

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1936-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/AN0/C12IN0-/C2OUT ⁽¹⁾ /	RA0	TTL	CMOS	General purpose I/O.
SRNQ ⁽¹⁾ / SS⁽¹⁾/VCAP⁽²⁾/SEG12	AN0	AN	_	A/D Channel 0 input.
	C12IN0-	AN	_	Comparator C1 or C2 negative input.
	C2OUT		CMOS	Comparator C2 output.
	SRNQ	_	CMOS	SR Latch inverting output.
	SS	ST		Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1934/6/7 only).
	SEG12	_	AN	LCD Analog output.
RA1/AN1/C12IN1-/SEG7	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN	_	A/D Channel 1 input.
	C12IN1-	AN	_	Comparator C1 or C2 negative input.
	SEG7	_	AN	LCD Analog output.
RA2/AN2/C2IN+/VREF-/	RA2	TTL	CMOS	General purpose I/O.
DACOUT/COM2	AN2	AN	_	A/D Channel 2 input.
	C2IN+	AN	_	Comparator C2 positive input.
	VREF-	AN	_	A/D Negative Voltage Reference input.
	DACOUT	_	AN	Voltage Reference output.
	COM2		AN	LCD Analog output.
RA3/AN3/C1IN+/VREF+/	RA3	TTL	CMOS	General purpose I/O.
COM3 ⁽³⁾ /SEG15	AN3	AN	_	A/D Channel 3 input.
	C1IN+	AN	_	Comparator C1 positive input.
	VREF+	AN	—	A/D Voltage Reference input.
	COM3 ⁽³⁾	_	AN	LCD Analog output.
	SEG15		AN	LCD Analog output.
RA4/C1OUT/CPS6/T0CKI/SRQ/	RA4	TTL	CMOS	General purpose I/O.
CCP5/SEG4	C10UT		CMOS	Comparator C1 output.
	CPS6	AN	_	Capacitive sensing input 6.
	TOCKI	ST	—	Timer0 clock input.
	SRQ		CMOS	SR Latch non-inverting output.
	CCP5	ST	CMOS	Capture/Compare/PWM5.
	SEG4	_	AN	LCD Analog output.
RA5/AN4/C2OUT ⁽¹⁾ /CPS7/	RA5	TTL	CMOS	General purpose I/O.
SRNQ ⁽¹⁾ /SS ⁽¹⁾ /VCAP ⁽²⁾ /SEG5	AN4	AN	—	A/D Channel 4 input.
	C2OUT	_	CMOS	Comparator C2 output.
	CPS7	AN	_	Capacitive sensing input 7.
	SRNQ	_	CMOS	SR Latch inverting output.
	SS	ST	_	Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1934/6/7 only).
	SEG5	_	AN	LCD Analog output.

TABLE 1-2: PIC16(L)F1934/6/7 PINOUT DESCRIPTION

Legend:AN= Analog input or outputCMOS = CMOS compatible input or outputOD= Open DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levels l^2C^{TM} = Schmitt Trigger input with l²C

HV = High Voltage XTAL = Crystal

levels

Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1934/6/7 devices only.

3: PIC16(L)F1936 devices only.

4: PORTD is available on PIC16(L)F1934/7 devices only.

5: RE<2:0> are available on PIC16(L)F1934/7 devices only.

© 2008-2011 Microchip Technology Inc.

