

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1937-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripheral Features (Continued):

- Master Synchronous Serial Port (MSSP) with SPI and I²C[™] with:
 - 7-bit address masking
 - SMBus/PMBus[™] compatibility
 - Auto-wake-up on start
- Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)
 - RS-232, RS-485 and LIN compatible
 - Auto-Baud Detect
- SR Latch (555 Timer):
 - Multiple Set/Reset input options
 - Emulates 555 Timer applications
- 2 Comparators:
 - Rail-to-rail inputs/outputs
 - Power mode control
 - Software enable hysteresis
- Voltage Reference module:
 - Fixed Voltage Reference (FVR) with 1.024V, 2.048V and 4.096V output levels
 - 5-bit rail-to-rail resistive DAC with positive and negative reference selection

PIC16(L)F193X Family Types

Device	Program Memory Flash (words)	Data EEPROM (bytes)	SRAM (bytes)	s,0/I	10-bit A/D (ch)	CapSense (ch)	Comparators	Timers 8/16-bit	EUSART	I²C™/SPI	ECCP	ССР	ГСD
PIC16F1934 PIC16LF1934	4096	256	256	36	14	16	2	4/1	Yes	Yes	3	2	24/4
PIC16F1936 PIC16LF1936	8192	256	512	25	11	8	2	4/1	Yes	Yes	3	2	16 ⁽¹⁾ /4
PIC16F1937 PIC16LF1937	8192	256	512	36	14	16	2	4/1	Yes	Yes	3	2	24/4

Note 1: COM3 and SEG15 share the same physical pin on PIC16(L)F1936, therefore, SEG15 is not available when using 1/4 multiplex displays.

TABLE 3-6:PIC16(L)F1936/1937 MEMORY MAP, BANKS 8-15

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	INDF0	480h	INDF0	500h	INDF0	580h	INDF0	600h	INDF0	680h	INDF0	700h	INDF0	780h	INDF0
401h	INDF1	481h	INDF1	501h	INDF1	581h	INDF1	601h	INDF1	681h	INDF1	701h	INDF1	781h	INDF1
402h	PCL	482h	PCL	502h	PCL	582h	PCL	602h	PCL	682h	PCL	702h	PCL	782h	PCL
403h	STATUS	483h	STATUS	503h	STATUS	583h	STATUS	603h	STATUS	683h	STATUS	703h	STATUS	783h	STATUS
404h	FSR0L	484h	FSR0L	504h	FSR0L	584h	FSR0L	604h	FSR0L	684h	FSR0L	704h	FSR0L	784h	FSR0L
405h	FSR0H	485h	FSR0H	505h	FSR0H	585h	FSR0H	605h	FSR0H	685h	FSR0H	705h	FSR0H	785h	FSR0H
406h	FSR1L	486h	FSR1L	506h	FSR1L	586h	FSR1L	606h	FSR1L	686h	FSR1L	706h	FSR1L	786h	FSR1L
407h	FSR1H	487h	FSR1H	507h	FSR1H	587h	FSR1H	607h	FSR1H	687h	FSR1H	707h	FSR1H	787h	FSR1H
408h	BSR	488h	BSR	508h	BSR	588h	BSR	608h	BSR	688h	BSR	708h	BSR	788h	BSR
409h	WREG	489h	WREG	509h	WREG	589h	WREG	609h	WREG	689h	WREG	709h	WREG	789h	WREG
40Ah	PCLATH	48Ah	PCLATH	50Ah	PCLATH	58Ah	PCLATH	60Ah	PCLATH	68Ah	PCLATH	70Ah	PCLATH	78Ah	PCLATH
40Bh	INTCON	48Bh	INTCON	50Bh	INTCON	58Bh	INTCON	60Bh	INTCON	68Bh	INTCON	70Bh	INTCON	78Bh	INTCON
40Ch	_	48Ch		50Ch		58Ch		60Ch	_	68Ch		70Ch		78Ch	_
40Dh	_	48Dh		50Dh		58Dh		60Dh	_	68Dh		70Dh		78Dh	_
40Eh		48Eh		50Eh		58Eh		60Eh	—	68Eh		70Eh		78Eh	—
40Fh	_	48Fh	_	50Fh		58Fh	_	60Fh	_	68Fh	_	70Fh		78Fh	_
410h	—	490h	—	510h	—	590h	—	610h	—	690h	—	710h	—	790h	—
411h	—	491h	—	511h	—	591h	—	611h	—	691h		711h	—	791h	
412h		492h		512h	—	592h		612h		692h		712h	—	792h	
413h		493h		513h	—	593h		613h		693h		713h	—	793h	
414h	-	494h	_	514h		594h		614h		694h	_	714h		794h	
415h	IMR4	495h	_	515h		595h		615h	_	695h		715h		795h	
416h	PR4	496h	_	516h		596h		616h	_	696h		716h		796h	
417h	14CON	497h		517h	—	597h		617h		697h		717h	—	797h	
418h		498h		518h	—	598h		618h		698h		718h	—	798h	
419h	_	499h	_	519h		599h		619h		699h	_	719h		799h	
41Ah		49Ah		51Ah		59Ah		61Ah		69Ah		/1Ah		79Ah	See Table 3-9 or
41Bh	-	49Bh		51Bh		59Bh		61Bh		69Bh		71Bh		79Bh	Table 3-10
41Ch	I MR6	49Ch		51Ch	—	59Ch		61Ch		69Ch		71Ch	—	79Ch	
41Dh		49Dh		51Dh		59Dh		61Dh	—	69Dh		71Dh		79Dh	
41Eh	TOCON	49Eh		51Eh		59Eh		61Eh	—	69Eh		/1Eh		79Eh	
41Fh 420b	_	49Fh		51Fh		59Fh		61Fh		69Fh		71Fh 720h		79Fh	
42011		4A011		52011		SAUL		02011		OAUII		72011		AUII	
	Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		
	Redu ds 0		Redu ds 0		Redu as 0		Redu as 0		Redu as 0		Redu as 0		Redu as 0		
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

