h)

7.6.2 PIE1 REGISTER

The PIE1 register contains the interrupt enable bits, as shown in Register 7-2.

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt.

REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TMR1GIE | ADIE | RCIE | TXIE | SSPIE | CCP1IE | TMR2IE | TMR1IE |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readab	le bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is un	changed	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is se	et	'0' = Bit is cleared	
bit 7		Timer1 Gate Interrupt Enab	lo bit
		s the Timer1 Gate Acquisition	
		es the Timer1 Gate Acquisition	
bit 6		Converter (ADC) Interrupt E	-
		s the ADC interrupt	
	0 = Disable	es the ADC interrupt	
bit 5	RCIE: USA	RT Receive Interrupt Enable	e bit
		s the USART receive interru	•
		es the USART receive interru	
bit 4		RT Transmit Interrupt Enabl	
		s the USART transmit interries the USART transmit interries the USART transmit interries the USART transmit interries the transmit interr	
bit 3		nchronous Serial Port (MSS	
	•	s the MSSP interrupt	
		es the MSSP interrupt	
bit 2	CCP1IE: C	CP1 Interrupt Enable bit	
		s the CCP1 interrupt	
	0 = Disable	es the CCP1 interrupt	
bit 1		MR2 to PR2 Match Interrupt	
		s the Timer2 to PR2 match i es the Timer2 to PR2 match	
bit 0	TMR1IE: T	imer1 Overflow Interrupt En	able bit
	1 = Enable	s the Timer1 overflow interru	ıpt
	0 = Disable	es the Timer1 overflow interr	upt

7.6.3 PIE2 REGISTER

The PIE2 register contains the interrupt enable bits, as shown in Register 7-3.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	—	CCP2IE
bit 7							bit 0

Legend:										
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'							
u = Bit is ur	nchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is s	et	'0' = Bit is cleared								
bit 7	OSFIE: Os	cillator Fail Interrupt Enable	bit							
		es the Oscillator Fail interrup es the Oscillator Fail interrup								
bit 6	C2IE: Com	parator C2 Interrupt Enable	bit							
		es the Comparator C2 interrues the Comparator C2 interrues the Comparator C2 interr	•							
bit 5	C1IE: Com	C1IE: Comparator C1 Interrupt Enable bit								
		 1 = Enables the Comparator C1 interrupt 0 = Disables the Comparator C1 interrupt 								
bit 4	EEIE: EEP	EEIE: EEPROM Write Completion Interrupt Enable bit								
		es the EEPROM Write Comp es the EEPROM Write Com	•							
bit 3	1 = Enable	SP Bus Collision Interrupt E es the MSSP Bus Collision Ir es the MSSP Bus Collision I	nterrupt							
bit 2	LCDIE: LC 1 = Enable	D Module Interrupt Enable b the LCD module interrupt es the LCD module interrupt	Dit							
bit 1		ented: Read as '0'								
bit 0	CCP2IE: C	CP2 Interrupt Enable bit								
		es the CCP2 interrupt es the CCP2 interrupt								

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	139
CCP1CON	P1M	<1:0>	DC1B	DC1B<1:0> CCP1M<3:0>					234
CCP2CON	P2M	<1:0>	DC2B	<1:0>		CCP2N	1<3:0>		234
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	99
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	102
TMR1H	Holding Regi	ster for the M	ost Significan	t Byte of the	16-bit TMR1 F	Register			199*
TMR1L	Holding Regi	ster for the Le	east Significa	nt Byte of the	16-bit TMR1	Register			199*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	138
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	203
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS	S<1:0>	204

TABLE 21-5:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1
-------------	---

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.

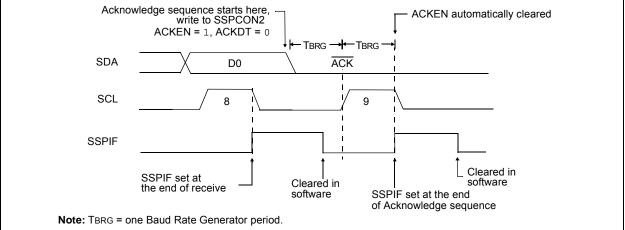
* Page provides register information.

