

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1937-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-5: PIC16(L)F1936/1937 MEMORY MAP, BANKS 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	INDF0	080h	INDF0	100h	INDF0	180h	INDF0	200h	INDF0	280h	INDF0	300h	INDF0	380h	INDF0
001h	INDF1	081h	INDF1	101h	INDF1	181h	INDF1	201h	INDF1	281h	INDF1	301h	INDF1	381h	INDF1
002h	PCL	082h	PCL	102h	PCL	182h	PCL	202h	PCL	282h	PCL	302h	PCL	382h	PCL
003h	STATUS	083h	STATUS	103h	STATUS	183h	STATUS	203h	STATUS	283h	STATUS	303h	STATUS	383h	STATUS
004h	FSR0L	084h	FSR0L	104h	FSR0L	184h	FSR0L	204h	FSR0L	284h	FSR0L	304h	FSR0L	384h	FSR0L
005h	FSR0H	085h	FSR0H	105h	FSR0H	185h	FSR0H	205h	FSR0H	285h	FSR0H	305h	FSR0H	385h	FSR0H
006h	FSR1L	086h	FSR1L	106h	FSR1L	186h	FSR1L	206h	FSR1L	286h	FSR1L	306h	FSR1L	386h	FSR1L
007h	FSR1H	087h	FSR1H	107h	FSR1H	187h	FSR1H	207h	FSR1H	287h	FSR1H	307h	FSR1H	387h	FSR1H
008h	BSR	088h	BSR	108h	BSR	188h	BSR	208h	BSR	288h	BSR	308h	BSR	388h	BSR
009h	WREG	089h	WREG	109h	WREG	189h	WREG	209h	WREG	289h	WREG	309h	WREG	389h	WREG
00Ah	PCLATH	08Ah	PCLATH	10Ah	PCLATH	18Ah	PCLATH	20Ah	PCLATH	28Ah	PCLATH	30Ah	PCLATH	38Ah	PCLATH
00Bh	INTCON	08Bh	INTCON	10Bh	INTCON	18Bh	INTCON	20Bh	INTCON	28Bh	INTCON	30Bh	INTCON	38Bh	INTCON
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	_	28Ch	_	30Ch	_	38Ch	_
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	_	30Dh	_	38Dh	_
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	_	20Eh	_	28Eh	_	30Eh	_	38Eh	_
00Fh	PORTD ⁽¹⁾	08Fh	TRISD ⁽¹⁾	10Fh	LATD ⁽¹⁾	18Fh	ANSELD ⁽¹⁾	20Fh	_	28Fh	_	30Fh	_	38Fh	_
010h	PORTE	090h	TRISE	110h	LATE ⁽¹⁾	190h	ANSELE ⁽¹⁾	210h	WPUE	290h	—	310h	—	390h	—
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	EEADRL	211h	SSPBUF	291h	CCPR1L	311h	CCPR3L	391h	—
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSPADD	292h	CCPR1H	312h	CCPR3H	392h	_
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	EEDATL	213h	SSPMSK	293h	CCP1CON	313h	CCP3CON	393h	—
014h	_	094h	_	114h	CM2CON1	194h	EEDATH	214h	SSPSTAT	294h	PWM1CON	314h	PWM3CON	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	EECON1	215h	SSPCON1	295h	CCP1AS	315h	CCP3AS	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSPCON2	296h	PSTR1CON	316h	PSTR3CON	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	_	217h	SSPCON3	297h	_	317h	_	397h	_
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	_	218h		298h	CCPR2L	318h	CCPR4L	398h	_
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	—	299h	CCPR2H	319h	CCPR4H	399h	—
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TXREG	21Ah		29Ah	CCP2CON	31Ah	CCP4CON	39Ah	_
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh	—	29Bh	PWM2CON	31Bh	—	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	_	29Ch	CCP2AS	31Ch	CCPR5L	39Ch	_
01Dh	—	09Dh	ADCON0	11Dh	APFCON	19Dh	RCSTA	21Dh	_	29Dh	PSTR2CON	31Dh	CCPR5H	39Dh	_
01Eh	CPSCON0	09Eh	ADCON1	11Eh	_	19Eh	TXSTA	21Eh	_	29Eh	CCPTMRS0	31Eh	CCP5CON	39Eh	_
01Fh	CPSCON1	09Fh	—	11Fh	—	19Fh	BAUDCON	21Fh	—	29Fh	CCPTMRS1	31Fh	—	39Fh	_
020h		0A0h		120h		1A0h		220h		2A0h		320h	General Purpose	3A0h	
			General		General		General		General		General		Register		
			Purpose		Purpose		Purpose		Purpose		Purpose	32Fh	To Bytes		Unimplemented
	General		Register 80 Bytes		Register		Register		Register		Register	330h	Unimplemented		Read as 10
	Purpose		of Dytes		OU Dytes		ou Dytes		of Dytes		of Dytes		Read as '0'		
06Fh	96 Bytes	0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
			Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
0751		0.55	7011 – 7FN	4-5-1	7011 – 7FN		7011 – 7FN	0751	/011 – /FN	055	/011 – /FN	075	70n – 7Fn		7011 – 7FN
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Not available on PIC16(L)F1936.

