

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1937-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver with nanoWatt XLP Technology

Devices Included In This Data Sheet:

- PIC16F1934
- PIC16LF1934
- PIC16F1936 PIC16LF1936
- PIC16F1937 PIC16LF1937

Other PIC16(L)F193X Devices Available:

- PIC16(L)F1933 (DS41575)
- PIC16(L)F1938/9 (DS41574)

Note: PIC16(L)F193X devices referred to in this data sheet apply to PIC16(L)F1934/6/7.

High-Performance RISC CPU:

- Only 49 Instructions to Learn:
- All single-cycle instructions except branches
- Operating Speed:
 - DC 32 MHz oscillator/clock input
 - DC 125 ns instruction cycle
- Up to 16K x 14 Words of Flash Program Memory
- Up to 1024 Bytes of Data Memory (RAM)
- Interrupt Capability with Automatic Context Saving
- 16-Level Deep Hardware Stack
- Direct, Indirect and Relative Addressing modes
- · Processor Read Access to Program Memory
- Pinout Compatible to other 28/40/44-pin PIC16CXXX and PIC16FXXX Microcontrollers

Special Microcontroller Features:

- Precision Internal Oscillator:
 - Factory calibrated to ±1%, typical
 - Software selectable frequency range from 32 MHz to 31 kHz
- Power-Saving Sleep mode
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
 - Selectable between two trip points
 - Disable in Sleep option
- Multiplexed Master Clear with Pull-up/Input Pin
- Programmable Code Protection
- High Endurance Flash/EEPROM cell:
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - Flash/Data EEPROM retention: > 40 years
- Wide Operating Voltage Range:
 - 1.8V-5.5V (PIC16F193X)
 - 1.8V-3.6V (PIC16LF193X)

PIC16LF193X Low-Power Features:

- Standby Current:
 - 60 nÅ @ 1.8V, typical
- Operating Current:
 - 7.0 μA @ 32 kHz, 1.8V, typical (PIC16LF193X)
 - 150 μA @ 1 MHz, 1.8V, typical (PIC16LF193X)
- Timer1 Oscillator Current:
 - 600 nA @ 32 kHz, 1.8V, typical
- · Low-Power Watchdog Timer Current:
 - 500 nA @ 1.8V, typical (PIC16LF193X)

Peripheral Features:

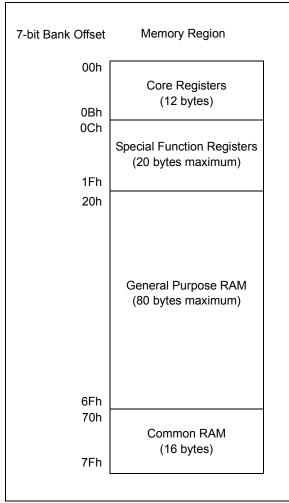
- Up to 35 I/O Pins and 1 Input-only Pin:
 - High-current source/sink for direct LED drive
 - Individually programmable interrupt-on-pin change pins
 - Individually programmable weak pull-ups
- Integrated LCD Controller:
 - Up to 96 segments
 - Variable clock input
 - Contrast control
 - Internal voltage reference selections
- Capacitive Sensing module (mTouch[™])
 - Up to 16 selectable channels
- · A/D Converter:
 - 10-bit resolution and up to 14 channels
 - Selectable 1.024/2.048/4.096V voltage reference
- Timer0: 8-Bit Timer/Counter with 8-Bit Programmable Prescaler
- Enhanced Timer1
 - Dedicated low-power 32 kHz oscillator driver
 - 16-bit timer/counter with prescaler
 - External Gate Input mode with toggle and single shot modes
 - Interrupt-on-gate completion
- Timer2, 4, 6: 8-Bit Timer/Counter with 8-Bit Period Register, Prescaler and Postscaler
- Two Capture, Compare, PWM modules (CCP)
 - 16-bit Capture, max. resolution 125 ns
 - 16-bit Compare, max. resolution 125 ns
 - 10-bit PWM, max. frequency 31.25 kHz
- Three Enhanced Capture, Compare, PWM modules (ECCP)
 - 3 PWM time-base options
 - Auto-shutdown and auto-restart
 - PWM steering
 - Programmable dead-band delay

3.2.2 SPECIAL FUNCTION REGISTER

The Special Function Registers (SFR) are registers used by the application to control the desired operation of peripheral functions in the device. The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.2.3 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank.


