

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1937t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-3: PIC16(L)F1934 MEMORY MAP, BANKS 0-7

	BANK 0	•	BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	INDF0	080h	INDF0	100h	INDF0	180h	INDF0	200h	INDF0	280h	INDF0	300h	INDF0	380h	INDF0
001h	INDF1	081h	INDF1	101h	INDF1	181h	INDF1	201h	INDF1	281h	INDF1	301h	INDF1	381h	INDF1
002h	PCL	082h	PCL	102h	PCL	182h	PCL	202h	PCL	282h	PCL	302h	PCL	382h	PCL
003h	STATUS	083h	STATUS	103h	STATUS	183h	STATUS	203h	STATUS	283h	STATUS	303h	STATUS	383h	STATUS
004h	FSR0L	084h	FSR0L	104h	FSR0L	184h	FSR0L	204h	FSR0L	284h	FSR0L	304h	FSR0L	384h	FSR0L
005h	FSR0H	085h	FSR0H	105h	FSR0H	185h	FSR0H	205h	FSR0H	285h	FSR0H	305h	FSR0H	385h	FSR0H
006h	FSR1L	086h	FSR1L	106h	FSR1L	186h	FSR1L	206h	FSR1L	286h	FSR1L	306h	FSR1L	386h	FSR1L
007h	FSR1H	087h	FSR1H	107h	FSR1H	187h	FSR1H	207h	FSR1H	287h	FSR1H	307h	FSR1H	387h	FSR1H
008h	BSR	088h	BSR	108h	BSR	188h	BSR	208h	BSR	288h	BSR	308h	BSR	388h	BSR
009h	WREG	089h	WREG	109h	WREG	189h	WREG	209h	WREG	289h	WREG	309h	WREG	389h	WREG
00Ah	PCLATH	08Ah	PCLATH	10Ah	PCLATH	18Ah	PCLATH	20Ah	PCLATH	28Ah	PCLATH	30Ah	PCLATH	38Ah	PCLATH
00Bh	INTCON	08Bh	INTCON	10Bh	INTCON	18Bh	INTCON	20Bh	INTCON	28Bh	INTCON	30Bh	INTCON	38Bh	INTCON
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	—	28Ch	—	30Ch	—	38Ch	_
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	—	30Dh	—	38Dh	—
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	_	20Eh		28Eh	—	30Eh	—	38Eh	_
00Fh	PORTD ⁽¹⁾	08Fh	TRISD ⁽¹⁾	10Fh	LATD ⁽¹⁾	18Fh	ANSELD ⁽¹⁾	20Fh	_	28Fh	—	30Fh	—	38Fh	_
010h	PORTE	090h	TRISE	110h	LATE ⁽¹⁾	190h	ANSELE ⁽¹⁾	210h	WPUE	290h	—	310h	—	390h	
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	EEADRL	211h	SSPBUF	291h	CCPR1L	311h	CCPR3L	391h	_
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSPADD	292h	CCPR1H	312h	CCPR3H	392h	_
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	EEDATL	213h	SSPMSK	293h	CCP1CON	313h	CCP3CON	393h	—
014h	—	094h	_	114h	CM2CON1	194h	EEDATH	214h	SSPSTAT	294h	PWM1CON	314h	PWM3CON	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	EECON1	215h	SSPCON1	295h	CCP1AS	315h	CCP3AS	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSPCON2	296h	PSTR1CON	316h	PSTR3CON	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	_	217h	SSPCON3	297h	—	317h	—	397h	_
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	—	218h	_	298h	CCPR2L	318h	CCPR4L	398h	_
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	—	299h	CCPR2H	319h	CCPR4H	399h	_
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TXREG	21Ah	_	29Ah	CCP2CON	31Ah	CCP4CON	39Ah	
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh	—	29Bh	PWM2CON	31Bh	—	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	—	29Ch	CCP2AS	31Ch	CCPR5L	39Ch	—
01Dh	—	09Dh	ADCON0	11Dh	APFCON	19Dh	RCSTA	21Dh		29Dh	PSTR2CON	31Dh	CCPR5H	39Dh	—
01Eh	CPSCON0	09Eh	ADCON1	11Eh	_	19Eh	TXSTA	21Eh		29Eh	CCPTMRS0	31Eh	CCP5CON	39Eh	—
01Fh	CPSCON1	09Fh	—	11Fh	_	19Fh	BAUDCTR	21Fh	—	29Fh	CCPTMRS1	31Fh	—	39Fh	
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
06Fh	General Purpose Register	0EFh	General Purpose Register 80 Bytes	16Fh	General Purpose Register 80 Bytes	1EFh	Unimplemented Read as '0'	26Fh	Unimplemented Read as '0'	2EFh	Unimplemented Read as '0'	36Fh	Unimplemented Read as '0'	3EFh	Unimplemented Read as '0'
070h	96 Bytes	0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
			Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'.