24.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 24-29).

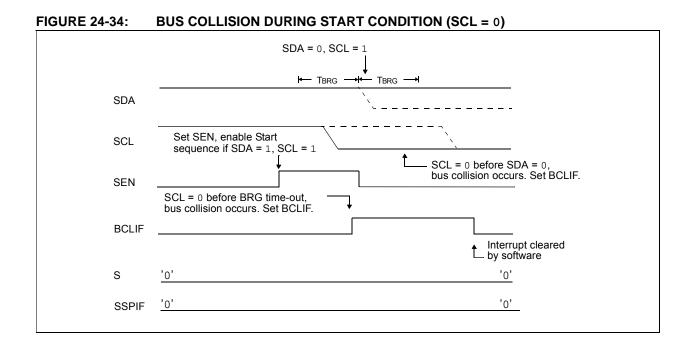
24.6.8.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).


24.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 24-30).

24.6.9.1 WCOL Status Flag


If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

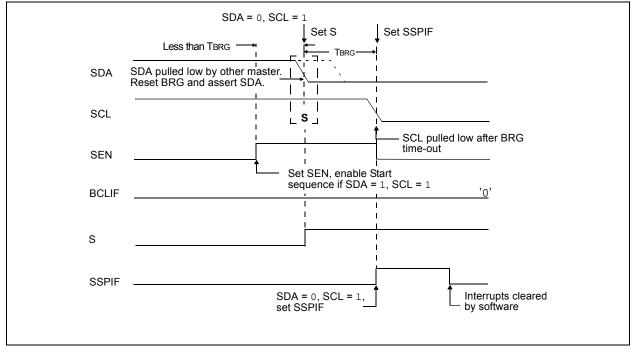


FIGURE 24-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

FIGURE 24-35: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 32.000 MHz		Fosc = 20.000 MHz		Fosc = 18.432 MHz			Fosc = 11.0592 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

TABLE 25-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

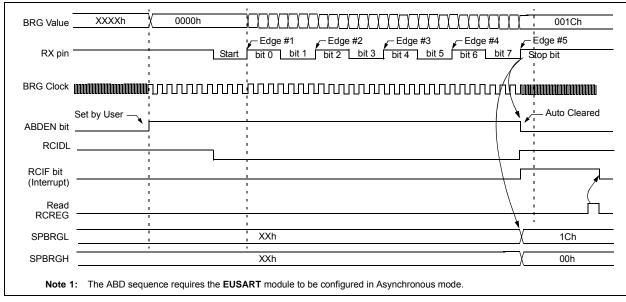
		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fosc = 8.000 MHz) MHz	Fosc = 4.000 MHz		Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	_	—	_

