

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1936t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16(L)F1934/6/7 are described within this data sheet. They are available in 28/40/44-pin packages. Figure 1-1 shows a block diagram of the PIC16(L)F1934/6/7 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral		PIC16F193X	PIC16LF193X
ADC		•	•
Capacitive Sensing Mod	dule	•	•
Digital-to-Analog Conve	erter (DAC)	•	•
EUSART		•	•
Fixed Voltage Reference	e (FVR)	•	•
LCD		•	•
SR Latch		•	•
Temperature Indicator		•	•
Capture/Compare/PWM			
	ECCP1	•	•
	ECCP2	•	•
	ECCP3	•	•
	CCP4	•	•
	CCP5	•	•
Comparators			
	C1	•	•
	C2	•	•
Operational Amplifiers			
	OPA1	•	•
	OPA2	•	•
Master Synchronous Se	erial Ports		
	MSSP1	•	•
Timers			
	Timer0	•	•
	Timer1	•	•
	Timer2	•	•
	Timer4	•	•
	Timer6	•	•

								/			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 1											
080h ⁽²⁾	INDF0	Addressing (not a physi	this location u cal register)	ses contents o	of FSR0H/FSF	ROL to address	data memory	/		XXXX XXXX	XXXX XXXX
081h ⁽²⁾	INDF1	Addressing (not a physi	this location u cal register)	ses contents o	of FSR1H/FSF	R1L to address	data memory	/		XXXX XXXX	XXXX XXXX
082h ⁽²⁾	PCL	Program Co	ounter (PC) Le	ast Significant	t Byte					0000 0000	0000 0000
083h ⁽²⁾	STATUS	_	<u> </u>							1 1000	q quuu
084h ⁽²⁾	FSR0L	Indirect Data	a Memory Ado	dress 0 Low Po	ointer					0000 0000	uuuu uuuu
085h ⁽²⁾	FSR0H	Indirect Data	a Memory Ado	dress 0 High P	ointer					0000 0000	0000 0000
086h ⁽²⁾	FSR1L	Indirect Data	a Memory Ado	dress 1 Low Po	ointer					0000 0000	uuuu uuuu
087h ⁽²⁾	FSR1H	Indirect Data	ndirect Data Memory Address 1 High Pointer								0000 0000
088h ⁽²⁾	BSR	_	— — — BSR<4:0>						0 0000	0 0000	
089h ⁽²⁾	WREG	Working Re	Norking Register							0000 0000	uuuu uuuu
08Ah ^(1, 2)	PCLATH	_	Write Buffer for the upper 7 bits of the Program Counter							-000 0000	-000 0000
08Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
08Ch	TRISA	PORTA Dat	PORTA Data Direction Register								1111 1111
08Dh	TRISB	PORTB Dat	PORTB Data Direction Register							1111 1111	1111 1111
08Eh	TRISC	PORTC Dat	ta Direction Re	egister						1111 1111	1111 1111
08Fh ⁽³⁾	TRISD	PORTD Dat	ta Direction Re	egister						1111 1111	1111 1111
090h	TRISE	—	_	_	_	(4)	TRISE2 ⁽³⁾	TRISE1(3)	TRISE0 ⁽³⁾	1111	1111
091h	PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
092h	PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	0000 00-0	0000 00-0
093h	PIE3	_	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	_	-000 0-0-	-000 0-0-
094h	_	Unimpleme	nted							_	_
095h	OPTION_R EG	WPUEN	INTEDG	TMROCS	TMROSE	PSA		PS<2:0>		1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	_	_	RMCLR	RI	POR	BOR	00 11qq	qq qquu
097h	WDTCON	_	_		V	VDTPS<4:0>			SWDTEN	01 0110	01 0110
098h	OSCTUNE	_	_			TUN<5	:0>			00 0000	00 0000
099h	OSCCON	SPLLEN		IRCF	<3:0>		_	SCS	<1:0>	0011 1-00	0011 1-00
09Ah	OSCSTAT	T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	-0p0 0p00	dddd ddo-
09Bh	ADRESL	A/D Result	Register Low							xxxx xxxx	uuuu uuuu
09Ch	ADRESH	A/D Result	Register High							xxxx xxxx	uuuu uuuu
09Dh	ADCON0				CHS<4:0>			GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM		ADCS<2:0>			ADNREF	ADPREF1	ADPREF0	0000 -000	0000 -000
09Fh	_	Unimpleme	nted							_	_

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'.

4: Unimplemented, read as '1'.

