

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1937-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-11:PIC16(L)F1934/6/7 MEMORYMAP, BANK 31

	Bank 31							
	F8Ch							
		Unimplemented Read as '0'						
	FE3h							
	FE4h	STATUS_SHAD						
	FE5h	WREG_SHAD						
FE6h		BSR_SHAD						
FE7h		PCLATH_SHAD						
	FE8h	FSR0L_SHAD						
	FE9h	FSR0H_SHAD						
	FEAh	FSR1L_SHAD						
	FEBh	FSR1H_SHAD						
	FECh	—						
	FEDh	STKPTR						
	FEEh	TOSL						
	FEFh	TOSH						
Lege	Legend: = Unimplemented data memory locations, read as '0'.							

3.2.6 SPECIAL FUNCTION REGISTERS SUMMARY

The Special Function Register Summary for the device family are as follows:

Device	Bank(s)	Page No.
	0	39
	1	40
	2	41
	3	42
	4	43
	5	44
PIC16(L)F1934/6/7	6	45
	7	46
	8	47
	9-14	48
	15	49
	16-30	51
	31	52

REGISTER 4-2: CONFIGURATION WORD 2

R/P-1/1	R/P-1/1	U-1	R/P-1/1	R/P-1/1	R/P-1/1	U-1
LVP ⁽¹⁾	DEBUG ⁽³⁾	_	BORV	STVREN	PLLEN	—
bit 13						bit 7

U-1	R/P-1/1	R/P-1/1	U-1	U-1	R/P-1/1	R/P-1/1
—	VCAPEN<1:0> ⁽²⁾		—	—	WRT1	WRT0
bit 6						bit 0

Legend:							
R = Readable b	t P = Programmable bit	U = Unimplemented bit, read as '1'					
'0' = Bit is cleare	ed '1' = Bit is set	-n = Value when blank or after Bulk Erase					
bit 13	LVP: Low-Voltage Programming Enable bit 1 = Low-voltage programming enabled 0 = High-voltage on MCLR/VPP must be use						
bit 12 DEBUG: In-Circuit Debugger Mode bit ⁽³⁾ 1 = In-Circuit Debugger disabled, RB6/ICSPCLK and RB7/ICSPDAT are general purpose I/O pins 0 = In-Circuit Debugger enabled, RB6/ICSPCLK and RB7/ICSPDAT are dedicated to the debugger							
bit 11	Unimplemented: Read as '1'						
bit 10	BORV: Brown-out Reset Voltage Selection 1 1 = Brown-out Reset voltage set to 1.9V 0 = Brown-out Reset voltage set to 2.5V	bit					
bit 9 STVREN: Stack Overflow/Underflow Reset Enable bit 1 = Stack Overflow or Underflow will cause a Reset 0 = Stack Overflow or Underflow will not cause a Reset							
bit 8	PLLEN: PLL Enable bit 1 = 4xPLL enabled 0 = 4xPLL disabled						
bit 7-6	Unimplemented: Read as '1'						
bit 5-4	VCAPEN<1:0>: Voltage Regulator Capacito 00 = VCAP functionality is enabled on RA0 01 = VCAP functionality is enabled on RA5 10 = VCAP functionality is enabled on RA6 11 = No capacitor on VCAP pin	or Enable bits ⁽²⁾					
bit 3-2	Unimplemented: Read as '1'						
bit 1-0	01 = 000h to 7FFh write-protected, 80 00 = 000h to FFFh write-protected, no <u>8 kW Flash memory (PIC16(L)F1936 and P</u> 11 = Write protection off 10 = 000h to 1FFh write-protected, 20 01 = 000h to FFFh write-protected, 10	0h to FFFh may be modified by EECON control 0h to FFFh may be modified by EECON control addresses may be modified by EECON control					

Note 1: The LVP bit cannot be programmed to '0' when Programming mode is entered via LVP.

- **2:** Reads as '11' on PIC16LF193X only.
- **3:** The DEBUG bit in Configuration Word is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

7.6.3 PIE2 REGISTER

The PIE2 register contains the interrupt enable bits, as shown in Register 7-3.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	—	CCP2IE
bit 7							bit 0