TABLE 3-11:PIC16(L)F1934/6/7 MEMORY
MAP, BANK 31

	Bank 31								
	F8Ch								
		Unimplemented Read as '0'							
	FE3h								
	FE4h	STATUS_SHAD							
	FE5h	WREG_SHAD							
	FE6h	BSR_SHAD							
	FE7h	PCLATH_SHAD							
	FE8h	FSR0L_SHAD							
	FE9h	FSR0H_SHAD							
	FEAh	FSR1L_SHAD							
	FEBh	FSR1H_SHAD							
	FECh	—							
	FEDh	STKPTR							
	FEEh	TOSL							
	FEFh	TOSH							
Lege	Legend: = Unimplemented data memory locations, read as '0'.								

3.2.6 SPECIAL FUNCTION REGISTERS SUMMARY

The Special Function Register Summary for the device family are as follows:

Device	Bank(s)	Page No.
	0	39
	1	40
	2	41
	3	42
	4	43
	5	44
PIC16(L)F1934/6/7	6	45
	7	46
	8	47
	9-14	48
	15	49
	16-30	51
	31	52

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 4											
200h ⁽²⁾	INDF0	INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)							XXXX XXXX	xxxx xxxx	
201h ⁽²⁾	INDF1	Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)								XXXX XXXX	XXXX XXXX
202h ⁽²⁾	PCL	Program Co	ounter (PC) Le	ast Significant	t Byte					0000 0000	0000 0000
203h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
204h ⁽²⁾	FSR0L	Indirect Data	a Memory Ado	dress 0 Low Po	ointer					0000 0000	uuuu uuuu
205h ⁽²⁾	FSR0H	Indirect Data	a Memory Ado	dress 0 High P	ointer					0000 0000	0000 0000
206h ⁽²⁾	FSR1L	Indirect Data	a Memory Ado	dress 1 Low Po	ointer					0000 0000	uuuu uuuu
207h ⁽²⁾	FSR1H	Indirect Data	a Memory Ado	dress 1 High P	ointer					0000 0000	0000 0000
208h ⁽²⁾	BSR	—	—	—		E	BSR<4:0>			0 0000	0 0000
209h ⁽²⁾	WREG	Working Re	gister							0000 0000	uuuu uuuu
20Ah ^(1, 2)	PCLATH	—	Write Buffer f	or the upper 7	bits of the Pro	ogram Counter	r			-000 0000	-000 0000
20Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
20Ch	—	Unimpleme	nted							—	—
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
20Eh	_	Unimpleme	nted							—	—
20Fh	_	Unimpleme	nted							—	—
210h	WPUE	—	—	—	—	WPUE3	—		—	1	1
211h	SSPBUF	Synchronou	is Serial Port F	Receive Buffer	/Transmit Reg	lister				xxxx xxxx	uuuu uuuu
212h	SSPADD				ADD<7	7:0>				0000 0000	0000 0000
213h	SSPMSK				MSK<7	7:0>				1111 1111	1111 1111
214h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
215h	SSPCON1	WCOL	SSPOV	SSPEN	CKP		SSPM<	3:0>	•	0000 0000	0000 0000
216h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSPCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h	_	Unimpleme	nted			•	•	•	•	_	_
219h	_	Unimpleme	nted							_	_
21Ah	_	Unimpleme	Unimplemented							_	_
21Bh	_	Unimplemented							_	_	
21Ch	—	Unimplemented —							_	_	
21Dh	—	Unimpleme	nted							_	_
21Eh	_	Unimpleme	nted								
21Fh	_	Unimpleme	nted							-	—

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:Legend: Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.$

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'.

4: Unimplemented, read as '1'.