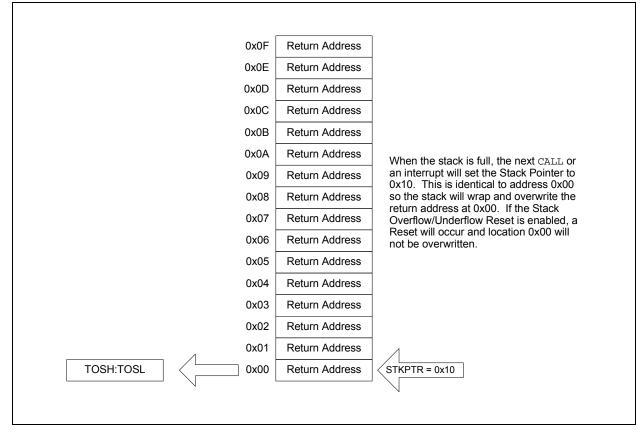
Note 1: Not available on PIC16(L)F1936.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 8											
400h ⁽²⁾	INDF0	Addressing (not a physi		ses contents o	of FSR0H/FSF	ROL to address	data memory	/		XXXX XXXX	XXXX XXXX
401h ⁽²⁾	INDF1	Addressing (not a physi		ses contents o	of FSR1H/FSF	R1L to address	data memory	/		XXXX XXXX	XXXX XXXX
402h ⁽²⁾	PCL	Program Co	ounter (PC) Le	ast Significant	t Byte					0000 0000	0000 0000
403h ⁽²⁾	STATUS	_	_	—	TO	PD	Z	DC	С	1 1000	q quuu
404h ⁽²⁾	FSR0L	Indirect Data	ndirect Data Memory Address 0 Low Pointer							0000 0000	uuuu uuuu
405h ⁽²⁾	FSR0H	Indirect Data	a Memory Add	lress 0 High P	ointer					0000 0000	0000 0000
406h ⁽²⁾	FSR1L	Indirect Data	a Memory Add	ory Address 1 Low Pointer							uuuu uuuu
407h ⁽²⁾	FSR1H	Indirect Date	a Memory Add	Iress 1 High P	ointer					0000 0000	0000 0000
408h ⁽²⁾	BSR	_	—	—		E	BSR<4:0>			0 0000	0 0000
409h ⁽²⁾	WREG	Working Re	gister							0000 0000	uuuu uuuu
40Ah ^(1, 2)	PCLATH	_	Write Buffer f	or the upper 7	bits of the Pre	ogram Counter	r			-000 0000	-000 0000
40Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
40Ch		Unimpleme	nted							_	_
40Dh	_	Unimpleme	Jnimplemented							_	_
40Eh	_	Unimpleme	nted							_	_
40Fh	_	Unimpleme	nted							_	_
410h	—	Unimpleme	nted							_	_
411h	_	Unimpleme	nted							_	_
412h	_	Unimpleme	nted							_	_
413h	—	Unimpleme	nted							_	_
414h	—	Unimpleme	nted							_	_
415h	TMR4	Timer4 Mod	ule Register							0000 0000	0000 0000
416h	PR4	Timer4 Peri	od Register							1111 1111	1111 1111
417h	T4CON	_		T4OUT	PS<3:0>		TMR40N	T4CKF	PS<1:0>	-000 0000	-000 0000
418h	—	Unimpleme	nted							_	—
419h	—	Unimpleme	nted							_	_
41Ah	—	Unimpleme	nted							_	—
41Bh	—	Unimpleme	nted							_	—
41Ch	TMR6	Timer6 Mod	ule Register							0000 0000	0000 0000
41Dh	PR6	Timer6 Peri	od Register							1111 1111	1111 1111
41Eh	T6CON	_		T6OUT	PS<3:0>		TMR6ON	T6CKF	PS<1:0>	-000 0000	-000 0000
41Fh	—	Unimpleme	nted							_	_

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-12

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.


Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1936 devices, read as '0'. 3:

4: Unimplemented, read as '1'.

FIGURE 3-8: ACCESSING THE STACK EXAMPLE 4

3.4.2 OVERFLOW/UNDERFLOW RESET

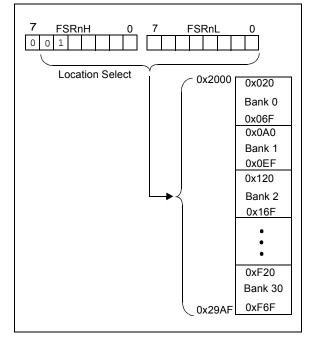
If the STVREN bit in Configuration Word 2 is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.5 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

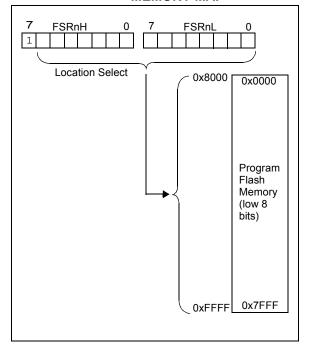
- Traditional Data Memory
- Linear Data Memory
- Program Flash Memory


3.5.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.


FIGURE 3-11: LINEAR DATA MEMORY MAP

3.5.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower 8 bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished via the FSR/INDF interface. All instructions that access program Flash memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-12: PROGRAM FLASH MEMORY MAP

REGISTER 4-1: CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0
- FOSC<2:0>: Oscillator Selection bits
 - 111 = ECH: External Clock, High-Power mode: CLKIN on RA7/OSC1/CLKIN
 - 110 = ECM: External Clock, Medium-Power mode: CLKIN on RA7/OSC1/CLKIN
 - 101 = ECL: External Clock, Low-Power mode: CLKIN on RA7/OSC1/CLKIN
 - 100 = INTOSC oscillator: I/O function on RA7/OSC1/CLKIN
 - 011 = EXTRC oscillator: RC function on RA7/OSC1/CLKIN
 - 010 = HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN
 - 001 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN
 - 000 = LP oscillator: Low-power crystal on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN
- Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.
 - 2: The entire data EEPROM will be erased when the code protection is turned off during an erase.
 - 3: The entire program memory will be erased when the code protection is turned off.

5.2.2.6 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4X PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Word 1 must be set to use the INTOSC source as the device system clock (FOSC<2:0> = 100).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<2:0> in Configuration Word 1 (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4xPLL, or the PLLEN bit of the Configuration Word 2 must be programmed to a '1'.
- Note: When using the PLLEN bit of the Configuration Word 2, the 4xPLL cannot be disabled by software and the 8 MHz HFINTOSC option will no longer be available.

The 4xPLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4xPLL with the internal oscillator.

5.2.2.7 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-7). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 5-7 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-1.

Start-up delay specifications are located in the oscillator tables in the applicable Electrical Specifications Chapter.

7.6.6 PIR2 REGISTER

The PIR2 register contains the interrupt flag bits, as shown in Register 7-6.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 7-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF		CCP2IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	OSFIF: Oscillator Fail Interrupt Flag 1 = Interrupt is pending 0 = Interrupt is not pending
bit 6	C2IF: Comparator C2 Interrupt Flag 1 = Interrupt is pending
	0 = Interrupt is not pending
bit 5	C1IF: Comparator C1 Interrupt Flag
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 4	EEIF: EEPROM Write Completion Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 3	BCLIF: MSSP Bus Collision Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 2	LCDIF: LCD Module Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 1	Unimplemented: Read as '0'
bit 0	CCP2IF: CCP2 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
			EEPROM Co	ontrol Register 2			
bit 7				-			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
S = Bit can onl	y be set	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 Data EEPROM Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the EECON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes. Refer to **Section 11.2.2** "Writing to the Data EEPROM Memory" for more information.

TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	127
EECON2			EEPROM Co	ontrol Registe	r 2 (not a phy	sical register)			115*
EEADRL	EEADRL<7:0>								
EEADRH	_				EEADRH<6:0)			126
EEDATL	— EEADRH<6:0								126
EEDATH	_	_			EEDAT	H<5:0>			126
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	100
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	—	CCP2IF	103

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the data EEPROM module.

* Page provides register information.