Legend:			
R = Readat	ole bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is ur	nchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is s	et	'0' = Bit is cleared	
bit 7	OSFIE: Os	cillator Fail Interrupt Enable	bit
		es the Oscillator Fail interrup es the Oscillator Fail interrup	
bit 6	C2IE: Com	parator C2 Interrupt Enable	bit
		es the Comparator C2 interrules the Comparator C2 interrules the Comparator C2 interr	•
bit 5	C1IE: Com	parator C1 Interrupt Enable	bit
		es the Comparator C1 interrunt the Comparator C1 interrunt the Comparator C1 interr	1
bit 4	EEIE: EEP	ROM Write Completion Inter	rrupt Enable bit
		es the EEPROM Write Comp es the EEPROM Write Com	•
bit 3	1 = Enable	SP Bus Collision Interrupt E the MSSP Bus Collision Ir es the MSSP Bus Collision I	nterrupt
bit 2	LCDIE: LC 1 = Enable	D Module Interrupt Enable b the LCD module interrupt the LCD module interrupt	Dit
bit 1		ented: Read as '0'	
bit 0	CCP2IE: C	CP2 Interrupt Enable bit	
		es the CCP2 interrupt es the CCP2 interrupt	

11.0 DATA EEPROM AND FLASH PROGRAM MEMORY CONTROL

The data EEPROM and Flash program memory are readable and writable during normal operation (full VDD range). These memories are not directly mapped in the register file space. Instead, they are indirectly addressed through the Special Function Registers (SFRs). There are six SFRs used to access these memories:

- EECON1
- EECON2
- EEDATL
- EEDATH
- EEADRL
- EEADRH

When interfacing the data memory block, EEDATL holds the 8-bit data for read/write, and EEADRL holds the address of the EEDATL location being accessed. These devices have 256 bytes of data EEPROM with an address range from 0h to 0FFh.

When accessing the program memory block, the EEDATH:EEDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the EEADRL and EEADRH registers form a 2-byte word that holds the 15-bit address of the program memory location being read.

The EEPROM data memory allows byte read and write. An EEPROM byte write automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

Depending on the setting of the Flash Program Memory Self Write Enable bits WRT<1:0> of the Configuration Word 2, the device may or may not be able to write certain blocks of the program memory. However, reads from the program memory are always allowed.

When the device is code-protected, the device programmer can no longer access data or program memory. When code-protected, the CPU may continue to read and write the data EEPROM memory and Flash program memory.

11.1 EEADRL and EEADRH Registers

The EEADRH:EEADRL register pair can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 32K words of program memory.

When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADRL register. When selecting a EEPROM address value, only the LSB of the address is written to the EEADRL register.

11.1.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for EE memory accesses.

Control bit EEPGD determines if the access will be a program or data memory access. When clear, any subsequent operations will operate on the EEPROM memory. When set, any subsequent operations will operate on the program memory. On Reset, EEPROM is selected by default.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

Interrupt flag bit EEIF of the PIR2 register is set when write is complete. It must be cleared in the software.

Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence. To enable writes, a specific pattern must be written to EECON2.

17.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DACOUT pin
- Capacitive Sensing module (CSM)

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACCON0 register.

EQUATION 17-1: DAC OUTPUT VOLTAGE

$\frac{IF DACEN = 1}{Vout}$ $Vout = \left((VSOURCE+ - VSOURCE-) \times \frac{DACR[4:0]}{2^5} \right) + VSOURCE \frac{IF DACEN = 0 \& DACLPS = 1 \& DACR[4:0] = 11111}{Vout}$ Vout = VSOURCE + $\frac{IF DACEN = 0 \& DACLPS = 0 \& DACR[4:0] = 00000}{Vout}$ Vout = VSOURCE -

VSOURCE+ = VDD, VREF, or FVR BUFFER 2

VSOURCE - = VSS

17.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in the applicable Electrical Specifications chapter.

17.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the DACCON1 register.

The DAC output voltage is determined by the following equations:

17.3 DAC Voltage Reference Output

The DAC can be output to the DACOUT pin by setting the DACOE bit of the DACCON0 register to '1'. Selecting the DAC reference voltage for output on the DACOUT pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACOUT pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to DACOUT. Figure 17-2 shows an example buffering technique.

18.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See the applicable Electrical Specifications Chapter for more information.

18.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 21.6 "Timer1 Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

18.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from either comparator, C1 or C2, can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 18-2) and the Timer1 Block Diagram (Figure 22-1) for more information.