3.5.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

FIGURE 3-11: LINEAR DATA MEMORY MAP

3.5.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower 8 bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished via the FSR/INDF interface. All instructions that access program Flash memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-12: PROGRAM FLASH MEMORY MAP

REGISTER 4-1: CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0
- FOSC<2:0>: Oscillator Selection bits
 - 111 = ECH: External Clock, High-Power mode: CLKIN on RA7/OSC1/CLKIN
 - 110 = ECM: External Clock, Medium-Power mode: CLKIN on RA7/OSC1/CLKIN
 - 101 = ECL: External Clock, Low-Power mode: CLKIN on RA7/OSC1/CLKIN
 - 100 = INTOSC oscillator: I/O function on RA7/OSC1/CLKIN
 - 011 = EXTRC oscillator: RC function on RA7/OSC1/CLKIN
 - 010 = HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN
 - 001 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN
 - 000 = LP oscillator: Low-power crystal on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN
- **Note 1:** Enabling Brown-out Reset does not automatically enable Power-up Timer.
 - 2: The entire data EEPROM will be erased when the code protection is turned off during an erase.
 - 3: The entire program memory will be erased when the code protection is turned off.

5.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources

The oscillator module can be configured in one of eight clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium-Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 32 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (up to 4 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (4 MHz to 20 MHz)
- 7. RC External Resistor-Capacitor (RC).
- 8. INTOSC Internal oscillator (31 kHz to 32 MHz).

Clock Source modes are selected by the FOSC<2:0> bits in the Configuration Word 1. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The EC clock mode relies on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The RC clock mode requires an external resistor and capacitor to set the oscillator frequency.

The INTOSC internal oscillator block produces low, medium, and high frequency clock sources, designated LFINTOSC, MFINTOSC, and HFINTOSC. (see Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these three clock sources.

7.6.7 PIR3 REGISTER

The PIR3 register contains the interrupt flag bits, as shown in Register 7-7.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 7-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| — | CCP5IF | CCP4IF | CCP3IF | TMR6IF | — | TMR4IF | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	Unimplemented: Read as '0'
bit 6	CCP5IF: CCP5 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 5	CCP4IF: CCP4 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 4	CCP3IF: CCP3 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 3	TMR6IF: TMR6 to PR6 Match Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 2	Unimplemented: Read as '0'
bit 1	TMR4IF: TMR4 to PR4 Match Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 0	Unimplemented: Read as '0'

REGISTER 12-20: LATE: PORTE DATA LATCH REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u			
—	—	—	_	—	LATE2	LATE1	LATE0			
bit 7		•					bit 0			
Legend:	Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set '0' = Bit is cleared										

bit 7-3	Unimplemented: Read as '0

bit 2-0 LATE<2:0>: PORTE Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is return of actual I/O pin values.

REGISTER 12-21: ANSELE: PORTE ANALOG SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
—	_	_	—	_	ANSE2 ⁽²⁾	ANSE1 ⁽²⁾	ANSE0 ⁽²⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 ANSE<2:0>: Analog Select between Analog or Digital Function on Pins RE<2:0>, respectively

- 0 = Digital I/O. Pin is assigned to port or digital special function.
- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: ANSELE register is not implemented on the PIC16(L)F1936. Read as '0'

23.4 PWM (Enhanced Mode)

The enhanced PWM function described in this section is available for CCP modules ECCP1, ECCP2 and ECCP3, with any differences between modules noted.

The enhanced PWM mode generates a Pulse-Width Modulation (PWM) signal on up to four different output pins with up to 10 bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- PRx registers
- TxCON registers
- · CCPRxL registers
- CCPxCON registers

The ECCP modules have the following additional PWM registers which control Auto-shutdown, Auto-restart, Dead-band Delay and PWM Steering modes:

- · CCPxAS registers
- PSTRxCON registers
- PWMxCON registers

The enhanced PWM module can generate the following five PWM Output modes:

- Single PWM
- Half-Bridge PWM
- Full-Bridge PWM, Forward Mode
- Full-Bridge PWM, Reverse Mode
- · Single PWM with PWM Steering Mode

To select an Enhanced PWM Output mode, the PxM bits of the CCPxCON register must be configured appropriately.

The PWM outputs are multiplexed with I/O pins and are designated PxA, PxB, PxC and PxD. The polarity of the PWM pins is configurable and is selected by setting the CCPxM bits in the CCPxCON register appropriately.

Figure 23-5 shows an example of a simplified block diagram of the Enhanced PWM module.

Table 23-9 shows the pin assignments for various Enhanced PWM modes.

- Note 1: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.
 - 2: Clearing the CCPxCON register will relinquish control of the CCPx pin.
 - **3:** Any pin not used in the enhanced PWM mode is available for alternate pin functions, if applicable.
 - 4: To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal.

FIGURE 23-5: EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE

23.4.4 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PxRSEN bit in the PWMxCON register.

If auto-restart is enabled, the CCPxASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the CCPxASE bit will be cleared via hardware and normal operation will resume.

FIGURE 23-15: PWM AUTO-SHUTDOWN WITH AUTO-RESTART (PXRSEN = 1)

REGISTER 24-5: SSPMSK: SSP MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
-			MSK	<7:0>					
bit 7							bit 0		
									
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set	t	'0' = Bit is cle	ared						
bit 7-1	MSK<7:1>:	Mask bits							
1 = The received address bit n is compared to SSPADD <n> to detect I^2C address match 0 = The received address bit n is not used to detect I^2C address match</n>						tch			
bit 0	 MSK<0>: Mask bit for I²C Slave mode, 10-bit Address I²C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111): The received address bit 0 is compared to SSPADD<0> to detect I²C address match The received address bit 0 is not used to detect I²C address match 								

I²C Slave mode, 7-bit address, the bit is ignored

'0' = Bit is cleared

REGISTER 24-6: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
			ADD	<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets					

Master mode:

1' = Bit is set

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode — Most Significant Address byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode — Least Significant Address byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

25.3 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCON register selects 16-bit mode.

The SPBRGH, SPBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCON register. In Synchronous mode, the BRGH bit is ignored.

Table 25-3 contains the formulas for determining the baud rate. Example 25-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 25-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is Idle before changing the system clock.

EXAMPLE 25-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

Desired Baud Rate = $\frac{Fosc}{64([SPBRGH:SPBRG] + 1)}$

Solving for SPBRGH:SPBRGL:

C

$X = \frac{FOSC}{\frac{Desired Baud Rate}{64} - 1}$
$=\frac{\frac{16000000}{9600}}{64}-1$
= [25.042] = 25
alculated Baud Rate = $\frac{16000000}{64(25+1)}$
= 9615
Error = $\frac{Calc. Baud Rate - Desired Baud Rate}{Desired Baud Rate}$
$= \frac{(9615 - 9600)}{9600} = 0.16\%$

25.4.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for Synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

25.4.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see **Section 25.4.1.3 "Synchronous Master Transmission")**, except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 25.4.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant 8 bits to the TXREG register.

TABLE 25-9: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	302
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	99
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	102
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	301
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
TXREG	EUSART Transmit Data Register								293*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	300

Legend: — = unimplemented read as '0'. Shaded cells are not used for synchronous slave transmission.

* Page provides register information.

LCD	СОМ	COM0		COM1		2	СОМЗ	
Function	LCDDATAx Address	LCD Segment	LCDDATAx Address	LCD Segment	LCDDATAx Address	LCD Segment	LCDDATAx Address	LCD Segment
SEG0	LCDDATA0, 0		LCDDATA3, 0		LCDDATA6, 0		LCDDATA9, 0	
SEG1	LCDDATA0, 1		LCDDATA3, 1		LCDDATA6, 1		LCDDATA9, 1	
SEG2	LCDDATA0, 2		LCDDATA3, 2		LCDDATA6, 2		LCDDATA9, 2	
SEG3	LCDDATA0, 3		LCDDATA3, 3		LCDDATA6, 3		LCDDATA9, 3	
SEG4	LCDDATA0, 4		LCDDATA3, 4		LCDDATA6, 4		LCDDATA9, 4	
SEG5	LCDDATA0, 5		LCDDATA3, 5		LCDDATA6, 5		LCDDATA9, 5	
SEG6	LCDDATA0, 6		LCDDATA3, 6		LCDDATA6, 6		LCDDATA9, 6	
SEG7	LCDDATA0, 7		LCDDATA3, 7		LCDDATA6, 7		LCDDATA9, 7	
SEG8	LCDDATA1, 0		LCDDATA4, 0		LCDDATA7, 0		LCDDATA10, 0	
SEG9	LCDDATA1, 1		LCDDATA4, 1		LCDDATA7, 1		LCDDATA10, 1	
SEG10	LCDDATA1, 2		LCDDATA4, 2		LCDDATA7, 2		LCDDATA10, 2	
SEG11	LCDDATA1, 3		LCDDATA4, 3		LCDDATA7, 3		LCDDATA10, 3	
SEG12	LCDDATA1, 4		LCDDATA4, 4		LCDDATA7, 4		LCDDATA10, 4	
SEG13	LCDDATA1, 5		LCDDATA4, 5		LCDDATA7, 5		LCDDATA10, 5	
SEG14	LCDDATA1, 6		LCDDATA4, 6		LCDDATA7, 6		LCDDATA10, 6	
SEG15	LCDDATA1, 7		LCDDATA4, 7		LCDDATA7, 7		LCDDATA10, 7	
SEG16	LCDDATA2, 0		LCDDATA5, 0		LCDDATA8, 0		LCDDATA11, 0	
SEG17	LCDDATA2, 1		LCDDATA5, 1		LCDDATA8, 1		LCDDATA11, 1	
SEG18	LCDDATA2, 2		LCDDATA5, 2		LCDDATA8, 2		LCDDATA11, 2	
SEG19	LCDDATA2, 3		LCDDATA5, 3		LCDDATA8, 3		LCDDATA11, 3	
SEG20	LCDDATA2, 4		LCDDATA5, 4		LCDDATA8, 4		LCDDATA11, 4	
SEG21	LCDDATA2, 5		LCDDATA5, 5		LCDDATA8, 5		LCDDATA11, 5	
SEG22	LCDDATA2, 6		LCDDATA5, 6		LCDDATA8, 6		LCDDATA11, 6	
SEG23	LCDDATA2, 7		LCDDATA5, 7		LCDDATA8, 7		LCDDATA11, 7	

30.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C					
Storage temperature65						
Voltage on VDD with respect to Vss	0.3V to +6.5V					
Voltage on VCAP pin with respect to Vss						
Voltage on VDD with respect to Vss	-0.3V to +4.0V					
Voltage on MCLR with respect to Vss	0.3V to +9.0V					
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)					
Total power dissipation ⁽¹⁾	800 mW					
Maximum current out of Vss ⁽²⁾ pin, -40°C \leq TA \leq +85°C for industrial	255 mA					
Maximum current out of Vss ⁽²⁾ pin, -40°C \leq TA \leq +125°C for extended	105 mA					
Maximum current into VDD ⁽²⁾ pin, -40°C \leq TA \leq +85°C for industrial	170 mA					
Maximum current into VDD ⁽²⁾ pin, -40°C \leq TA \leq +125°C for extended	70 mA					
Clamp current, IK (VPIN < 0 or VPIN > VDD)	± 20 mA					
Maximum output current sunk by any I/O pin	25 mA					
Maximum output current sourced by any I/O pin	25 mA					
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VDD $+\sum$ IOH} + \sum {(VD $+\sum$ IOH} + \sum {(VD $+\sum$ IOH} + \sum {(VD $+\sum$ IOH} + \sum {(VD + \sum IOH} + \sum {(VD $+\sum$ IOH} + \sum {(VD + \sum IOH} + \sum IOH} + \sum {(VD + \sum IOH} + \sum IOH} + \sum {(VD + \sum IOH} + \sum IOH} + \sum {(VD + \sum IOH} + \sum IOH} + \sum {(VD	– Vон) x Iон} + ∑(Vol x Iol)					
2: For 28-pin devices.						
+ NOTICE: Stresses shows these listed under "Absolute Meximum Defines" may source as	rmonant domaga to the					

[†] NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

30.8 AC Characteristics: PIC16(L)F1934/6/7-I/E

FIGURE 30-6: CLOCK TIMING

TABLE 30-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

Operating	g tempera	ature $-40^{\circ}C \le TA \le +125^{\circ}C$	stated)				
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	0.5	MHz	EC Oscillator mode (low)
			DC		4	MHz	EC Oscillator mode (medium)
			DC	—	20	MHz	EC Oscillator mode (high)
		Oscillator Frequency ⁽¹⁾	—	32.768	_	kHz	LP Oscillator mode
			0.1	—	4	MHz	XT Oscillator mode
			1	—	4	MHz	HS Oscillator mode
			1	_	20	MHz	HS Oscillator mode, VDD > 2.7V
			DC	_	4	MHz	RC Oscillator mode, VDD $\leq 2.0V$
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	_	~	μS	LP Oscillator mode
			250	—	∞	ns	XT Oscillator mode
			50	_	×	ns	HS Oscillator mode
			50	—	∞	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	—	30.5	_	μS	LP Oscillator mode
			250	_	10,000	ns	XT Oscillator mode
			50	—	1,000	ns	HS Oscillator mode
			250	—	—	ns	RC Oscillator mode
OS03	TCY	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	TCY = 4/FOSC
OS04*	TosH,	External CLKIN High,	2	—	_	μS	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	—	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0	—	×	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	×	ns	XT oscillator
			0	—	×	ns	HS oscillator

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 31-7: PIC16F1934/6/7 COMPARATOR HYSTERESIS, LOW-POWER MODE

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.