12.4 PORTC Registers

PORTC is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISC (Register 12-12). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

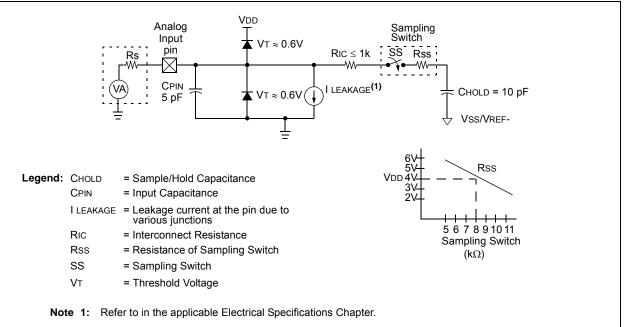
Reading the PORTC register (Register 12-11) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATC).

The TRISC register (Register 12-12) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

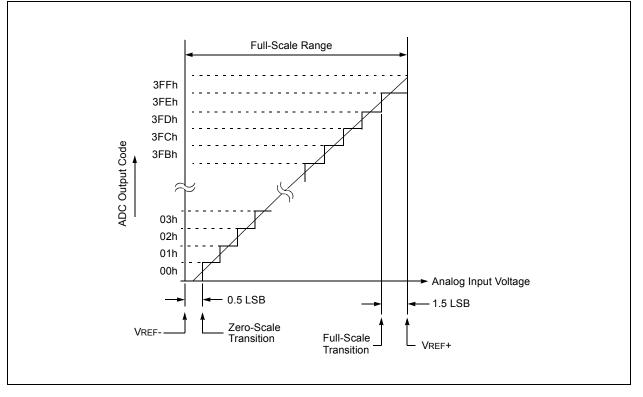
12.4.1 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each PORTC pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-7.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.


Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in Table 12-7.

Pin Name	Function Priority ⁽¹⁾
RC0	T1OSO (Timer1 Oscillator) CCP2/P2B RC0
RC1	T1OSI (Timer1 Oscillator) CCP2/P2A RC1
RC2	SEG3 (LCD) CCP1/P1A RC2
RC3	SEG6 (LCD) SCL (MSSP) SCK (MSSP) RC3
RC4	SEG11 (LCD) SDA (MSSP) RC4
RC5	SEG10 (LCD) SDO (MSSP) RC5
RC6	ISEG9 (LCD) TX (EUSART) CK (EUSART) CCP3/P3A, 28-pin only RC6
RC7	SEG8 (LCD) DT (EUSART) CCP3/P3B, 28 pin only RC7


TABLE 12-7: PORTC OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

FIGURE 15-4: ANALOG INPUT MODEL

20.2 Option and Timer0 Control Register

REGISTER 20-1: OPTION_REG: OPTION REGISTER

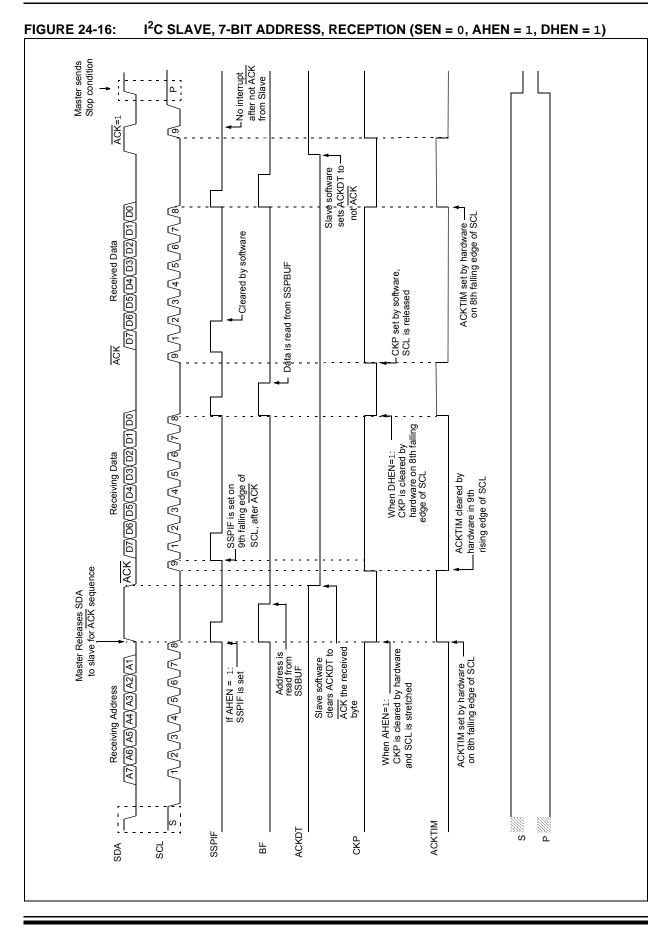
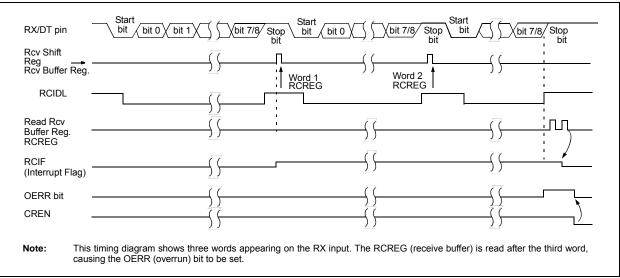