18.5 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- CxON, CxPOL and CxSP bits of the CMxCON0 register
- CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

18.6 Comparator Positive Input Selection

Configuring the CxPCH<1:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- CxIN+ analog pin
- DAC
- FVR (Fixed Voltage Reference)
- · Vss (Ground)

See Section 14.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 17.0 "Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

Note: Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the CxPOL bit of the CMxCON0 register, or by switching the comparator on or off with the CxON bit of the CMxCON0 register.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit		nented bit, read				
u = Bit is unch	anged	x = Bit is unki		-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is cle	ared						
1. 1. 7									
bit 7		•	al Set Enable b						
			ne SRI pin is hi n the set input	gn. of the SR Latcł	า				
bit 6	SRSCKE: SF	R Latch Set Clo	ock Enable bit						
	1 = Set input of SR Latch is pulsed with SRCLK								
	0 = SRCLK has no effect on the set input of the SR Latch								
bit 5		R Latch C2 Set							
				ator output is hi	gh of the SR Latch	_			
bit 4	•	R Latch C1 Set		in the set input	of the SK Lato	1			
DIL 4				ator output is hi	ab				
					of the SR Latch	า			
bit 3	•		al Reset Enabl	•					
		•	the SRI pin is						
	0 = SRI pin h	nas no effect or	n the reset inpu	ut of the SR Lat	tch				
bit 2	SRRCKE: SF	R Latch Reset	Clock Enable b	oit					
			n is pulsed with						
			•	ut of the SR La	tch				
bit 1		R Latch C2 Res							
				arator output is	high ut of the SR La	tch			
bit 0	•	R Latch C1 Res							
Dit U				arator output is	hiah				
					ut of the SR La	tch			
		-							

REGISTER 19-2: SRCON1: SR LATCH CONTROL 1 REGISTER

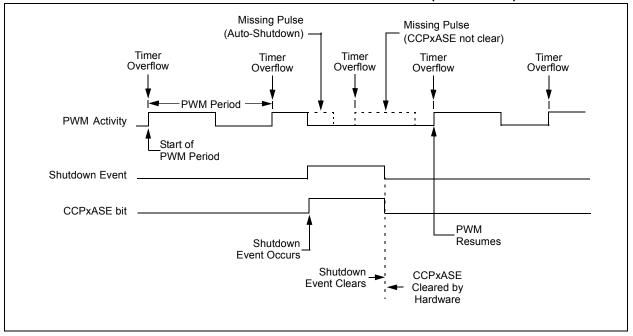
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	134
SRCON0	SRLEN	SRCLK<2:0>			SRQEN	SRNQEN	SRPS	SRPR	189
SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	190
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	133

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the SR Latch module.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	139
CCP1CON	P1M	<1:0>	DC1B	<1:0>		CCP1N	1<3:0>		234
CCP2CON	P2M	<1:0>	DC2B	<1:0>		CCP2N	1<3:0>		234
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	99
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	102
TMR1H	Holding Regi	ster for the M	ost Significan	t Byte of the	16-bit TMR1 F	Register			199*
TMR1L	Holding Regi	ster for the Le	east Significa	nt Byte of the	16-bit TMR1	Register			199*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	138
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
T1CON	TMR1C	S<1:0>	T1CKPS<1:0>		T1OSCEN	T1SYNC	_	TMR10N	203
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS<1:0>		204

TABLE 21-5:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1
-------------	---

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.


* Page provides register information.

23.4.4 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PxRSEN bit in the PWMxCON register.

If auto-restart is enabled, the CCPxASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the CCPxASE bit will be cleared via hardware and normal operation will resume.

FIGURE 23-15: PWM AUTO-SHUTDOWN WITH AUTO-RESTART (PXRSEN = 1)

24.3 I²C Mode Overview

The Inter-Integrated Circuit Bus (I^2C) is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A Slave device is controlled through addressing.

The I²C bus specifies two signal connections:

- · Serial Clock (SCL)
- Serial Data (SDA)

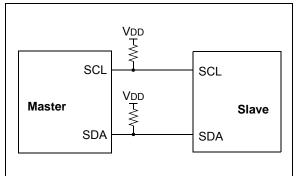
Figure 24-11 shows the block diagram of the MSSP module when operating in I^2C Mode.

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 24-11 shows a typical connection between two processors configured as master and slave devices.

The I^2C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:


- Master Transmit mode (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDA line while the SCL line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.