3.2.3.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.5.2** "**Linear Data Memory**" for more information.

3.2.4 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-3: BANKED MEMORY PARTITIONING

3.2.5 DEVICE MEMORY MAPS

The memory maps for the device family are as shown in Table 3-2.

TABLE 3-2: MEMORY MAP TABLES

Device	Banks	Table No.
PIC16F1934	0-7	Table 3-3
PIC16LF1934	8-15	Table 3-4, Table 3-10
	16-23	Table 3-7
	23-31	Table 3-8, Table 3-11
PIC16F1936	0-7	Table 3-5
PIC16LF1936	8-15	Table 3-6, Table 3-9
	16-23	Table 3-7
	23-31	Table 3-8, Table 3-11
PIC16F1937	0-7	Table 3-5
PIC16LF1937	8-15	Table 3-6, Table 3-10
	16-23	Table 3-7
	23-31	Table 3-8, Table 3-11

TABLE	3-1Z. C	SPECIAL	FUNCTIC	IN REGIS	DIER SUN	INIART (C		בט)					
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		Value oth Res	ner
Banks 1	6-30												
x00h/ x80h ⁽²⁾	INDF0	Addressing (not a physi		ses contents o	of FSR0H/FSF	R0L to address	data memor	ý		xxxx	xxxx	xxxx	xxxx
x00h/ x81h ⁽²⁾	INDF1 Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)							xxxx	XXXX	xxxx	xxxx		
x02h/ x82h ⁽²⁾	PCL	Program Co	ounter (PC) Le	ast Significant	t Byte					0000	0000	0000	0000
x03h/ x83h ⁽²⁾	STATUS	-	—	_	TO	PD	Z	DC	С	1	1000	d	quuu
x04h/ x84h ⁽²⁾	FSR0L	Indirect Data Memory Address 0 Low Pointer							0000	0000	uuuu	uuuu	
x05h/ x85h (2)	FSR0H	Indirect Dat	Indirect Data Memory Address 0 High Pointer							0000	0000	0000	0000
x06h/ x86h ⁽²⁾	FSR1L	Indirect Dat	Indirect Data Memory Address 1 Low Pointer							0000	0000	uuuu	uuuu
x07h/ x87h ⁽²⁾	FSR1H	Indirect Data Memory Address 1 High Pointer							0000	0000	0000	0000	
x08h/ x88h (2)	BSR	_	—	—			BSR<4:0>			0	0000	0	0000
x09h/ x89h ⁽²⁾	WREG	Working Re	gister							0000	0000	uuuu	uuuu
x0Ah/ x8Ah ^{(1),(2)}	PCLATH	-	Write Buffer for the upper 7 bits of the Program Counter						-000	0000	-000	0000	
x0Bh/ x8Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000	0000	0000	0000
x0Ch/ x8Ch	—	Unimpleme	nted							-	-	_	-
x1Fh/ x9Fh													

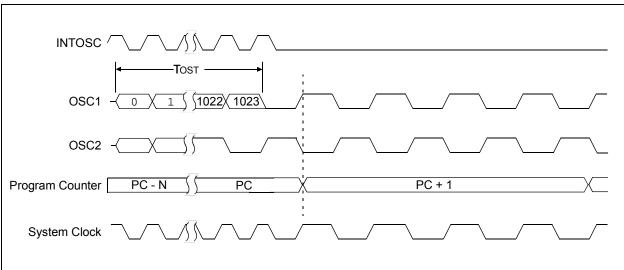
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-12.

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'. 3:


4: Unimplemented, read as '1'.

5.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

5.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word 1, or the internal oscillator.

FIGURE 5-8: TWO-SPEED START-UP

7.6.7 PIR3 REGISTER

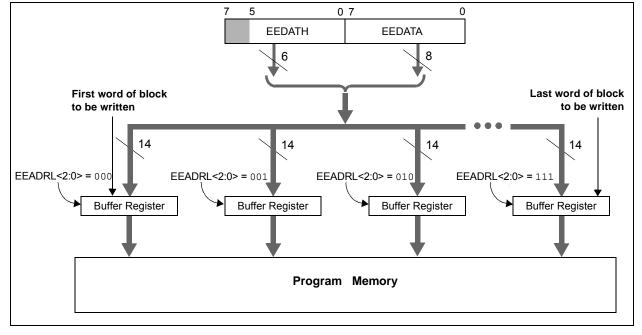
The PIR3 register contains the interrupt flag bits, as shown in Register 7-7.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 7-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| _ | CCP5IF | CCP4IF | CCP3IF | TMR6IF | — | TMR4IF | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	


bit 7	Unimplemented: Read as '0'
bit 6	CCP5IF: CCP5 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 5	CCP4IF: CCP4 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 4	CCP3IF: CCP3 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 3	TMR6IF: TMR6 to PR6 Match Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 2	Unimplemented: Read as '0'
bit 1	TMR4IF: TMR4 to PR4 Match Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 0	Unimplemented: Read as '0'

NOTES:

After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the write operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms, only during the cycle in which the write takes place (i.e., the last word of the block write). This is not Sleep mode as the clocks and peripherals will

continue to run. The processor does not stall when LWLO = 1, loading the write latches. After the write cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	
bit 7				•		•	bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit is cleared								

bit 7-0 **RD<7:0>:** PORTD General Purpose I/O Pin bits 1 = Port pin is > VIH 0 = Port pin is < VIL

Note 1: PORTD is not implemented on PIC16(L)F1936 devices, read as '0'.

REGISTER 12-15: TRISD: PORTD TRI-STATE REGISTER⁽¹⁾

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISD<7:0>: PORTD Tri-State Control bits

- 1 = PORTD pin configured as an input (tri-stated)
- 0 = PORTD pin configured as an output

Note 1: TRISD is not implemented on PIC16(L)F1936 devices, read as '0'.

2: PORTD implemented on PIC16(L)F1934/7 devices only.

REGISTER 12-16: LATD: PORTD DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATD7 | LATD6 | LATD5 | LATD4 | LATD3 | LATD2 | LATD1 | LATD0 |
| bit 7 | | | | • | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATD<7:0>: PORTD Output Latch Value bits^(1,2)

- **Note 1:** Writes to PORTD are actually written to corresponding LATD register. Reads from PORTD register is return of actual I/O pin values.
 - 2: PORTD implemented on PIC16(L)F1934/7 devices only.

NOTES:

14.3 FVR Control Registers

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0 R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN FVRRDY ⁽¹⁾	TSEN	TSRNG	CDAF	/R<1:0>	ADFVI	R<1:0>
bit 7			·			bit (
Legend:						
R = Readable bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is unchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets
1' = Bit is set	'0' = Bit is clea	ared	q = Value dep	ends on condit	on	
0 = Fixed V	ed Voltage Refe oltage Referenc oltage Referenc	e is disabled	bit			
0 = Fixed V	ixed Voltage Ref oltage Referenc oltage Referenc	e output is no	t ready or not e	nabled		
0 = Temper	perature Indicato ature Indicator is ature Indicator is	s disabled)			
0 = VOUT =	mperature Indica VDD - 2VT (Low VDD - 4VT (High	Range)	election bit ⁽³⁾			
00 = Compa 01 = Compa 10 = Compa	:0>: Comparator arator and DAC F arator and DAC F arator and DAC F arator and DAC F arator and DAC F	Fixed Voltage Fixed Voltage Fixed Voltage	Reference Per Reference Per Reference Per	ipheral output is ipheral output is ipheral output is	s off. s 1x (1.024V) s 2x (2.048V) <mark>(2</mark>	
00 = ADC F 01 = ADC F 10 = ADC F	ADC Fixed V ixed Voltage Rei ixed Voltage Rei ixed Voltage Rei ixed Voltage Rei ixed Voltage Rei	ference Peripl ference Peripl ference Peripl	heral output is o heral output is f heral output is 2	off. 1x (1.024V) 2x (2.048V) ⁽²⁾		
Note 1: FVRRDY is alway 2: Fixed Voltage Re	•	•	IC16F1934/6/7).		

3: See Section 16.0 "Temperature Indicator Module" for additional information.

TABLE 14-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	R<1:0>	ADFV	R<1:0>	156

Legend: Shaded cells are not used with the Fixed Voltage Reference.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit		nented bit, read		
u = Bit is unch	anged	x = Bit is unki		-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
1. 1. 7							
bit 7		•	al Set Enable b				
			ne SRI pin is hi n the set input	gn. of the SR Latcł	า		
bit 6	SRSCKE: SF	R Latch Set Clo	ock Enable bit				
			s pulsed with S				
	0 = SRCLK h	has no effect o	n the set input	of the SR Latcl	า		
bit 5		R Latch C2 Set					
				ator output is hi	gh of the SR Latch	_	
bit 4	•	R Latch C1 Set		in the set input	of the SK Lato	1	
DIL 4				ator output is hi	ab		
					of the SR Latch	า	
bit 3	•		al Reset Enabl	•			
		•	the SRI pin is				
	0 = SRI pin h	nas no effect or	n the reset inpu	ut of the SR Lat	tch		
bit 2	SRRCKE: SF	R Latch Reset	Clock Enable b	oit			
			n is pulsed with				
			•	ut of the SR La	tch		
bit 1		R Latch C2 Res					
				arator output is	high ut of the SR La	tch	
bit 0	•	R Latch C1 Res					
Dit U				arator output is	hiah		
					ut of the SR La	tch	
		-					

REGISTER 19-2: SRCON1: SR LATCH CONTROL 1 REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	134
SRCON0	SRLEN	S	RCLK<2:0>	•	SRQEN	SRNQEN	SRPS	SRPR	189
SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	190
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	133

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the SR Latch module.

22.5 Timer2/4/6 Control Register

REGISTER 22-1: TXCON: TIMER2/TIMER4/TIMER6 CONTROL REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
		TOUTP	S<3:0>		TMRxON	TxCKP	S<1:0>
oit 7							bit (
_egend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
1' = Bit is se	et	'0' = Bit is clea	ared				
oit 7	Unimpleme	ented: Read as '	0'				
oit 6-3	TOUTPS<3	:0>: Timer Outpu	ut Postscaler S	Select bits			
	0000 = 1:1						
	0001 = 1:2	Postscaler					
	0010 = 1:3						
	0011 = 1:4						
	0100 = 1:5						
	0101 = 1:6 0110 = 1:7						
	0111 = 1 :8						
	1000 = 1:9						
	1001 = 1:10						
	1010 = 1:11	Postscaler					
	1011 = 1:12						
	1100 = 1:13						
	1101 = 1:14						
	1110 = 1:15 1111 = 1:16						
oit 2		imerx On bit					
	1 = Timerx						
	0 = Timerx						
oit 1-0	TxCKPS<1:	: 0>: Timer2-type	Clock Presca	le Select bits			
	00 = Presca	ler is 1					
	01 = Presca						
	10 = Presca						
	11 = Presca	ler is 64					

23.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 23-4.

EQUATION 23-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 23-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 23-7: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

23.4.3 ENHANCED PWM AUTO-SHUTDOWN MODE

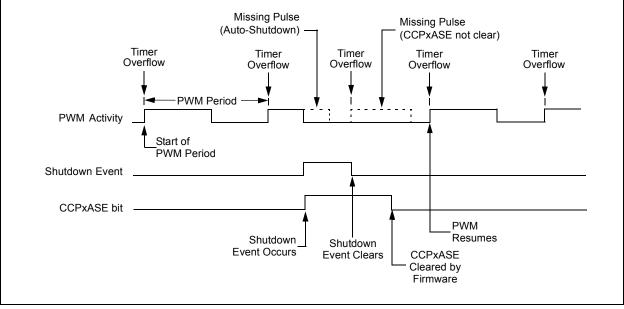
The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are selected using the CCPxAS<2:0> bits of the CCPxAS register. A shutdown event may be generated by:

- A logic '0' on the INT pin
- A logic '1' on a Comparator (Cx) output

A shutdown condition is indicated by the CCPxASE (Auto-Shutdown Event Status) bit of the CCPxAS register. If the bit is a '0', the PWM pins are operating normally. If the bit is a '1', the PWM outputs are in the shutdown state.

When a shutdown event occurs, two things happen:


The CCPxASE bit is set to '1'. The CCPxASE will remain set until cleared in firmware or an auto-restart occurs (see Section 23.4.4 "Auto-Restart Mode").

The enabled PWM pins are asynchronously placed in their shutdown states. The PWM output pins are grouped into pairs [PxA/PxC] and [PxB/PxD]. The state of each pin pair is determined by the PSSxAC and PSSxBD bits of the CCPxAS register. Each pin pair may be placed into one of three states:

- Drive logic '1'
- Drive logic '0'
- Tri-state (high-impedance)

- Note 1: The auto-shutdown condition is a level-based signal, not an edge-based signal. As long as the level is present, the auto-shutdown will persist.
 - Writing to the CCPxASE bit is disabled while an auto-shutdown condition persists.
 - 3: Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart) the PWM signal will always restart at the beginning of the next PWM period.
 - 4: Prior to an auto-shutdown event caused by a comparator output or INT pin event, a software shutdown can be triggered in firmware by setting the CCPxASE bit of the CCPxAS register to '1'. The Auto-Restart feature tracks the active status of a shutdown caused by a comparator output or INT pin event only. If it is enabled at this time, it will immediately clear this bit and restart the ECCP module at the beginning of the next PWM period.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1
—	—		STRxSYNC	STRxD	STRxC	STRxB	STRxA
bit 7	-						bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is un	nchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is s	et	'0' = Bit is cle	eared				
bit 7-5	Unimplemen	ted: Read as	'0'				
bit 4	STRxSYNC:	Steering Sync	bit				
		0 1	occurs on next				
	•	•	occurs at the b	eginning of the	e instruction cyc	le boundary	
bit 3		ring Enable bi					
	•		waveform with p	olarity control	from CCPxM<1	1:0>	
		s assigned to					
bit 2		ring Enable bi					
	•		waveform with p	olarity control	from CCPxM<1	1:0>	
1.11.4	•	s assigned to	•				
bit 1		ring Enable bi					
	•		vaveform with p	olarity control	from CCPXM<1	1:0>	
1.11.0		s assigned to p					
bit 0		ring Enable bi					
	•		vaveform with p	olarity control	Trom CCPXM<1	:0>	
	0 = PXA pin is	s assigned to p	Joit pin				
Note 1: 1	The PWM Steering	n mode is ava	ilahle only wher	the CCPxCO	N register hits (CPxM<3.2> =	= 11 and

REGISTER 23-6: PSTRxCON: PWM STEERING CONTROL REGISTER⁽¹⁾

Note 1: The PWM Steering mode is available only when the CCPxCON register bits CCPxM<3:2> = 11 and PxM<1:0> = 00.

25.4.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

25.4.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

25.4.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is

set then the error condition is cleared by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

25.4.1.8 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift 9-bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the 8 Least Significant bits from the RCREG.

25.4.1.9 Synchronous Master Reception Set-up:

- 1. Initialize the SPBRGH, SPBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set.
- 9. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

			U-0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1
R/W-0/0	R/W-0/0	R/C-0/0	0-0	11/00-0/0	10.00 0/0		
LCDEN	SLPEN	WERR		CS<	:1:0>	LMUX	<1:0>
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplen	nented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unknow	vn	-n/n = Value a	t POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cleare	d	C = Only clea	rable bit		
bit 7		Driver Enable bit					
	-	er module is enab					
bit 6		er module is disat		- hit			
		Driver Enable in er module is disat	•				
		ei illouule is uisal	Jeu III Slee	pinoue			
			led in Sleer	o mode			
bit 5	0 = LCD Driv	er module is enab Write Failed Error	•	p mode			
bit 5	0 = LCD Drive WERR: LCD	er module is enab	bit		E LCDPS regis	ter = 0 (must	be cleared in
bit 5	0 = LCD Drive WERR: LCD 1 = LCDDAT software	er module is enab Write Failed Error An register writte)	bit		ECDPS regis	ter = 0 (must	be cleared in
	0 = LCD Drive WERR: LCD 1 = LCDDAT software 0 = No LCD v	er module is enab Write Failed Error An register writte) vrite error	bit		e LCDPS regis	ter = 0 (must	be cleared in
bit 4	0 = LCD Driv WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen	er module is enab Write Failed Error An register writte) vrite error ted: Read as '0'	bit n while the		ECDPS regis	ter = 0 (must	be cleared in
bit 4	0 = LCD Driv WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clo	er module is enab Write Failed Error An register writte) vrite error t ed: Read as '0' ock Source Select	bit n while the		ECDPS regis	ter = 0 (must	be cleared in
bit 4	0 = LCD Driv WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25	er module is enab Write Failed Error An register writte) vrite error ted: Read as '0' ock Source Select	bit n while the		ECDPS regis	ter = 0 (must	be cleared in
bit 4	0 = LCD Driv WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC	er module is enab Write Failed Error An register writte vrite error ted: Read as '0' ock Source Select 66 (Timer1)	bit n while the		ELCDPS regis	ter = 0 (must	be cleared in
bit 5 bit 4 bit 3-2 bit 1-0	0 = LCD Drive WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO	er module is enab Write Failed Error An register writte vrite error ted: Read as '0' ock Source Select 66 (Timer1)	bit n while the bits		ECDPS regis	ter = 0 (must	be cleared ir
bit 4 bit 3-2	0 = LCD Driv WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	er module is enab Write Failed Error An register writte vrite error ted: Read as '0' ock Source Select 66 (Timer1) SC (31 kHz)	bit n while the bits	e WA bit of the	LCDPS regis		be cleared ir
bit 4 bit 3-2	0 = LCD Drive WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO	er module is enab Write Failed Error An register writte vrite error ted: Read as '0' ock Source Select 66 (Timer1) SC (31 kHz)	bit n while the bits bits	e WA bit of the Maximum N	lumber of Pixe	ls	be cleared ir
bit 4 bit 3-2	0 = LCD Drivi WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>	er module is enab Write Failed Error An register writte write error ted: Read as '0' ted: Read as '0' ted: Read as '0' bock Source Select G (Timer1) SC (31 kHz) Commons Select Multiplex	bit n while the bits bits	e WA bit of the Maximum Maximum	lumber of Pixe	ls L)F1934/7	– Bias
bit 4 bit 3-2	0 = LCD Driv WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	er module is enab Write Failed Error An register writte vrite error ted: Read as '0' ock Source Select 66 (Timer1) SC (31 kHz) Commons Select Multiplex Static (COM0)	bit n while the bits bits	Maximum M	lumber of Pixe	ls L)F1934/7 24	
bit 4 bit 3-2	0 = LCD Driv WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0> 00	er module is enab Write Failed Error An register writte write error ted: Read as '0' ted: Read as '0' ted: Read as '0' bock Source Select G (Timer1) SC (31 kHz) Commons Select Multiplex	bit n while the bits bits	e WA bit of the Maximum Maximum	lumber of Pixe	ls L)F1934/7	- Bias Static

REGISTER 27-1: LCDCON: LIQUID CRYSTAL DISPLAY (LCD) CONTROL REGISTER

Note 1: On these devices, COM3 and SEG15 are shared on one pin, limiting the device from driving 64 pixels.

29.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn	
Syntax:	[label] ADDFSR FSRn, k	
Operands:	$-32 \le k \le 31$ n \in [0, 1]	
Operation:	$FSR(n) + k \rightarrow FSR(n)$	
Status Affected:	None	
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.	
	EODs is limited to the new real 0000h	

FSRn is limited to the range 0000h -FFFFh. Moving beyond these bounds will cause the FSR to wrap around.

ANDLW	AND literal with W	
Syntax:	[<i>label</i>] ANDLW k	
Operands:	$0 \leq k \leq 255$	
Operation:	(W) .AND. (k) \rightarrow (W)	
Status Affected:	Z	
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.	

ADDLW	Add literal and W	
Syntax:	[<i>label</i>] ADDLW k	
Operands:	$0 \leq k \leq 255$	
Operation:	$(W) + k \to (W)$	
Status Affected:	C, DC, Z	
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.	

ANDWF	AND W with f	
Syntax:	[<i>label</i>] ANDWF f,d	
Operands:	$0 \le f \le 127$ $d \in [0,1]$	
Operation:	(W) .AND. (f) \rightarrow (destination)	
Status Affected:	Z	
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.	

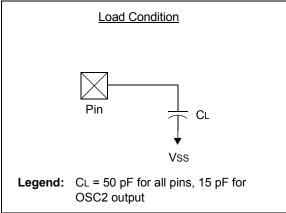
ADDWF	Add W and f	
Syntax:	[label] ADDWF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	
Operation:	(W) + (f) \rightarrow (destination)	
Status Affected:	C, DC, Z	
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.	

ASRF	Arithmetic Right Shift	
Syntax:	[<i>label</i>]ASRF f{,d}	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	
Operation:	$(f<7>) \rightarrow dest<7>$ $(f<7:1>) \rightarrow dest<6:0>,$ $(f<0>) \rightarrow C,$	
Status Affected:	C, Z	
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd'	

'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

ADD W and CARRY bit to f

Syntax:	[<i>label</i>] ADDWFC f {,d}	
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$	
Operation:	$(W) + (f) + (C) \rightarrow dest$	
Status Affected:	C, DC, Z	
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.	


30.7 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

<u>z. 1ppo</u>			
т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 30-5: LOAD CONDITIONS

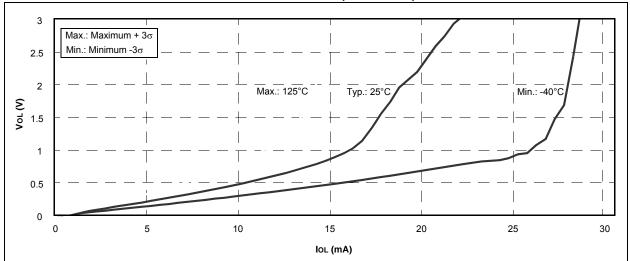
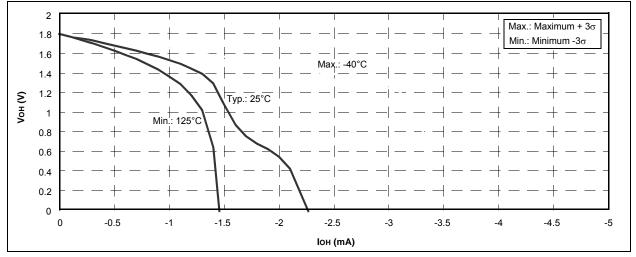
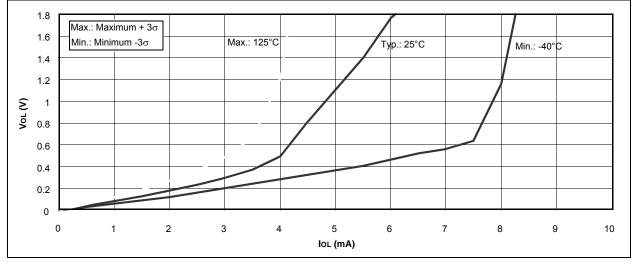




FIGURE 31-14: Vol vs. IoL OVER TEMPERATURE (VDD = 3.0V)