PIC16(L)F1934/6/7

RE 3-6: ACCESSING 1	THE STA	CK EXAMPLE	2
			_
	0x0F		
	0x0E		
	0x0D		
	0x0C		
	0x0B		
	0x0A		_
	0x09		This figure shows the stack configuration
	0x08		after the first CALL or a single interrupt. If a RETURN instruction is executed, the
	0x07		return address will be placed in the
	0x06		decremented to the empty state (0x1F).
	0x05		_
	0x04		_
	0x03		-
	0x02		_
	0x01		
	0,000	Return Address	STKPTR = 0x00
TOSH:TOSL RE 3-7:	THE STA	CK EXAMPLE	3
TOSH:TOSL RE 3-7:	THE STA	CK EXAMPLE	3
RE 3-7: ACCESSING 1	0x00	CK EXAMPLE	3]
RE 3-7: ACCESSING 1	0x00 THE STA 0x0F [0x0E]	CK EXAMPLE	3
RE 3-7: ACCESSING 1	0x0F 0x0F 0x0E 0x0D	CK EXAMPLE	3
RE 3-7: ACCESSING 1	0x0F 0x0F 0x0E 0x0D 0x0C		3 After seven CALLS or six CALLS and an
RE 3-7: ACCESSING 1	0x06 0x07 0x08 0x08 0x00 0x00 0x00 0x08	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions
RE 3-7: ACCESSING 1	0x0F 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 3-7: ACCESSING 1	0x06 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x09		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 3-7: ACCESSING 1	0x00 THE STA 0x0E 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 3-7: ACCESSING 1	0x0F 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x09 0x08 0x07		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	0x00 0x0F 0x0E 0x0E 0x0D 0x0C 0x0D 0x0C 0x0D 0x0D 0x0D 0x0D 0x0D 0x0D 0x0A	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	0x00 0x0F 0x0E 0x0D 0x0A 0x09 0x08 0x07 0x06 0x05	ACK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	0x0F 0x0F 0x0E 0x0D 0x0A 0x09 0x08 0x07 0x06 0x05 0x04	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	0x00 0x0F 0x0E 0x0E 0x0E 0x0D 0x0D 0x0D 0x0C 0x0D 0x0D 0x0D 0x0D 0x0A	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	0x00 0x0F 0x0E 0x0D 0x0A 0x0B 0x0A 0x0B 0x0A 0x0A 0x0A 0x0A 0x0A 0x04 0x03 0x02 0x01	Return Address Return Address Return Address Return Address Return Address Return Address Return Address Return Address	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	0x00 0x0F 0x0E 0x0E 0x0E 0x0D 0x0C 0x0D 0x0C 0x0D 0x0C 0x0D 0x0A 0x0A <t< td=""><td>CK EXAMPLE</td><td>3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.</td></t<>	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.

4.5 Device ID and Revision ID

The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See **Section 11.5 "User ID, Device ID and Configuration Word Access"** for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

REGISTER 4-3: DEVICEID: DEVICE ID REGISTER⁽¹⁾

R	R	R	R	R	R	R	
DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	
bit 13						bit 7	
R	R	R	R	R	R	R	
DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	
bit 6						bit 0	
Legend:				U = Unimplemente	ed bit, read as '0'		
R = Readable bit	dable bit W = Writable bit			'0' = Bit is cleared			
-n = Value at POF	OR '1' = Bit is set			x = Bit is unknown			
bit 13-5	DEV<8:0>: Devic	e ID bits					
	100011010 = PI	C16F1934					
	100011011 = PIC16F1936						
	100011100 = PIC16F1937						
100100010 = PIC16LF1934							
100100011 = PIC16LF1936							
	100100100 = PIC16LF1937						
bit 4-0	REV<4:0>: Revis	ion ID bits					
	These bits are us	ed to identify the rev	vision.				

Note 1: This location cannot be written.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers)

The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See Section 7.5 "Automatic Context Saving")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is 3 or 4 instruction cycles. For asynchronous interrupts, the latency is 3 to 5 instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 9.0 "Power-Down Mode (Sleep)"** for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the Shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding Shadow register should be modified and the value will be restored when exiting the ISR. The Shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

12.0 I/O PORTS

Depending on the device selected and peripherals enabled, there are up to five ports available. In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output. However, the pin can still be read.

Each port has three standard registers for its operation. These registers are:

- TRISx registers (data direction)
- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)

Some ports may have one or more of the following additional registers. These registers are:

- ANSELx (analog select)
- WPUx (weak pull-up)
- INLVLx (input level control)

TABLE 12-1:PORT AVAILABILITY PER
DEVICE

Device	PORTA	PORTB	PORTC	PORTD	PORTE
PIC16(L)F1934	٠	•	•	•	•
PIC16(L)F1936	٠	•	٠		•
PIC16(L)F1937	٠	•	٠	٠	•

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled. Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 12-1.

FIGURE 12-1: GENERIC I/O PORT OPERATION

EXAMPLE 12-1: INITIALIZING PORTA

; This code example illustrates	
---------------------------------	--

- ; initializing the PORTA register. The
- ; other ports are initialized in the same

manner.	

BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF	ANSELA	;digital I/O
BANKSEL	TRISA	;
MOVLW	B'00111000'	;Set RA<5:3> as inputs
MOVWF	TRISA	;and set RA<2:0> as
		;outputs

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	—	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	131
CCPxCON	PxM	<1:0>	DCxB	<1:0>		CCPxN	/<3:0>		234
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	142
LCDCON	LCDEN	SLPEN	WERR	—	CS<	1:0>	LMUX	<1:0>	329
LCDSE0	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	333
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	333
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	142
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	301
SSPCON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		287
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	286
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T10SCEN	T1SYNC	_	TMR10N	203
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	300
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142

|--|

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

REGISTER 12-20: LATE: PORTE DATA LATCH REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—	_	—	LATE2	LATE1	LATE0
bit 7		•					bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is cleared					

bit 7-3	Unimplemented: Read as '0

bit 2-0 LATE<2:0>: PORTE Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is return of actual I/O pin values.

REGISTER 12-21: ANSELE: PORTE ANALOG SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
—	_	_	—	_	ANSE2 ⁽²⁾	ANSE1 ⁽²⁾	ANSE0 ⁽²⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 ANSE<2:0>: Analog Select between Analog or Digital Function on Pins RE<2:0>, respectively

- 0 = Digital I/O. Pin is assigned to port or digital special function.
- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: ANSELE register is not implemented on the PIC16(L)F1936. Read as '0'

14.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- · ADC input channel
- · ADC positive reference
- Comparator positive input
- Digital-to-Analog Converter (DAC)
- · Capacitive Sensing (CPS) module
- LCD bias generator

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

14.1 Independent Gain Amplifiers

The output of the FVR supplied to the ADC, Comparators, DAC and CPS is routed through two independent programmable gain amplifiers. Each

amplifier can be configured to amplify the reference voltage by 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 15.0** "**Analog-to-Digital Converter** (**ADC**) **Module**" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC, CPS and comparator module. Reference Section 17.0 "Digital-to-Analog Converter (DAC) Module", Section 18.0 "Comparator Module" and Section 26.0 "Capacitive Sensing (CPS) Module" for additional information.

14.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See in the applicable Electrical Specifications Chapter for the minimum delay requirement.

FIGURE 14-1: VOLTAGE REFERENCE BLOCK DIAGRAM

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1	
	—		STRxSYNC	STRxD	STRxC	STRxB	STRxA	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared					
bit 7-5	Unimplemen	ted: Read as '	0'					
bit 4	STRxSYNC:	Steering Sync	bit					
	1 = Output ste	eering update occurs on next PWM period						
		eering update	occurs at the be	eginning of the	e instruction cyc	cle boundary		
bit 3	STRxD: Stee	ring Enable bit	D					
	1 = PxD pin h	as the PWM waveform with polarity control from CCPxM<1:0>						
L:1 0		s assigned to p						
bit 2	SIRXC: Steel	ring Enable bit				1.05		
	$\perp = PxC pin n$	as the PWW w	avelorm with p	bolanty control		1:0>		
h:+ 1		s assigned to p	on pin					
DILI	1 - DyP nin h	ning Enable bit	D (a) of arm with a			1.0>		
	$\perp = PXB pin n$	as the FWW w	ort nin			1.0-		
hit 0	STRYA: Stool	ring Enable bit						
	$1 = D_{X} A$ nin h		A vavoform with n			1.0>		
	$1 = P_XA p_{III II}$	as the FWW w	ort nin			1.0-		
		s accignica to p	or pin					
				UL 000 00	NT CONTRACTOR AND A			