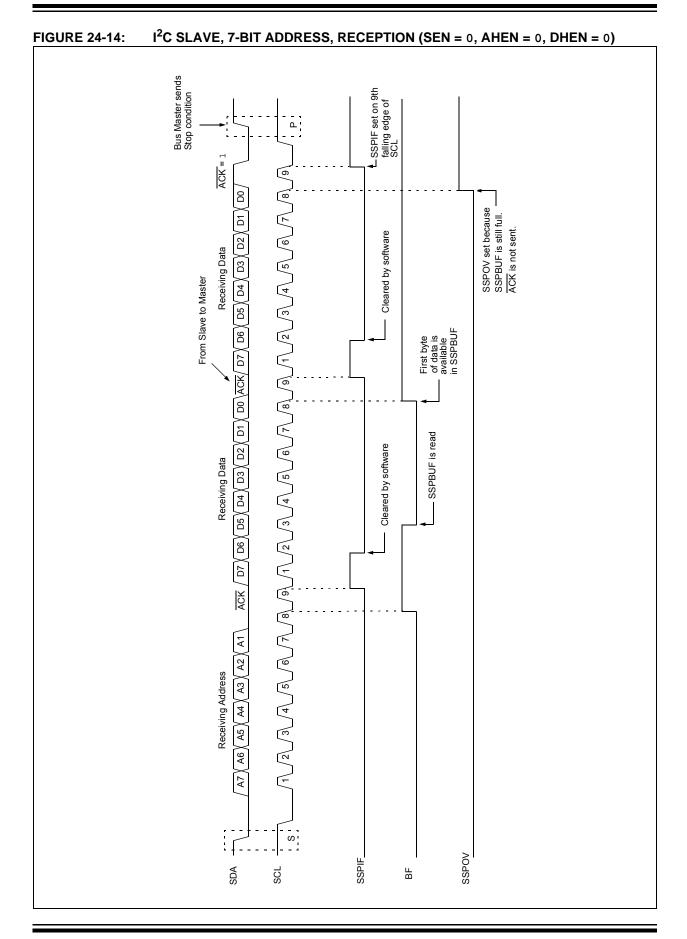
FIGURE 24-11: I²C MASTER/ SLAVE CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDA line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

The transition of a data bit is always performed while the SCL line is held low. Transitions that occur while the SCL line is held high are used to indicate Start and Stop bits.

If the master intends to write to the slave, then it repeatedly sends out a byte of data, with the slave responding after each byte with an \overline{ACK} bit. In this example, the master device is in Master Transmit mode and the slave is in Slave Receive mode.

If the master intends to read from the slave, then it repeatedly receives a byte of data from the slave, and responds after each byte with an ACK bit. In this example, the master device is in Master Receive mode and the slave is Slave Transmit mode.


On the last byte of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in Receive mode, it sends the Stop bit in place of the last ACK bit. A Stop bit is indicated by a low-to-high transition of the SDA line while the SCL line is held high.

In some cases, the master may want to maintain control of the bus and re-initiate another transmission. If so, the master device may send another Start bit in place of the Stop bit or last ACK bit when it is in receive mode.

The I²C bus specifies three message protocols;

- Single message where a master writes data to a slave.
- Single message where a master reads data from a slave.
- Combined message where a master initiates a minimum of two writes, or two reads, or a combination of writes and reads, to one or more slaves.

PIC16(L)F1934/6/7

R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unc	hanged	x = Bit is unk	nown		at POR and BO		other Resets
'1' = Bit is set	t	'0' = Bit is cle	ared	HC = Cleared	by hardware	S = User set	
bit 7	1 = Enable in		•	• •	or 00h) is receiv	ed in the SSPS	SR
bit 6	1 = Acknowle	cknowledge Si edge was not r edge was recei		mode only)			
bit 5	<u>In Receive m</u>	ode: itted when the owledge	i bit (in I ² C mod user initiates a	• •	e sequence at t	the end of a rea	ceive
bit 4	In Master Re 1 = Initiate / Automati	ceive mode:	sequence on by hardware.	·	ter mode only) CL pins, and	transmit ACk	(DT data bit.
bit 3	1 = Enables I	Receive mode	(in I ² C Master for I ² C	mode only)			
bit 2	SCKMSSP R	ondition Enable elease Contro			/) atically cleared	by hardware.	
bit 1	RSEN: Repe 1 = Initiate R	ated Start Con	condition on S	-	ster mode only) ins. Automatica	lly cleared by h	nardware.
bit 0	In Master mo 1 = Initiate St 0 = Start cond In Slave mod 1 = Clock stre	<u>de:</u> art condition o dition Idle <u>e:</u>	bled for both sla	L pins. Automa	nly) atically cleared nd slave receive	-	ed)
Note 1: Fo	or bits ACKEN, F	RCEN. PEN. R	SEN. SEN: If t	he I ² C module	is not in the Idl	e mode. this bi	t mav not be

REGISTER 24-3: SSPCON2: SSP CONTROL REGISTER 2

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

	SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
DATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	_	—	_		_		_	_	300	0.16	207	
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_	
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_	
115.2k	—	_	—	—	_	—	115.2k	0.00	1	—	_	—	

TABLE 25-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			
RATE Ac	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303	
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575	
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
DATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207	
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_	
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_	
115.2k	—	_	_	_	_	_	115.2k	0.00	1	_	_	—	