25.3.1 AUTO-BAUD DETECT

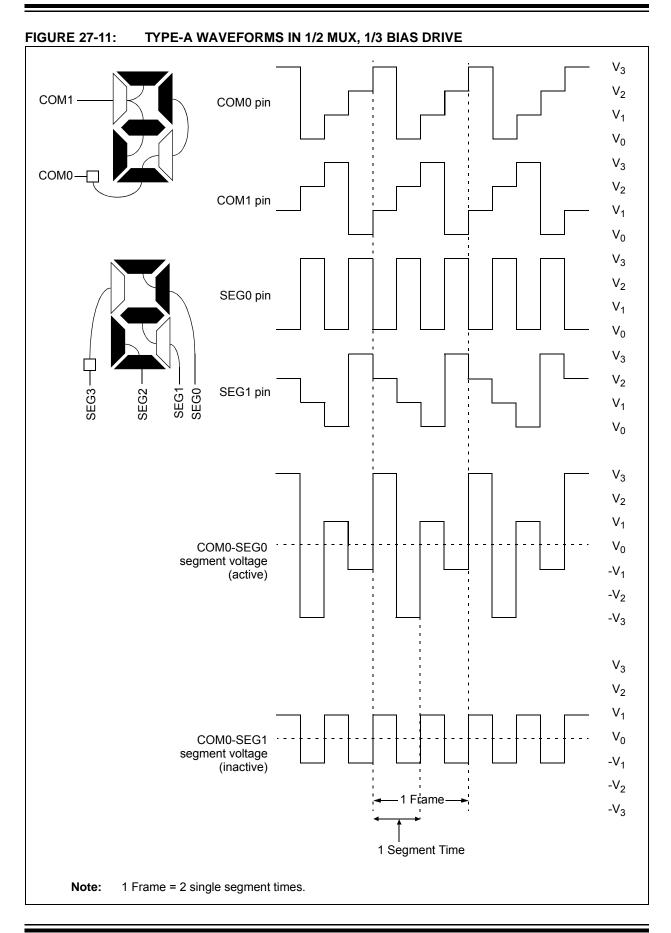
The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence (Figure 25-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 25-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.


The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 25-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

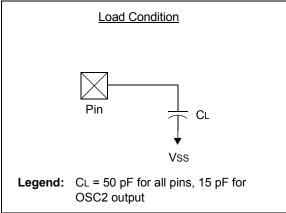
- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 25.3.3 "Auto-Wake-up on Break").
 - It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

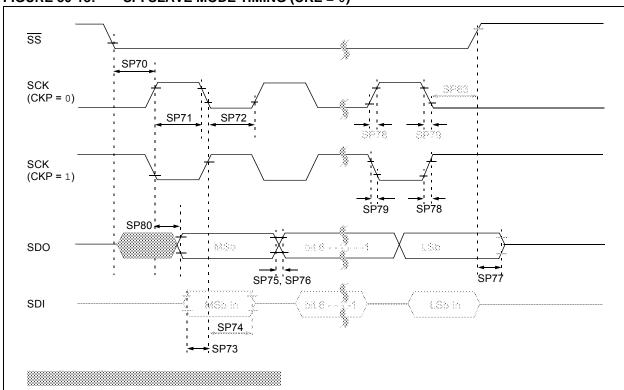

TABLE 25-6:	BRG COUNTER CLOCK RATES
-------------	-------------------------

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting.