REGISTER 23-6: PSTRxCON: PWM STEERING CONTROL REGISTER⁽¹⁾

Note 1: The PWM Steering mode is available only when the CCPxCON register bits CCPxM<3:2> = 11 and PxM<1:0> = 00.

PIC16(L)F1934/6/7

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	302
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	99
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	102
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	301
SPBRGL	BRG<7:0>							303*	
SPBRGH	BRG<15:8>						303*		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
TXREG	EUSART Transmit Data Register						293*		
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	300

TABLE 25-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Asynchronous Transmission.

* Page provides register information.

25.3.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence (Figure 25-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 25-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 25-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 25.3.3 "Auto-Wake-up on Break").
 - It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

FABLE 25-6: BRG COUNTER	CLOCK RATES
-------------------------	-------------

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting.

FIGURE 25-6: AUTOMATIC BAUD RATE CALIBRATION

27.11 Operation During Sleep

The LCD module can operate during Sleep. The selection is controlled by bit SLPEN of the LCDCON register. Setting the SLPEN bit allows the LCD module to go to Sleep. Clearing the SLPEN bit allows the module to continue to operate during Sleep.

If a SLEEP instruction is executed and SLPEN = 1, the LCD module will cease all functions and go into a very low-current Consumption mode. The module will stop operation immediately and drive the minimum LCD voltage on both segment and common lines. Figure 27-20 shows this operation.

The LCD module can be configured to operate during Sleep. The selection is controlled by bit SLPEN of the LCDCON register. Clearing SLPEN and correctly configuring the LCD module clock will allow the LCD module to operate during Sleep. Setting SLPEN and correctly executing the LCD module shutdown will disable the LCD module during Sleep and save power.

If a SLEEP instruction is executed and SLPEN = 1, the LCD module will immediately cease all functions, drive the outputs to Vss and go into a very Low-Current mode. The SLEEP instruction should only be executed after the LCD module has been disabled and the current cycle completed, thus ensuring that there are no DC voltages on the glass. To disable the LCD module, clear the LCDEN bit. The LCD module will complete the disabling process after the current frame, clear the LCDA bit and optionally cause an interrupt.

The steps required to properly enter Sleep with the LCD disabled are:

- Clear LCDEN
- Wait for LCDA = 0 either by polling or by interrupt
- Execute SLEEP

If SLPEN = 0 and SLEEP is executed while the LCD module clock source is FOSC/4, then the LCD module will halt with the pin driving the last LCD voltage pattern. Prolonged exposure to a fixed LCD voltage pattern will cause damage to the LCD glass. To prevent LCD glass damage, either perform the proper LCD module shutdown prior to Sleep, or change the LCD module clock to allow the LCD module to continue operation during Sleep.

If a SLEEP instruction is executed and SLPEN = 0 and the LCD module clock is either T1OSC or LFINTOSC, the module will continue to display the current contents of the LCDDATA registers. While in Sleep, the LCD data cannot be changed. If the LCDIE bit is set, the device will wake from Sleep on the next LCD frame boundary. The LCD module current consumption will not decrease in this mode; however, the overall device power consumption will be lower due to the shutdown of the CPU and other peripherals. Table 27-8 shows the status of the LCD module during a Sleep while using each of the three available clock sources.

Note:	When the LCDEN bit is cleared, the LCD
	module will be disabled at the completion
	of frame. At this time, the port pins will
	revert to digital functionality. To minimize
	power consumption due to floating digital
	inputs, the LCD pins should be driven low
	using the PORT and TRIS registers.

If a SLEEP instruction is executed and SLPEN = 0, the module will continue to display the current contents of the LCDDATA registers. To allow the module to continue operation while in Sleep, the clock source must be either the LFINTOSC or T1OSC external oscillator. While in Sleep, the LCD data cannot be changed. The LCD module current consumption will not decrease in this mode; however, the overall consumption of the device will be lower due to shut down of the core and other peripheral functions.

Table 27-8 shows the status of the LCD module during Sleep while using each of the three available clock sources:

TABLE 27-8:	LCD MODULE STATUS
	DURING SLEEP

Clock Source	SLPEN	Operational During Sleep
T1080	0	Yes
11030	1	No
	0	Yes
LEINTOSC	1	No
Eosc/4	0	No
FU30/4	1	No

Note:	The LFINTOSC or external T10	SC
	oscillator must be used to operate	the
	LCD module during Sleep.	

If LCD interrupts are being generated (Type-B waveform with a multiplex mode not static) and LCDIE = 1, the device will awaken from Sleep on the next frame boundary.

30.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias40°C to +125°C						
Storage temperature						
Voltage on VDD with respect to Vss						
Voltage on VCAP pin with respect to Vss	0.3V to +4.0V					
Voltage on VDD with respect to Vss	-0.3V to +4.0V					
Voltage on MCLR with respect to Vss	0.3V to +9.0V					
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)					
Total power dissipation ⁽¹⁾	800 mW					
Maximum current out of Vss ⁽²⁾ pin, -40°C \leq TA \leq +85°C for industrial						
Maximum current out of Vss ⁽²⁾ pin, -40°C \leq TA \leq +125°C for extended	105 mA					
Maximum current into VDD ⁽²⁾ pin, -40°C \leq TA \leq +85°C for industrial	170 mA					
Maximum current into VDD ⁽²⁾ pin, -40°C \leq TA \leq +125°C for extended	70 mA					
Clamp current, IK (VPIN < 0 or VPIN > VDD)	± 20 mA					
Maximum output current sunk by any I/O pin25 mA						
Maximum output current sourced by any I/O pin	25 mA					
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VDD $-\sum$ IOH} + \sum {(VD $-\sum$ IOH} + \sum {(VD $-\sum$ IOH} + \sum {(VD $-\sum$ IOH} + \sum	– Vон) x Iон} + ∑(Vol x Iol)					
2: For 28-pin devices.						
+ NOTICE: Stresses shows these listed under "Absolute Maximum Defines" may source he	rmonont domago to the					

[†] NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

30.6 Thermal Considerations

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Тур.	Units	Conditions		
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package		
			80	°C/W	28-pin SOIC package		
			90	°C/W	28-pin SSOP package		
			27.5	°C/W	28-pin UQFN 4x4mm package		
			27.5	°C/W	28-pin QFN 6x6mm package		
			47.2	°C/W	40-pin PDIP package		
			46	°C/W	44-pin TQFP package		
			24.4	°C/W	44-pin QFN 8x8mm package		
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPDIP package		
			24	°C/W	28-pin SOIC package		
			24	°C/W	28-pin SSOP package		
			24	°C/W	28-pin UQFN 4x4mm package		
			24	°C/W	28-pin QFN 6x6mm package		
			24.7	°C/W	40-pin PDIP package		
			14.5	°C/W	44-pin TQFP package		
			20	°C/W	44-pin QFN 8x8mm package		
TH03	TJMAX	Maximum Junction Temperature	150	°C			
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O		
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾		
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$		
TH07	Pder	Derated Power	—	W	Pder = PDmax (Τj - Τa)/θja ⁽²⁾		

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature

3: T_J = Junction Temperature

TABLE 30-6: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High Pulse Width No Prescal With Presc		No Prescaler	0.5 TCY + 20	—	—	ns	
				With Prescaler	10	_	_	ns	
41*	TT0L	T0CKI Low Pulse Width No Prescaler With Prescaler		No Prescaler	0.5 Tcy + 20	_	_	ns	
				10	_	_	ns		
42*	Тт0Р	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	_		ns	N = prescale value (2, 4,, 256)
45*	TT1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns	
			Synchronous, with Prescaler		15	_		ns	
			Asynchronous		30	—	_	ns	
46*	T⊤1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20	_		ns	
			Synchronous, with Prescaler		15	—		ns	
			Asynchronous		30	—		ns	
47*	T⊤1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	_	—	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	_		ns	
48	F⊤1	Timer1 Oscil (oscillator en	Timer1 Oscillator Input Frequency Range (oscillator enabled by setting bit T1OSCEN)			32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from External Clock Edge to Timer Increment			2 Tosc	—	7 Tosc	—	Timers in Sync mode

These parameters are characterized but not tested.
 Data in "Typ" column is at 3.0V, 25°C unless otherwise

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 30-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteris	Min.	Тур†	Max.	Units	Conditions	
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20			ns	
			With Prescaler	20	_	-	ns	
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20	_	-	ns	
			With Prescaler	20	_	-	ns	
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N	_	—	ns	N = prescale value (1, 4 or 16)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16(L)F1934/6/7

PIC16(L)F1934/6/7

SPI Slave Mode (CKE = 1)	408
Synchronous Reception (Master Mode, SREN)	317
Synchronous Transmission	315
Synchronous Transmission (Through TXEN)	315
Timer0 and Timer1 External Clock	401
Timer1 Incrementing Edge	201
Two Speed Start-up	80
Type-A in 1/2 MUX, 1/2 Bias Drive	347
Type-A in 1/2 MUX, 1/3 Bias Drive	349
Type-A in 1/3 MUX, 1/2 Bias Drive	351
Type-A in 1/3 MUX, 1/3 Bias Drive	353
Type-A in 1/4 MUX 1/3 Bias Drive	355
Type-A/Type-B in Static Drive	346
Type-B in 1/2 MUX 1/2 Bias Drive	
Type-B in 1/2 MUX 1/3 Bias Drive	350
Type-B in 1/3 MUX 1/2 Bias Drive	352
Type-B in 1/3 MUX 1/3 Bias Drive	354
Type-B in 1/4 MUX, 1/3 Bias Drive	356
LISART Synchronous Receive (Master/Slave)	406
LISART Synchronous Transmission (Master/Slav	a) 405
Wake up from Interrupt	112
Timing Diagrams and Specifications	112
	207
Timing Decemptor Symbology	397
Timing Parameter Symbology	395
11111111111111111111111111111111111111	111
	411
I2C Bus Start/Stop Bits	
SPI Mode	409
IMR1H Register	39
IMR1L Register	
IMR2 Register	. 39, 47
TRIS	380
TRISA Register	10, 135
TRISB	138
TRISB Register	10, 140
TRISC	143
TRISC Register	10, 144
TRISD	146
TRISD Register	10, 147
TRISE	149
TRISE Register	40, 150
Two-Speed Clock Start-up Mode	79
TXCON (Timer2/4/6) Register	211
TXREG	295
TXREG Register	42
TXSTA Register	12, 302
BRGH Bit	305
U	

W

Wake-up on Break 31 Wake-up Using Interrupts 11	1 2
Watchdog Timer (WDT)	90
Associated Registers 11	6
Configuration Word w/ Watchdog Timer 11	6
Modes 11	4
Specifications 40)1
WCOL	30
WCOL Status Flag 273, 276, 278, 28	30
WDTCON Register 11	5
WPUB Register 14	1
Write Protection	35
WWW Address 47	1′
WWW, On-Line Support 1	4

۷

USART

VREF. SEE ADC Reference Voltage

Synchronous Master Mode

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support