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	U-0	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	—	_	_	—	—	—	BORRDY
bit 7		•					bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit If BOREN <1:0> in Configuration Word 1 ≠ 01: SBOREN is read/write, but has no effect on the BOR. If BOREN <1:0> in Configuration Word 1 = 01: 1 = BOR Enabled 0 = BOR Disabled
bit 6-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit 1 = The Brown-out Reset circuit is active 0 = The Brown-out Reset circuit is inactive

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	139	
CCP1CON	P1M·	<1:0>	DC1B	<1:0>		CCP1M<3:0>				
CCP2CON	P2M·	P2M<1:0> DC2B<1:0>				CCP2M<3:0>				
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	99	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	102	
TMR1H	Holding Regi	ster for the M	ost Significan	t Byte of the	16-bit TMR1 F	Register			199*	
TMR1L	Holding Regi	ster for the Le	ast Significar	nt Byte of the	16-bit TMR1	Register			199*	
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	138	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142	
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	203	
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GGO/ T1GVAL T1GSS<1:0>				

TABLE 21-5:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1
-------------	---

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.

* Page provides register information.

24.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 24-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPCON1 register and the CKE bit of the SSPSTAT register. This then, would give waveforms for SPI communication as shown in Figure 24-6, Figure 24-8 and Figure 24-9, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSPADD + 1))

Figure 24-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 24-6: SPI MODE WAVEFORM (MASTER MODE)

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCL line, is called clock stretching. Clock stretching gives slave devices a mechanism to control the flow of data. When this detection is used on the SDA line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

24.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

24.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message. Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

24.4 I²C[™] Mode Operation

All MSSP I²C communication is byte oriented and shifted out MSb first. Six SFR registers and 2 interrupt flags interface the module with the PIC[®] microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I²C devices.

24.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a Master to a Slave or vice-versa, followed by an Acknowledge bit sent back. After the 8th falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an Acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

24.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

24.4.3 SDA AND SCL PINS

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

Note: Data is tied to output zero when an I²C mode is enabled.

24.4.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

25.2 **Clock Accuracy with Asynchronous Operation**

Г

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See Section 5.2.2 "Internal Clock Sources" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see Section 25.3.1 "Auto-Baud Detect"). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

REGISTER 25-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0	
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D	
bit 7					•		bit 0	
Legend:								
R = Readable	bit	W = Writable bi	t	U = Unimplem	ented bit, read as	'0'		
u = Bit is unch	nanged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/Va	alue at all other	Resets	
'1' = Bit is set		'0' = Bit is clear	ed					
bit 7	CSRC: Clock S	Source Select bit						
	Asynchronous	mode:						
	Don't care							
	Synchronous n	node:						
	1 = Master m	ode (clock gener	ated internally	from BRG)				
		de (clock from e	(ternal source)					
Dit 6	1X9: 9-bit Iran	ISMIT ENABLE DIT						
	$\perp = $ Selects 9 $\cap = $ Selects 8							
bit 5								
bit 5	1 = Transmit							
	0 = Transmit o	disabled						
bit 4	SYNC: EUSAR	RT Mode Select b	it					
	1 = Synchrone	ous mode						
	0 = Asynchron	nous mode						
bit 3	SENDB: Send	Break Character	bit					
	Asynchronous	mode:						
	1 = Send Syn	c Break on next t	ransmission (c	leared by hardwa	are upon completion	on)		
	0 = Sync Brea	ak transmission c	ompleted					
	Don't care	noue.						
hit 2	BRGH- High B	aud Pate Select I	nit					
Dit 2	Asynchronous	mode.	JI					
	1 = High spee	h <u>iode</u> . A						
	0 = Low spee	d						
	<u>Synchronous n</u>	node:						
	Unused in this	mode						
bit 1	TRMT: Transm	it Shift Register S	Status bit					
	1 = TSR empt	ty						
	0 = TSR full							
bit 0	TX9D: Ninth bi	t of Transmit Data	a					
	Can be addres	s/data bit or a pa	rity bit.					
Note 1: S	REN/CREN overrid	les TXEN in Synd	c mode.					

FIGURE 25-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

FIGURE 25-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

97 The \$339,437 remains is into white its \$435 hit is set.

29.0 INSTRUCTION SET SUMMARY

Each PIC16 instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- · Bit Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table 29-3 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

29.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 29-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 29-2: ABBREVIATION DESCRIPTIONS

Field	Description			
PC	Program Counter			
TO	Time-out bit			
С	Carry bit			
DC	Digit carry bit			
Z	Zero bit			
PD	Power-down bit			

FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file regis	ster op 7 6	eratic	ons	0			
OPCODE	d	t	f (FILE #)				
d = 0 for destination W d = 1 for destination f f = 7-bit file register address							
Bit-oriented file registe	Bit-oriented file register operations						
OPCODE	b (BIT :	#)	f (FILE #)				
b = 3-bit bit addres f = 7-bit file registe	ss er addre	ess					
Literal and control ope	eration	S					
General	0 -			•			
	8 /		k (litoral)	0			
OFCODE			K (IIIEIAI)				
k = 8-bit immediate	e value						
CALL and GOTO instruct	ions on	ly					
13 11 10				0			
OPCODE		k (liter	al)				
k = 11-bit immedia	te value	e					
MOVLP instruction only							
13	7	6		0			
OPCODE			k (literal)				
k = 7-bit immediate	e value						
MOVLB instruction only							
13		5 4	4	0			
OPCODE			k (literal)				
k = 5-bit immediate	e value	÷					
BRA instruction only							
13 9	8			0			
OPCODE			k (literal)				
k = 9-bit immediat	e value	•					
FSR Offset instructions		_					
	76	5	k (literal)	0			
OPCODE	n		k (literal)				
n = appropriate FS k = 6-bit immediat	sr e value	•					
FSR Increment instruction	ons						
		3	2 1				
n = appropriate E	SR			oue)			
m = 2-bit mode va	lue						
OPCODE only							
13	0005			0			
0	PCOD	<u> </u>					

RETFIE	Return from Interrupt			
Syntax:	[label] RETFIE			
Operands:	None			
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$			
Status Affected:	None			
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.			
Words:	1			
Cycles:	2			
Example:	RETFIE			
	After Interrupt PC = TOS GIE = 1			

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.

RETLW	Return with literal in W	RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RLF f,d
Operands:	$0 \leq k \leq 255$	Operands:	$0 \le f \le 127$
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operation:	$u \in [0,1]$ See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.
Words:	1		C Register f
Cycles:	2	Words:	1
Example:	CALL TABLE;W contains table ;offset value	Cycles:	1
TABLE	 ;W now has table value 	Example:	RLF REG1,0
	• ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • •		$\begin{array}{rcl} REG1 &=& 1110 & 0110 \\ C &=& 0 \\ \mbox{After Instruction} \\ REG1 &=& 1110 & 0110 \\ W &=& 1100 & 1100 \\ C &=& 1 \end{array}$
	Before Instruction W = 0x07 After Instruction W = value of k8		

30.1 DC Characteristics: PIC16(L)F1934/6/7-I/E (Industrial, Extended)

PIC16LF1934/36/37		$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$					
PIC16F1	934/36/37		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended			(unless otherwise stated) $C \le TA \le +85^{\circ}C$ for industrial $C \le TA \le +125^{\circ}C$ for extended	
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
D001	Vdd	Supply Voltage					
		PIC16LF1934/36/37	1.8 2.3	_	3.6 3.6	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)
D001		PIC16F1934/36/37	1.8 2.3	_	5.5 5.5	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾					
		PIC16LF1934/36/37	1.5		—	V	Device in Sleep mode
D002*		PIC16F1934/36/37	1.7		_	V	Device in Sleep mode
	VPOR*	Power-on Reset Release Voltage	_	1.6	_	V	
	VPORR*	Power-on Reset Rearm Voltage					
		PIC16LF1934/36/37	_	0.8	_	V	Device in Sleep mode
		PIC16F1934/36/37		1.7	_	V	Device in Sleep mode
D003	VADFVR	Fixed Voltage Reference Voltage for ADC	-8		6	%	$\begin{array}{l} 1.024V, \ V\text{DD} \geq 2.5V\\ 2.048V, \ V\text{DD} \geq 2.5V\\ 4.096V, \ V\text{DD} \geq 4.75V \end{array}$
D003A	VCDAFVR	Fixed Voltage Reference Voltage for Comparator and DAC	-11		7	%	$\begin{array}{l} 1.024V, \ V\text{DD} \geq 2.5V\\ 2.048V, \ V\text{DD} \geq 2.5V\\ 4.096V, \ V\text{DD} \geq 4.75V \end{array}$
D003B	VLCDFVR	Fixed Voltage Reference Voltage for LCD Bias	-11	_	10	%	3.072V, VDD ≥ 3.6V
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	_	_	V/ms	See Section 6.1 "Power-on Reset (POR)" for details.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: PLL required for 32 MHz operation.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S		
Dimensior	MIN	NOM	MAX		
Number of Pins	N		28		
Pitch	e		0.40 BSC		
Overall Height	A	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.127 REF		
Overall Width	E		4.00 BSC		
Exposed Pad Width	E2	2.55	2.65	2.75	
Overall Length	D		4.00 BSC		
Exposed Pad Length	D2	2.55	2.65	2.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	/ILLIMETER	S	
Dimens	MIN	NOM	MAX	
Number of Pins	N	40		
Pitch	е	0.40 BSC		
Overall Height	A	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.127 REF		
Overall Width	E		5.00 BSC	
Exposed Pad Width	E2	3.60	3.70	3.80
Overall Length	D		5.00 BSC	
Exposed Pad Length	D2	3.60	3.70	3.80
Contact Width	b	0.15	0.20	0.25
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2

PWM Setup	
CCP1CON Register	
CCPR1H Register	
CCPR1L Register	44. 45
CCPTMRS0 Register	
CCPTMRS1 Register	
CCPxAS Register	
CCPxCON (ECCPx) Register	
Clock Accuracy with Asynchronous Operation	302
Clock Sources	
External Modes	71
FC	71
HS.	
IP	71
OST	72
RC	73
ХТ	71
Internal Modes	
HEINTOSC	
Internal Oscillator Clock Switch Timing	76
I FINTOSC	75
MEINTOSC	
Clock Switching	78
CMOLIT Register	186
CMxCON0 Register	185
CMxCON1 Register	186
Code Examples	
A/D Conversion	164
Changing Between Capture Prescalers	214
Initializing PORTA	131
	150
Write Verify	127
Writing to Flash Program Memory	125
Comparator	
Associated Registers	187 188
Operation	179
Comparator Module	179
Cx Output State Versus Input Conditions	181
Comparator Specifications	405
Comparators	
C2OUT as T1 Gate	199
Compare Module See Enhanced Capture/Compare	e/
PWM (ECCP)	
CONFIG1 Register	
CONFIG2 Register	64
Core Registers	
CPSCON0 Register	
CPSCON1 Register	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	
••	-

D

DACCON0 (Digital-to-Analog Converter Control 0) Register	178
DACCON1 (Digital-to-Analog Converter Control 1)	
Register	178
Memory	117
Associated Registers	130
Code Protection	118
Reading	118
Writing	118
Data Memory	. 28, 31
DC and AC Characteristics	413
DC Characteristics	
Extended and Industrial (PIC16F/LF1934/36/37)	391

Industrial and Extended (PIC16F/LF1934/36/37)	384
Development Support	441
Device Configuration	61
Code Protection	65
Configuration Word	61
User ID	. 65, 66
Device Overview	15, 113
Digital-to-Analog Converter (DAC)	175
Associated Registers	178
Effects of a Reset	176
Specifications	405

Е

ECCP/CCP. See Enhanced Capture/Compare/PWM	
EEADR Registers	. 117
EEADRH Registers	. 117
EEADRL Register	. 128
EEADRL Registers	. 117
EECON1 Register	129
EECON2 Register	130
EEDATH Register	. 128
EEDATL Register	128
EEPROM Data Memory	
Avoiding Spurious Write	118
Write Verify	127
Effects of Reset	
PWM mode	221
Electrical Specifications (PIC16E/LE103//36/37)	381
Enhanced Canture/Compare/DW/M (ECCP)	213
Enhanced Capture/Compare/T WM (LCCT)	210
	222
	231
Auto-shuldown	230
Direction Change in Full-Bridge Output Mode	228
Full-Bridge Application	. 226
Full-Bridge Mode	226
Half-Bridge Application	225
Half-Bridge Application Examples	232
Half-Bridge Mode	225
Output Relationships (Active-High and	
Active-Low)	223
Output Relationships Diagram	. 224
Programmable Dead Band Delay	232
Shoot-through Current	232
Start-up Considerations	. 234
Specifications	. 402
Enhanced Mid-range CPU	23
Enhanced Universal Synchronous Asynchronous	
Receiver Transmitter (EUSART)	293
Errata	14
EUSART	293
Associated Registers	
Baud Rate Generator	. 306
Asynchronous Mode	295
12-bit Break Transmit and Receive	313
Associated Registers	0.0
Receive	301
Transmit	297
Auto-Wake-up on Break	311
Baud Pate Generator (BPG)	305
Clock Accuracy	302
Receiver	202
Setting up 9-bit Mode with Address Datact	300
Transmitter	205
Baud Rate Concrator (PPC)	200
Auto Baud Bate Dotoot	310
Raud Rate Error Calculating	305
Daud Nate LITUI, Calculating	