Legend: = Unimplemented data memory locations, read as '0'.

RE 3-6: ACCESSING 1	THE STA	CK EXAMPLE	2
			_
	0x0F		
	0x0E		
	0x0D		
	0x0C		
	0x0B		
	0x0A		_
	0x09		This figure shows the stack configuration
	0x08		after the first CALL or a single interrupt. If a RETURN instruction is executed, the
	0x07		return address will be placed in the
	0x06		decremented to the empty state (0x1F).
	0x05		_
	0x04		_
	0x03		-
	0x02		_
	0x01		
	0,000	Return Address	STKPTR = 0x00
TOSH:TOSL RE 3-7:	THE STA	CK EXAMPLE	3
TOSH:TOSL RE 3-7:	THE STA	CK EXAMPLE	3
RE 3-7: ACCESSING 1	0x00	CK EXAMPLE	3]
RE 3-7: ACCESSING 1	0x00 THE STA 0x0F [0x0E]	CK EXAMPLE	3
RE 3-7: ACCESSING 1	0x0F 0x0F 0x0E 0x0D	CK EXAMPLE	3
RE 3-7: ACCESSING 1	0x06 0x0F 0x0E 0x0D 0x0C		3 After seven CALLS or six CALLS and an
RE 3-7: ACCESSING 1	0x06 0x07 0x08 0x08 0x00 0x00 0x00 0x08	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions
RE 3-7: ACCESSING 1	0x0F 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 3-7: ACCESSING 1	0x0F 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x09		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 3-7: ACCESSING 1	0x00 THE STA 0x0E 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 3-7: ACCESSING 1	0x0F 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x09 0x08 0x07		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	0x00 0x0F 0x0E 0x0E 0x0D 0x0C 0x0D 0x0C 0x0D 0x0D 0x0D 0x0D 0x0D 0x0D 0x0A	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	0x00 0x0F 0x0E 0x0D 0x0A 0x09 0x08 0x07 0x06 0x05	ACK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	0x0F 0x0F 0x0E 0x0D 0x0A 0x09 0x08 0x07 0x06 0x05 0x04	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	0x00 0x0F 0x0E 0x0E 0x0E 0x0D 0x0C 0x0D 0x0C 0x0D 0x0C 0x0B 0x0A 0x0B 0x0A 0x0B 0x0A 0x0B 0x0C 0x0B 0x0A 0x0B 0x0C 0x0A 0x05 0x04 0x03	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	0x00 0x0F 0x0E 0x0D 0x0A 0x0B 0x0A 0x0B 0x0A 0x0A 0x0A 0x0A 0x0A 0x04 0x03 0x02 0x01	Return Address Return Address Return Address Return Address Return Address Return Address Return Address Return Address	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	0x00 0x0F 0x0E 0x0E 0x0E 0x0E 0x0D 0x0C 0x0D 0x0D 0x0C 0x0B 0x0A 0x0B 0x0A 0x0B 0x0A 0x0B 0x0A 0x0B 0x0A 0x0B 0x0A 0x05 0x04 0x03 0x04 0x02 0x01	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.