25.5 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

25.5.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Reception (see Section 25.4.2.4 "Synchronous Slave Reception Set-up:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

25.5.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Transmission (see Section 25.4.2.2 "Synchronous Slave Transmission Set-up:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXIE of the PIE1 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXREG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

PIC16(L)F1934/6/7

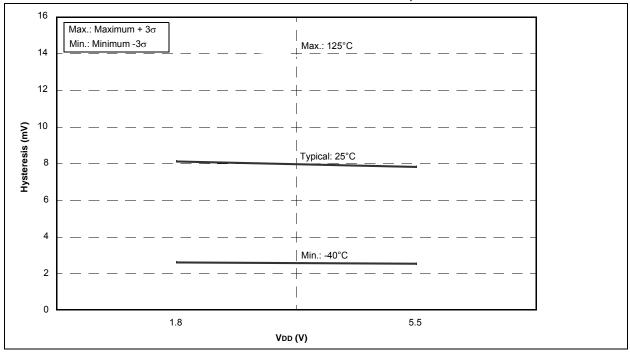
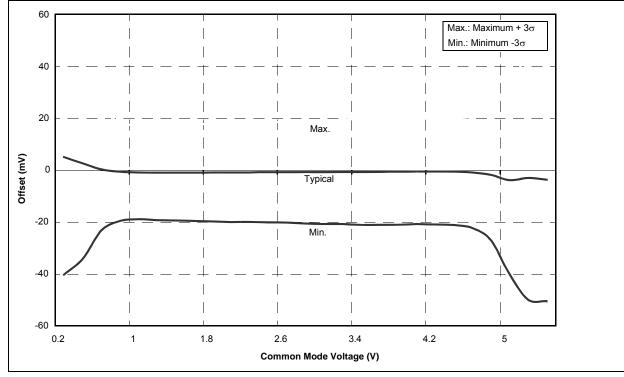



FIGURE 31-7: PIC16F1934/6/7 COMPARATOR HYSTERESIS, LOW-POWER MODE

32.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

32.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

32.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

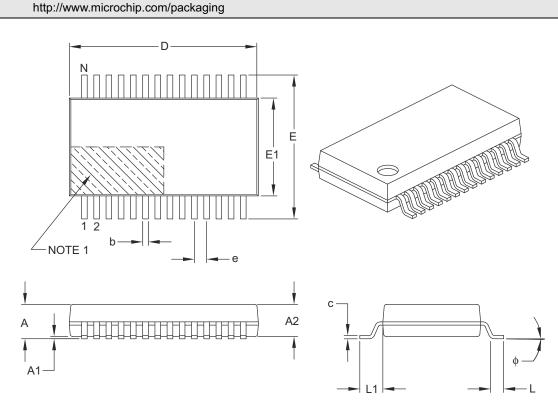
The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

32.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.


The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

32.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

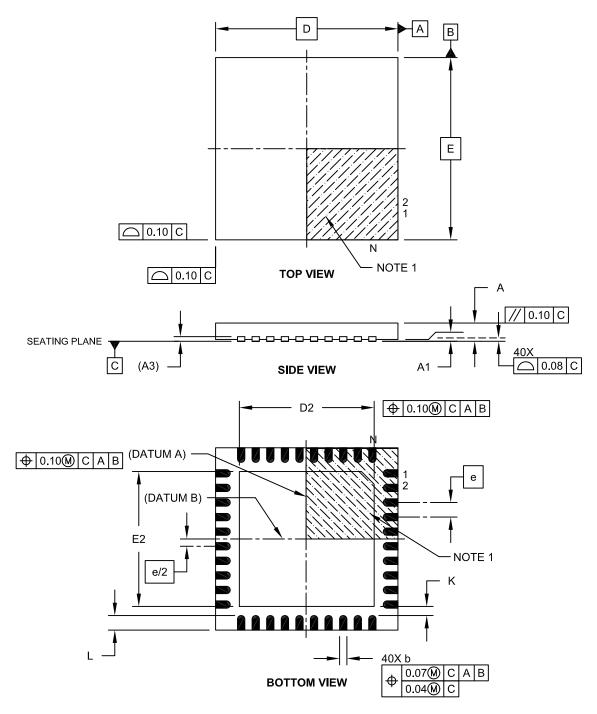
- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

For the most current package drawings, please see the Microchip Packaging Specification located at

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	Units	MILLIMETERS				
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		0.65 BSC			
Overall Height	А	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1		1.25 REF			
Lead Thickness	С	0.09	-	0.25		
Foot Angle	ф	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:


Note:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2

PIC16(L)F1934/6/7

NOTES:

PIC16(L)F1934/6/7

NOTES: