

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1937-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TAB	LE 2	2:	_	40/4	14-P	IN SU	MMA	RY(PIC1	6(L)F1	934/7)							
0/	40-Pin PDIP	40-Pin UQFN	44-Pin TQFP	44-Pin QFN	ANSEL	A/D	Cap Sense	Comparator	SR Latch	Timers	ССР	EUSART	MSSP	гср	Interrupt	dn-Iluq	Basic
RA0	2	17	19	19	Y	AN0	—	C12IN0-/ C2OUT ⁽¹⁾	SRNQ ⁽¹⁾			—	SS ⁽¹⁾	SEG12	—		VCAP
RA1	3	18	20	20	Y	AN1	_	C12IN1-	_	-	_	_	_	SEG7	—	_	_
RA2	4	19	21	21	Y	AN2/ VREF-	—	C2IN+/ DACOUT	—	_	_	—	—	COM2	—	_	—
RA3	5	20	22	22	Y	AN3/ VREF+	—	C1IN+	—	_	_	—	—	SEG15	—	—	—
RA4	6	21	23	23	Y	—	CPS6	C10UT	SRQ	T0CKI		-	—	SEG4		I	_
RA5	7	22	24	24	Y	AN4	CPS7	C2OUT ⁽¹⁾	SRNQ ⁽¹⁾			—	SS ⁽¹⁾	SEG5	-	I	VCAP
RA6	14	29	31	33	_	-	_	_	_	_	_	_	_	SEG1		_	OSC2/ CLKOUT VCAP
RA7	13	28	30	32	—	—	—	-	—		-	—	—	SEG2	—	-	OSC1/ CLKIN
RB0	33	8	8	9	Y	AN12	CPS0	_	SRI	_	_	—	—	SEG0	INT/ IOC	Y	—
RB1	34	9	9	10	Y	AN10	CPS1	C12IN3-	—		_	—	—	VLCD1	IOC	Y	—
RB2	35	10	10	11	Y	AN8	CPS2		_			_	_	VLCD2	IOC	Υ	_
RB3	36	11	11	12	Y	AN9	CPS3	C12IN2-	—		CCP2 ⁽¹⁾ / P2A ⁽¹⁾	—	_	VLCD3	IOC	Y	_
RB4	37	12	14	14	Y	AN11	CPS4	_	—			—	—	COM0	IOC	Y	—
RB5	38	13	15	15	Y	AN13	CPS5		_	T1G ⁽¹⁾	CCP3 ⁽¹⁾ / P3A ⁽¹⁾	—	—	COM1	IOC	Y	—
RB6	39	14	16	16	—	-	—		_	—		—	—	SEG14	IOC	Y	ICSPCLK/ ICDCLK
RB7	40	15	17	17	_	_	_	_	_	_	_	_	—	SEG13	IOC	Y	ICSPDAT/ ICDDAT
RC0	15	30	32	34	-	—	—	-	_	T1OSO/ T1CKI	P2B ⁽¹⁾	—	—		—	-	_
RC1	16	31	35	35	-	_		_	_	T1OSI	CCP2 ⁽¹⁾ / P2A ⁽¹⁾	_	_	_	_	-	_
RC2	17	32	36	36	-	-		_	_		CCP1/ P1A	—		SEG3	_	_	_
RC3	18	33	37	37	-	—	—	-	—		-	—	SCK/SCL	SEG6	_	_	_
RC4	23	38	42	42	—			—	_	T1G ⁽¹⁾	—	-	SDI/SDA	SEG11	—	_	_
RC5	24	39	43	43	—	_	_	_	_	_	_	-	SDO	SEG10	_	_	_
RC6	25	40	44	44		_		_		—	_	TX/CK	_	SEG9		_	
RC7	26	1	1	1					_	_		RX/DT	—	SEG8	_	_	
RD0 RD1	19 20	34 35	38 39	38 39	Y Y	_	CPS8 CPS9	_	_		CCP4	_		COM3	_	_	_
RD2	21	36	40	40	Y	_	CPS10	_	_	_	P2B ⁽¹⁾	_	_	_	_	_	_
RD3	22	37	41	41	Y	_	CPS11	_	_	-	P2C	_		SEG16	_	_	_
RD4	27	2	2	2	Y	_	CPS12	_	_	_	P2D		_	SEG17	-	_	_
RD5	28	3	3	3	Y	_	CPS13	_	_	_	P1B	_	_	SEG18	—	_	_
RD6	29	4	4	4	Y	_	CPS14	_	—	_	P1C	—	—	SEG19	—	_	_
RD7	30	5	5	5	Y	_	CPS15	_	—	_	P1D	—	—	SEG20	-	—	—
RE0	8	23	25	25	Y	AN5	—	_	_	_	CCP3 ⁽¹⁾ P3A ⁽¹⁾	_	—	SEG21	—	—	_
RE1	9	24	26	26	Y	AN6	—		—		P3B	—	—	SEG22	—		—
RE2	10	25	27	27	Y	AN7	—		_	_	CCP5	_		SEG23	—	I	
RE3	1	16	18	18	_	_	_	_	_	_	_	_	_	_	_	Y	MCLR/VPP
Vdd	11, 32	7, 26	7, 28	7,8, 28	—	—	—	—	—	—	—	—	—	_	—	—	VDD
Vss	12, 31	6, 27	6, 29	6,30, 31	—	—	-	_	-	_	_	—	—	_	—	—	Vss
Note	4.		un oti		hom	avad uai		FCON regis	tor								

Note 1: Pin functions can be moved using the APFCON register.

TABLE 3-9:PIC16(L)F1936 MEMORY MAP,
BANK 15

		Bank 15	
791	h	LCDCON	
792		LCDPS	
793		LCDREF	
793		LCDCST	
794		LCDRL	
796		_	
790			
797		LCDSE0	
798		LCDSE1	
		LODGET	
79A			
79B			
790		_	
79D		_	
79E		—	
79F			
7A0 7A1		LCDDATA0 LCDDATA1	
7A1		LODDAIAI	
7A2 7A3		LCDDATA3	
7A3		LCDDATA4	
7A5		_	
7A6		LCDDATA6	
7A7	'n	LCDDATA7	
7A8		—	
7A9		LCDDATA9	
744		LCDDATA10	
7AB			
7AC		—	
7AD		—	
7AE		_	
7AF		_	
7B0		_	
7B1		—	
7B2	h	—	
7B3		—	
7B4	h	—	
7B5	h	_	
7B6	h	_	
7B7	'n	—	
7B8	h		
		Unimplemented	
		Read as '0'	
7EF	ĥ		
Legend:		= Unimplemented d	ata memory locations, read
Logona.	as	'0'.	ala memory locations, rea

TABLE 3-10:PIC16(L)F1934/7 MEMORY
MAP, BANK 15

	,	
	Bank 15	
791h	LCDCON	
792h	LCDPS	
793h	LCDREF	
794h	LCDCST	
795h	LCDRL	
796h	_	
797h		
797h 798h	LCDSE0	
	LCDSE1	
799h	LCDSE1	
79Ah	LCDSEZ	
79Bh	—	
79Ch	—	
79Dh	—	
79Eh	—	
79Fh	—	
7A0h	LCDDATA0	
7A1h	LCDDATA1	
7A2h 7A3h	LCDDATA2 LCDDATA3	
7A311 7A4h	LCDDATA4	
7A5h	LCDDATA5	
7A6h	LCDDATA6	
7A7h	LCDDATA7	
7A8h	LCDDATA8	
7A9h 7AAh	LCDDATA9 LCDDATA10	
7ABh	LCDDATA10	
7ACh	_	
7ADh		
7AEh		
7AFh		
7B0h		
7B1h	_	
7B2h		
7B3h	—	
7B4h		
7B5h	—	
7B6h	—	
7B7h	—	
7B8h		
	Unimplemented Read as '0'	
7EFh		
Legend: as	= Unimplemented d	ata memory locations, read

TABLE 3-11:PIC16(L)F1934/6/7 MEMORYMAP, BANK 31

		Bank 31	
	F8Ch		
		Unimplemented Read as '0'	
	FE3h		
	FE4h	STATUS_SHAD	
	FE5h	WREG_SHAD	
	FE6h	BSR_SHAD	
	FE7h	PCLATH_SHAD	
	FE8h	FSR0L_SHAD	
	FE9h	FSR0H_SHAD	
	FEAh	FSR1L_SHAD	
	FEBh	FSR1H_SHAD	
	FECh	—	
	FEDh	STKPTR	
	FEEh	TOSL	
	FEFh	TOSH	
Lege		= Unimplemented data '0'.	memory locations, read

3.2.6 SPECIAL FUNCTION REGISTERS SUMMARY

The Special Function Register Summary for the device family are as follows:

Device	Bank(s)	Page No.
	0	39
	1	40
	2	41
	3	42
	4	43
	5	44
PIC16(L)F1934/6/7	6	45
	7	46
	8	47
	9-14	48
	15	49
	16-30	51
	31	52

5.2.2.6 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4X PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Word 1 must be set to use the INTOSC source as the device system clock (FOSC<2:0> = 100).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<2:0> in Configuration Word 1 (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4xPLL, or the PLLEN bit of the Configuration Word 2 must be programmed to a '1'.
- Note: When using the PLLEN bit of the Configuration Word 2, the 4xPLL cannot be disabled by software and the 8 MHz HFINTOSC option will no longer be available.

The 4xPLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4xPLL with the internal oscillator.

5.2.2.7 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-7). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 5-7 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-1.

Start-up delay specifications are located in the oscillator tables in the applicable Electrical Specifications Chapter.

5.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

5.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Word 1) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Word 1 configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- Wake-up from Sleep.

TABLE 5-1: OSCI	LLATOR SWITCHING DELAYS
-----------------	-------------------------

Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay (Twarm)
Sleep/POR	EC, RC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Sleep/POR	Timer1 Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
Any clock source	Timer1 Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)

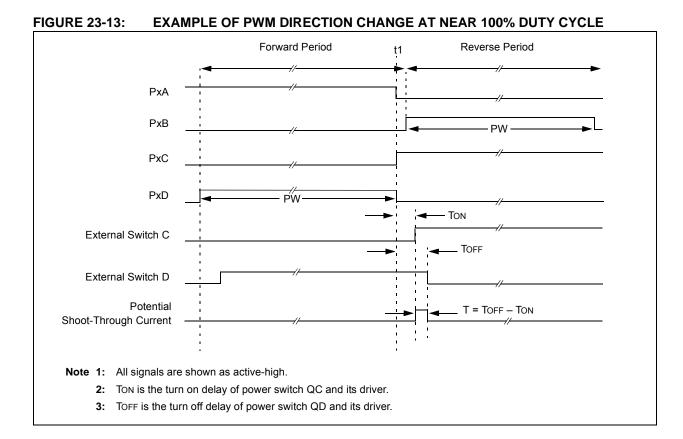
Note 1: PLL inactive.

EXAMPLE 11-4: ERASING ONE ROW OF PROGRAM MEMORY -

;	This	row	erase	routine	assumes	the	following:
---	------	-----	-------	---------	---------	-----	------------

; 1. A valid address within the erase block is loaded in ADDRH:ADDRL

; 2. ADDRH and ADDRL are located in shared data memory $0 \, x \, 70$ - $0 \, x \, 7F$ (common RAM)

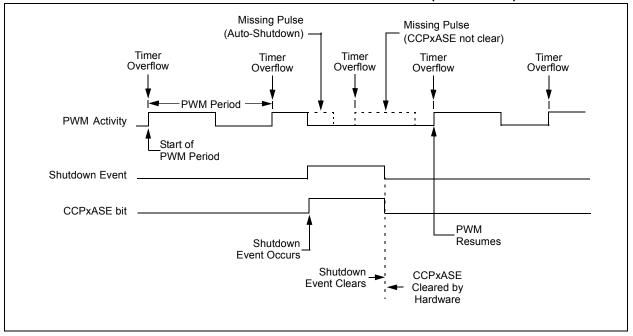

	BCF	INTCON, GIE	; Disable ints so required sequences will execute properly
	BANKSEL	EEADRL	
	MOVF	ADDRL,W	; Load lower 8 bits of erase address boundary
	MOVWF	EEADRL	
	MOVF	ADDRH,W	; Load upper 6 bits of erase address boundary
	MOVWF	EEADRH	
	BSF	EECON1,EEPGD	; Point to program memory
	BCF	EECON1,CFGS	; Not configuration space
	BSF	EECON1, FREE	; Specify an erase operation
	BSF	EECON1,WREN	; Enable writes
			
	MOVLW	55h	; Start of required sequence to initiate erase
	MOVWF	EECON2	; Write 55h
Required Sequence	MOVLW	0AAh	i
uire	MOVWF	EECON2	; Write AAh
ed	BSF	EECON1,WR	; Set WR bit to begin erase
ч	NOP		; Any instructions here are ignored as processor
			; halts to begin erase sequence
	NOP		; Processor will stop here and wait for erase complete.
			; after erase processor continues with 3rd instruction
	BCF	EECON1,WREN	; Disable writes
	BSF	INTCON,GIE	; Enable interrupts

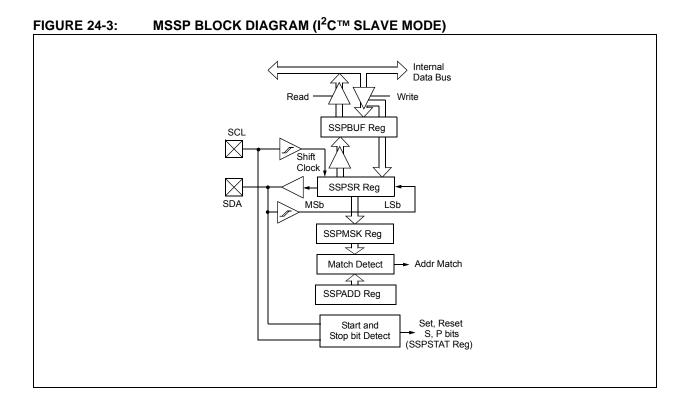
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
ADCON0				CHS<4:0	>		GO/DONE	ADON	163		
ANSELB		—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	139		
APFCON		CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	131		
CCPxCON	PxM∙	<1:0>	DCxB	<1:0>		CCPxM<	3:0>	3:0>			
CPSCON0	CPSON	_	_	—	CPSRNG	<1:0>	CPSOUT	TOXCS	323		
CPSCON1	-	_	_	_		CPSCH	<3:>		324		
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98		
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	152		
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	152		
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	152		
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	138		
LCDCON	LCDEN	SLPEN	WERR		CS<1:	S<1:0> LMUX<1:0>		<1:0>	329		
LCDSE0	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	333		
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	333		
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		193		
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	138		
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS	T1GSS<1:0>			
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	138		
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	139		

TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

NOTES:




23.4.4 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PxRSEN bit in the PWMxCON register.

If auto-restart is enabled, the CCPxASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the CCPxASE bit will be cleared via hardware and normal operation will resume.

FIGURE 23-15: PWM AUTO-SHUTDOWN WITH AUTO-RESTART (PXRSEN = 1)

24.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Slave Select (SS)

Figure 24-1 shows the block diagram of the MSSP module when operating in SPI Mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 24-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 24-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on

its SDO pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its shift register.

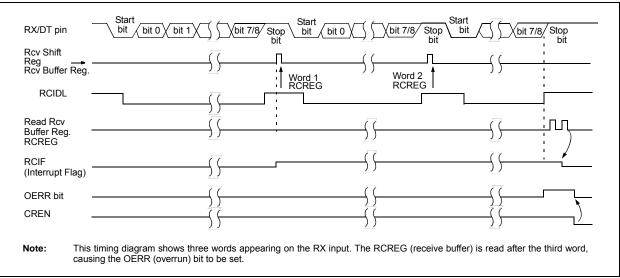
After 8 bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.


Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

- 25.1.2.8 Asynchronous Reception Set-up:
- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

25.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 25-5: ASYNCHRONOUS RECEPTION

26.5 Timer Resources

To measure the change in frequency of the capacitive sensing oscillator, a fixed time base is required. For the period of the fixed time base, the capacitive sensing oscillator is used to clock either Timer0 or Timer1. The frequency of the capacitive sensing oscillator is equal to the number of counts in the timer divided by the period of the fixed time base.

26.6 Fixed Time Base

To measure the frequency of the capacitive sensing oscillator, a fixed time base is required. Any timer resource or software loop can be used to establish the fixed time base. It is up to the end user to determine the method in which the fixed time base is generated.

Note:	The fixed time base can not be generated
	by the timer resource that the capacitive
	sensing oscillator is clocking.

26.6.1 TIMER0

To select Timer0 as the timer resource for the CPS module:

- Set the T0XCS bit of the CPSCON0 register.
- Clear the TMR0CS bit of the OPTION_REG register.

When Timer0 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer0. Refer to **Section 20.0** "**Timer0 Module**" for additional information.

26.6.2 TIMER1

To select Timer1 as the timer resource for the CPS module, set the TMR1CS<1:0> of the T1CON register to '11'. When Timer1 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer1. Because the Timer1 module has a gate control, developing a time base for the frequency measurement can be simplified by using the Timer0 overflow flag.

It is recommend that the Timer0 overflow flag, in conjunction with the Toggle mode of the Timer1 gate, be used to develop the fixed time base required by the software portion of the CPS module. Refer to **Section 21.12 "Timer1 Gate Control Register"** for additional information.

TABLE 26-2: TIMER1 ENABLE FUNCTION

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	On
1	1	Count Enabled by input

26.7 Software Control

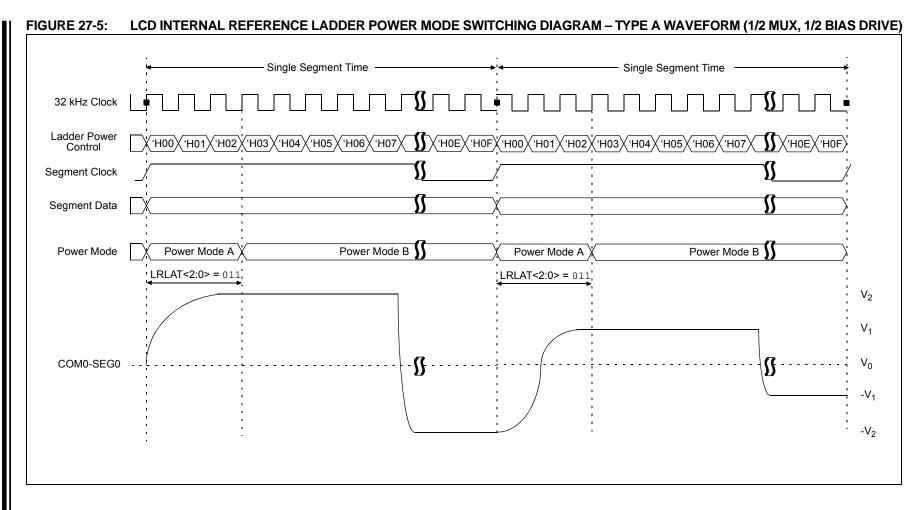
The software portion of the CPS module is required to determine the change in frequency of the capacitive sensing oscillator. This is accomplished by the following:

- Setting a fixed time base to acquire counts on Timer0 or Timer1.
- Establishing the nominal frequency for the capacitive sensing oscillator.
- Establishing the reduced frequency for the capacitive sensing oscillator due to an additional capacitive load.
- Set the frequency threshold.

26.7.1 NOMINAL FREQUENCY (NO CAPACITIVE LOAD)

To determine the nominal frequency of the capacitive sensing oscillator:

- Remove any extra capacitive load on the selected CPSx pin.
- At the start of the fixed time base, clear the timer resource.
- At the end of the fixed time base save the value in the timer resource.

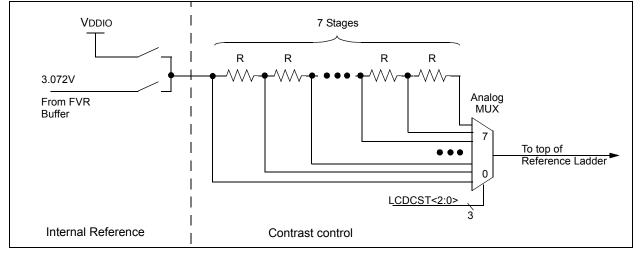

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator for the given time base. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base.

26.7.2 REDUCED FREQUENCY (ADDITIONAL CAPACITIVE LOAD)

The extra capacitive load will cause the frequency of the capacitive sensing oscillator to decrease. To determine the reduced frequency of the capacitive sensing oscillator:

- Add a typical capacitive load on the selected CPSx pin.
- Use the same fixed time base as the nominal frequency measurement.
- At the start of the fixed time base, clear the timer resource.
- At the end of the fixed time base save the value in the timer resource.

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator with an additional capacitive load. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base. This frequency should be less than the value obtained during the nominal frequency measurement.


27.4.4 CONTRAST CONTROL

The LCD contrast control circuit consists of a seven-tap resistor ladder, controlled by the LCDCST bits. Refer to Figure 27-7.

The contrast control circuit is used to decrease the output voltage of the signal source by a total of approximately 10%, when LCDCST = 111.

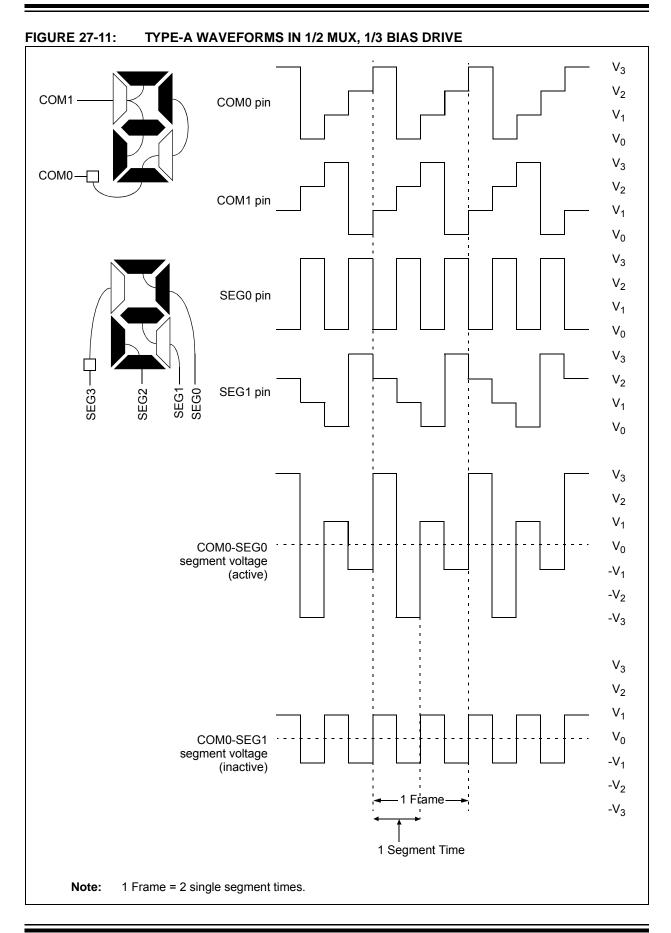
Whenever the LCD module is inactive (LCDA = 0), the contrast control ladder will be turned off (open).

27.4.5 INTERNAL REFERENCE

Under firmware control, an internal reference for the LCD bias voltages can be enabled. When enabled, the source of this voltage can be either VDDIO or a voltage 3 times the main fixed voltage reference (3.072V). When no internal reference is selected, the LCD contrast control circuit is disabled and LCD bias must be provided externally.

Whenever the LCD module is inactive (LCDA = 0), the internal reference will be turned off.

When the internal reference is enabled and the Fixed Voltage Reference is selected, the LCDIRI bit can be used to minimize power consumption by tieing into the LCD Reference Ladder Automatic Power mode switching. When LCDIRI = 1 and the LCD reference ladder is in Power mode 'B', the LCD internal FVR buffer is disabled.


Note: The LCD module automatically turns on the Fixed Voltage Reference when needed.

27.4.6 VLCD<3:1> PINS

The VLCD<3:1> pins provide the ability for an external LCD bias network to be used instead of the internal ladder. Use of the VLCD<3:1> pins does not prevent use of the internal ladder. Each VLCD pin has an independent control in the LCDREF register (Register 27-3), allowing access to any or all of the LCD Bias signals. This architecture allows for maximum flexibility in different applications

For example, the VLCD<3:1> pins may be used to add capacitors to the internal reference ladder, increasing the drive capacity.

For applications where the internal contrast control is insufficient, the firmware can choose to only enable the VLCD3 pin, allowing an external contrast control circuit to use the internal reference divider.

28.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the Program Memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSPTM refer to the "*PIC16193X/PIC16LF193X Memory Programming Specification*" (DS41360).

28.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

Some programmers produce VPP greater than VIHH (9.0V), an external circuit is required to limit the VPP voltage. See Figure 28-1 for example circuit.

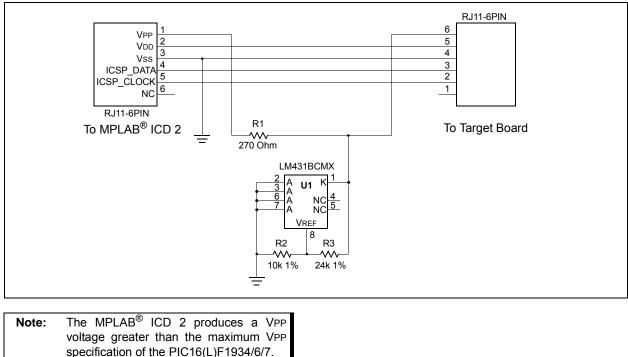


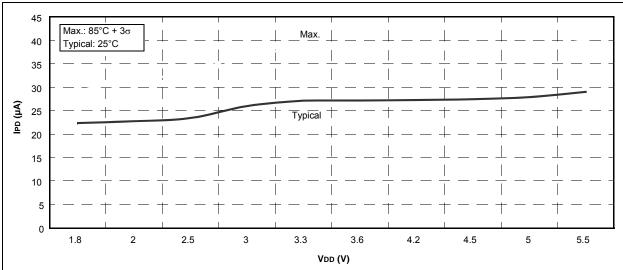
FIGURE 28-1: VPP LIMITER EXAMPLE CIRCUIT

© 2008-2011 Microchip Technology Inc.

		HARACTERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O PORT:					
D032		with TTL buffer	—	_	0.8	V	$4.5V \le V\text{DD} \le 5.5V$
D032A				_	0.15 VDD	V	$1.8V \le V\text{DD} \le 4.5V$
D033		with Schmitt Trigger buffer		_	0.2 VDD	V	$2.0V \le V\text{DD} \le 5.5V$
		with I ² C™ levels	_	_	0.3 VDD	V	
		with SMBus levels	_	_	0.8	V	$2.7V \le V\text{DD} \le 5.5V$
D034		MCLR, OSC1 (RC mode) ⁽¹⁾	_	_	0.2 VDD	V	
D034A		OSC1 (HS mode)		_	0.3 VDD	V	
	Vih	Input High Voltage	11				
		I/O ports:					
D040		with TTL buffer	2.0	_	_	V	$4.5V \leq VDD \leq 5.5V$
D040A			0.25 VDD + 0.8	_	-	V	$1.8V \le VDD \le 4.5V$
D041		with Schmitt Trigger buffer	0.8 VDD	_	_	V	$2.0V \le VDD \le 5.5V$
		with I ² C™ levels	0.7 VDD	_	_	V	
		with SMBus levels	2.1	_	_	V	$2.7V \le VDD \le 5.5V$
D042		MCLR	0.8 VDD			V	
D042 D043A		OSC1 (HS mode)	0.7 VDD			V	
D043A		OSC1 (RC mode)	0.7 VDD 0.9 VDD			V	VDD > 2.0V (Note 1)
00400	lı∟	Input Leakage Current ⁽²⁾	0.3 000		_	v	
	11L	I/O ports	1 1		1.105	~^	Vss \leq VPIN \leq VDD, Pin at high-
D060		i/O pons	_	± 5 ± 5	± 125 ± 1000	nA nA	impedance @ $85^{\circ}C$ 125^{\circ}C
D061		MCLR ⁽³⁾		± 50	± 200	nA	Vss \leq VPIN \leq VDD @ 85°C
1000	IPUR	Weak Pull-up Current		1 30	1 200	ПА	
D070*	IFUR	Weak Full-up Cultent	25	100	200		VDD = 3.3V, VPIN = VSS
0070			25 25	140	300	μA	VDD = 5.3V, $VPIN = VSSVDD = 5.0V$, $VPIN = VSS$
	Vol	Output Low Voltage ⁽⁴⁾				part	
D080	VOL	I/O ports					IOL = 8mA, VDD = 5V
2000			_	_	0.6	V	IOL = 6mA, VDD = 3.3V
							IOL = 1.8mA, VDD = 1.8V
	Voh	Output High Voltage ⁽⁴⁾					
D090		I/O ports					ІОН = 3.5mA, VDD = 5V
		·	VDD - 0.7	_	_	V	ЮН = 3mA, VDD = 3.3V
							Іон = 1mA, VDD = 1.8V
		Capacitive Loading Specs on Output Pins					
D101*	COSC2	OSC2 pin	—	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D104 4+	Cio				50	~ -	
D101A*	Cio	All I/O pins arameters are characterized but	—	—	50	pF	l

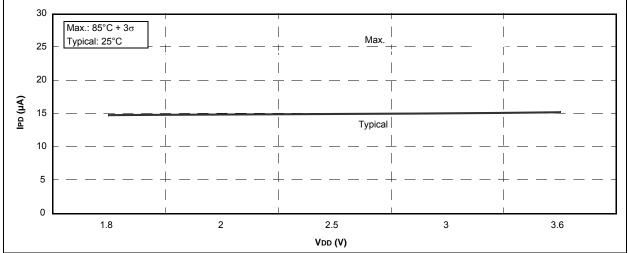
30.4 DC Characteristics: PIC16(L)F1934/6/7-I/E

These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.


3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