NOTES:

4.2 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data EEPROM protection are controlled independently. Internal access to the program memory and data EEPROM are unaffected by any code protection setting.

4.2.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Word 1. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See **Section 4.3** "Write **Protection**" for more information.

4.2.2 DATA EEPROM PROTECTION

The entire data EEPROM is protected from external reads and writes by the CPD bit. When CPD = 0, external reads and writes of data EEPROM are inhibited. The CPU can continue to read and write data EEPROM regardless of the protection bit settings.

4.3 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as bootloader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Word 2 define the size of the program memory block that is protected.

4.4 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See **Section 4.5 "Device ID and Revision ID"** for more information on accessing these memory locations. For more information on checksum calculation, see the *"PIC16F193X/LF193X/PIC16F194X/LF194X/PIC16LF 190X Memory Programming Specification"* (DS41397).

5.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

5.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Word 1) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Word 1 configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- Wake-up from Sleep.

TABLE 5-1: OS	CILLATOR SWITCHING DELAYS
---------------	---------------------------

Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay (Twarm)
Sleep/POR	EC, RC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Sleep/POR	Timer1 Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
Any clock source	Timer1 Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)

Note 1: PLL inactive.

7.6 Interrupt Control Registers

7.6.1 INTCON REGISTER

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, interrupt-on-change and external INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0	R-0/0						
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	GIE: Global Interrupt Enable bit
	1 = Enables all active interrupts0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit 1 = Enables all active peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TMROIE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: INT External Interrupt Enable bit 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt
bit 3	IOCIE: Interrupt-on-Change Enable bit 1 = Enables the interrupt-on-change 0 = Disables the interrupt-on-change
bit 2	TMR0IF: Timer0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed 0 = TMR0 register did not overflow
bit 1	INTF: INT External Interrupt Flag bit 1 = The INT external interrupt occurred 0 = The INT external interrupt did not occur
bit 0	IOCIF: Interrupt-on-Change Interrupt Flag bit 1 = When at least one of the interrupt-on-change pins changed state 0 = None of the interrupt-on-change pins have changed state

Note 1: The IOCIF Flag bit is read-only and cleared when all the Interrupt-on-Change flags in the IOCBF register have been cleared by software.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
OPTION_REG	WPUEN	INTEDG	TMROCS	TMROSE	PSA		PS<2:0>		
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	99
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	100
PIE3	_	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	_	101
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	102
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	103
PIR3	_	CCP5IF	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	104

 TABLE 7-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Interrupts.

15.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- · ADC voltage reference selection
- ADC conversion clock source
- · Interrupt control
- Result formatting

15.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 12.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input buf-
	fer to conduct excess current.

15.1.2 CHANNEL SELECTION

There are 17 channel selections available:

- AN<13:0> pins
- · Temperature Indicator
- DAC Output
- FVR (Fixed Voltage Reference) Output

Refer to Section 16.0 "Temperature Indicator Module", Section 17.0 "Digital-to-Analog Converter (DAC) Module" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these channel selections.

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 15.2 "ADC Operation"** for more information.

15.1.3 ADC VOLTAGE REFERENCE

The ADPREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd
- FVR 2.048V
- FVR 4.096V (Not available on LF devices)

The ADNREF bits of the ADCON1 register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See **Section 14.0** "Fixed Voltage Reference (FVR)" for more details on the fixed voltage reference.