FIGURE 25-6: AUTOMATIC BAUD RATE CALIBRATION


30.7 Timing Parameter Symbology


The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

<u>z. 1ppo</u>			
т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

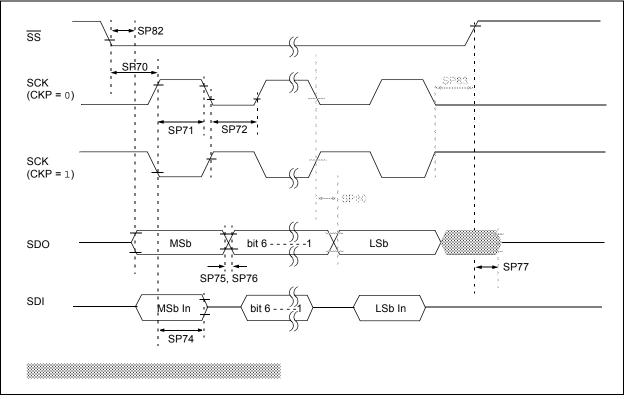
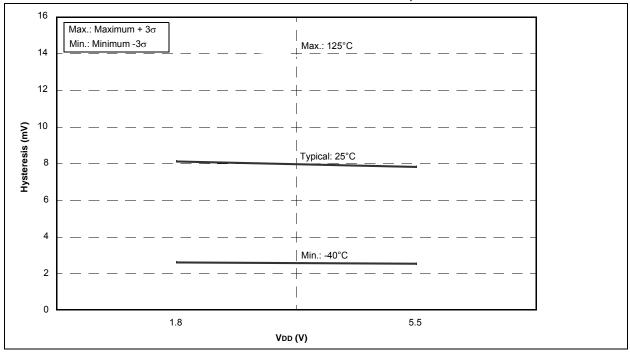
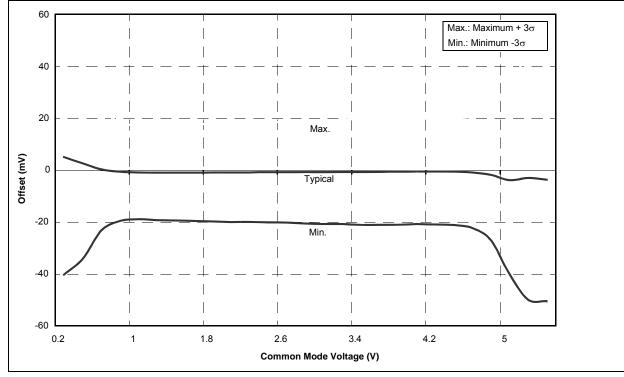
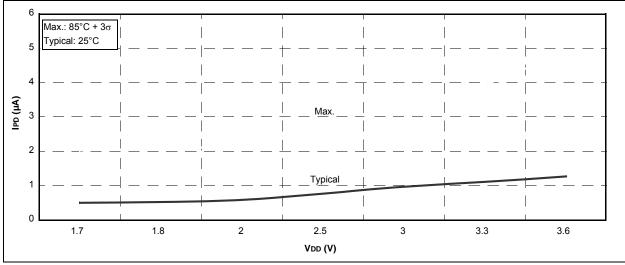
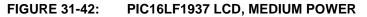
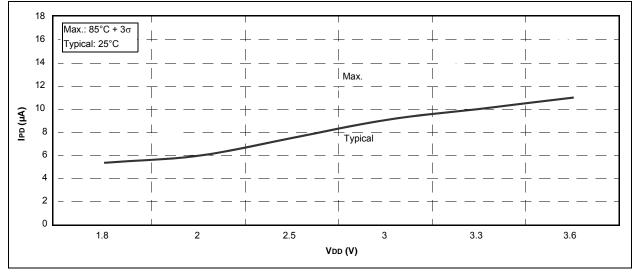

FIGURE 30-5: LOAD CONDITIONS

FIGURE 30-18: SPI SLAVE MODE TIMING (CKE = 0)


FIGURE 31-7: PIC16F1934/6/7 COMPARATOR HYSTERESIS, LOW-POWER MODE



APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (12/2008)

Original release

Revision B (04/2009)

Revised data sheet title; Revised Features section.

Revision C (10/2009)

Added PIC16L/LF1933/34. General updates.

Revision D (12/2009)

General updates.

Revision E (5/2011)

Separated 193X data sheet into three separate data sheets. Added Characterization Data.

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This discusses some of the issues in migrating from other $\text{PIC}^{\textcircled{0}}$ devices to the PIC16(L)F1934/6/7 family of devices.

B.1 PIC16F917 to PIC16F1937

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F917	PIC16F1937
Max. Operating Speed	20 MHz	32 MHz
Max. Program Memory (Words)	8K	8K
Max. SRAM (Bytes)	368	512
A/D Resolution	10-bit	10-bit
Timers (8/16-bit)	2/1	4/1
Oscillator Modes	4	8
Brown-out Reset	Y	Y
Internal Pull-ups	RB<7:0>	RB<7:0>
Interrupt-on-change	RB<7:4>	RB<7:0>
Comparator	2	2
AUSART/EUSART	1/0	0/1
Extended WDT	Y	Y
Software Control Option of WDT/BOR	N	Y
INTOSC Frequencies	30 kHz - 8 MHz	500 kHz - 32 MHz
Clock Switching	Y	Y
Capacitive Sensing	N	Y
CCP/ECCP	2/0	2/3
Enhanced PIC16 CPU	Ν	Y
MSSP/SSP	0/1	1/0
LCD	Y	Y