15.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- · Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 15-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the A/D conversion requirements in the applicable Electrical Specifications Chapter for more information. Table 15-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

21.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

21.4 Timer1 Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the T1OSCEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to using Timer1. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

21.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 21.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	When switching from synchronous to
	asynchronous operation, it is possible to
	skip an increment. When switching from
	asynchronous to synchronous operation,
	it is possible to produce an additional
	increment.

21.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

21.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

21.6.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 21-3 for timing details.

TABLE 21-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
1	1	1	Counts

24.3 I²C Mode Overview

The Inter-Integrated Circuit Bus (I^2C) is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A Slave device is controlled through addressing.

The I²C bus specifies two signal connections:

- · Serial Clock (SCL)
- Serial Data (SDA)

Figure 24-11 shows the block diagram of the MSSP module when operating in I^2C Mode.

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 24-11 shows a typical connection between two processors configured as master and slave devices.

The I^2C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:

- Master Transmit mode (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDA line while the SCL line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.

FIGURE 24-11: I²C MASTER/ SLAVE CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDA line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

The transition of a data bit is always performed while the SCL line is held low. Transitions that occur while the SCL line is held high are used to indicate Start and Stop bits.

If the master intends to write to the slave, then it repeatedly sends out a byte of data, with the slave responding after each byte with an \overline{ACK} bit. In this example, the master device is in Master Transmit mode and the slave is in Slave Receive mode.

If the master intends to read from the slave, then it repeatedly receives a byte of data from the slave, and responds after each byte with an ACK bit. In this example, the master device is in Master Receive mode and the slave is Slave Transmit mode.

On the last byte of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in Receive mode, it sends the Stop bit in place of the last ACK bit. A Stop bit is indicated by a low-to-high transition of the SDA line while the SCL line is held high.

In some cases, the master may want to maintain control of the bus and re-initiate another transmission. If so, the master device may send another Start bit in place of the Stop bit or last ACK bit when it is in receive mode.

The I²C bus specifies three message protocols;

- Single message where a master writes data to a slave.
- Single message where a master reads data from a slave.
- Combined message where a master initiates a minimum of two writes, or two reads, or a combination of writes and reads, to one or more slaves.

24.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 24-25).

FIGURE 24-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

24.6.3 WCOL STATUS FLAG

If the user writes the SSPBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPBUF was attempted while the module was not Idle.

Note:	Because queueing of events is no	ot
	allowed, writing to the lower 5 bits o	of
	SSPCON2 is disabled until the Star	rt
	condition is complete.	

25.2 Clock Accuracy with Asynchronous Operation

Г

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind. The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 5.2.2** "Internal Clock Sources" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 25.3.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

REGISTER 25-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimpleme	ented bit, read as	'0'	
u = Bit is unc	hanged	x = Bit is unkno	own	-n/n = Value at	POR and BOR/Va	alue at all other	Resets
'1' = Bit is set	:	'0' = Bit is clear	red				
bit 7	CSRC: Clock S	Source Select bit					
	Asynchronous	<u>mode</u> :					
	Don't care	nada					
	<u>Synchronous n</u>	<u>noue</u> . Node (clock gone	rated internally	from PPC)			
	1 = Master m 0 = Slave mo	de (clock gene	xternal source)	IIOIII BRG)			
bit 6	TX9: 9-bit Tran	smit Enable bit	,				
	1 = Selects 9	-bit transmission	I				
	0 = Selects 8	-bit transmission	I				
bit 5	TXEN: Transm	it Enable bit ⁽¹⁾					
	1 = Transmit e	enabled					
	0 = Transmit o	disabled					
bit 4	SYNC: EUSAF	RT Mode Select b	pit				
	1 = Synchron	ous mode					
	0 = Asynchroi	nous mode					
bit 3	SENDB: Send	Break Character	r bit				
	Asynchronous	mode:				>	
	$\perp = \text{Send Syn}$ $\cap = Sync Break$	C Break on next	transmission (c	leared by hardwa	are upon completion))	
	Svnchronous n	node:	lompieted				
	Don't care	<u></u>					
bit 2	BRGH: High B	aud Rate Select	bit				
	Asynchronous	mode:					
	1 = High spee	ed					
	0 = Low spee	d .					
	Synchronous n	node:					
	Unused in this	mode					
bit 1	TRMT: Transm	it Shift Register :	Status bit				
	1 = ISR empt 0 = TSR full	ty					
hit 0	TYON Ninth hi	t of Transmit Do	2				
	Can be addres	s/data bit or a pa	a arity bit				
			, ~				
Note 1: S	KEN/CREN overrid	aes IXEN in Syn	c mode.				

REGISTER 27-2: LCDPS: LCD PHASE REGISTER

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1
WFT	BIASMD	LCDA	WA		LP<	3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	C = Only clea	rable bit		
bit 7	WET: Wayefo	rm Type bit					
bit i	1 = Type-B p	hase changes	on each fram	e boundarv			
	0 = Type-A p	hase changes	within each c	ommon type			
bit 6	BIASMD: Bia	s Mode Select	bit				
	When LMUX<	< <u>1:0> = 00:</u>					
	0 = Static Bia	s mode (do not	set this bit to	oʻ1')			
	When LMUX<	< <u>1:0> = 01:</u>					
	1 = 1/2 Bias r 0 = 1/3 Bias r	node					
	When LMUX	< <u>1:0> = 10:</u>					
	1 = 1/2 Bias r	node					
	0 = 1/3 Bias r	node					
	When LMUX	<u><1:0> = 11:</u>	at this bit to '1	2)			
bit 5		Notivo Status bi		.)			
DIL 5	1 = 1 CD Drive	ar module is an	tivo				
	0 = LCD Drive	er module is ina	active				
bit 4	WA: LCD Wri	te Allow Status	bit				
	1 = Writing to 0 = Writing to	the LCDDATA the LCDDATA	n registers is n registers is	allowed not allowed			
bit 3-0	LP<3:0>: LCI	D Prescaler Se	lection bits				
	1111 = 1:16						
	1110 = 1:15						
	1101 = 1.14 1100 = 1:13						
	1011 = 1:12						
	1010 = 1:11						
	1001 = 1:10 1000 = 1:9						
	0111 = 1 :8						
	0110 = 1 :7						
	0101 = 1:6						
	0100 = 1:5 0011 = 1:4						
	0010 = 1:3						
	0001 = 1:2						
	0000 = 1:1						

© 2008-2011 Microchip Technology Inc.

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f

SUBLW Subtract W from literal					
Syntax:	[label] SU	JBLW k			
Operands:	$0 \leq k \leq 255$				
Operation:	$k -(W) \to (W$	')			
Status Affected:	C, DC, Z				
Description:	The W register is subtracted (2's com- plement method) from the eight-bit literal 'k'. The result is placed in the W register.				
	C = 0	W > k			
	$C = 1$ $W \le k$				
	DC = 0 W<3:0> > k<3:0>				

DC = 1

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{WDT} \text{ prescaler}, \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, \overline{PD} is cleared. Time-out Status bit, \overline{TO} is set. Watchdog Timer and its pres- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBWF	Subtract W from f			
Syntax:	[label] SUBWF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	(f) - (W) \rightarrow (destination)			
Status Affected:	C, DC, Z			
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.			
	C = 0 W > f			
	C = 1 $W < f$			

	VV > I
C = 1	$W \leq f$
DC = 0	W<3:0> > f<3:0>
DC = 1	$W<3:0> \le f<3:0>$

 $W<3:0> \le k<3:0>$

SUBWFB	Subtract W from f with Borrow		
Syntax:	SUBWFB f {,d}		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$		
Status Affected:	C, DC, Z		
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'		

Package Marking Information (Continued)

28-Lead SSOP (5.30 mm)

28-Lead UQFN (4x4x0.5 mm)

40-Lead UQFN (5x5x0.5 mm)

Example

Example

40-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) - 5x5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		MILLIMETER	S	
Dimens	ion Limits	MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Optional Center Pad Width	W2			3.80
Optional Center Pad Length	T2			3.80
Contact Pad Spacing	C1		5.00	
Contact Pad Spacing	C2		5.00	
Contact Pad Width (X40)	X1			0.20
Contact Pad Length (X40)	Y1			0.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2156A