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>				
oit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unch	•	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all c	other Resets			
1' = Bit is set		'0' = Bit is clea	ared							
bit 7	WPUEN: We	ak Pull-up Enal	ble bit							
		pull-ups are dis Il-ups are enabl								
oit 6	INTEDG: Inte	errupt Edge Sel	ect bit							
		on rising edge on falling edge								
oit 5	TMR0CS: Tir	imer0 Clock Source Select bit								
	1 = Transition on TOCKI pin									
		nstruction cycle	-	4)						
oit 4		: Timer0 Source Edge Select bit								
		it on high-to-lov it on low-to-high								
oit 3	PSA: Prescaler Assignment bit									
		r is not assigne r is assigned to								
bit 2-0	PS<2:0>: Pre	escaler Rate Se	elect bits							
	Bit	Value Timer0	Rate							
		000 1:2								
		010 1:8 011 1:1								
		1:3								
		1:6								
	-	111 1 :2	00							

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CPSCON0	CPSON	_	—	_	CPSRN	G<1:0>	CPSOUT	TOXCS	323
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		193
TMR0	Timer0 Mod	lule Register							191*
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	133

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

Page provides register information.



- 25.1.2.8 Asynchronous Reception Set-up:
- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

25.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 25-5: ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	302
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	98
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	99
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	102
RCREG	EUSART Receive Data Register								296*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	301
SPBRGL	BRG<7:0>								303*
SPBRGH	BRG<15:8>							303*	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	142
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	300

TABLE 25-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for asynchronous reception.

* Page provides register information.

26.7.3 FREQUENCY THRESHOLD

The frequency threshold should be placed midway between the value of nominal frequency and the reduced frequency of the capacitive sensing oscillator. Refer to Application Note AN1103, "*Software Handling for Capacitive Sensing*" (DS01103) for more detailed information on the software required for CPS module.

Note:	For more information on general capacitive sensing refer to Application Notes:
	 AN1101, "Introduction to Capacitive Sensing" (DS01101)
	 AN1102, "Layout and Physical Design Guidelines for Capacitive

Sensing" (DS01102)

26.8 Operation during Sleep

The capacitive sensing oscillator will continue to run as long as the module is enabled, independent of the part being in Sleep. In order for the software to determine if a frequency change has occurred, the part must be awake. However, the part does not have to be awake when the timer resource is acquiring counts.

Note: Timer0 does not operate when in Sleep, and therefore cannot be used for capacitive sense measurements in Sleep.

30.2 DC Characteristics: PIC16(L)F1934/6/7-I/E (Industrial, Extended)

PIC16LF1934/36/37			Operating temperature			itions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended			
PIC16F1934/36/37							less otherwise stated) A ≤ +85°C for industrial A ≤ +125°C for extended		
Param Device			Turt		11	Conditions			
No.	Characteristics	Min.	Тур†	Max.	Units	Vdd	Note		
	Supply Current (IDD) ⁽¹	, 2)							
D009	LDO Regulator	-	350	—	μA	_	HS, EC OR INTOSC/INTOSCIO (8-16 MHz) Clock modes with all VCAP pins disabled		
			50	_	μΑ	_	All VCAP pins disabled		
			30	—	μA	_	VCAP enabled on RA0, RA5 or RA6		
		_	5	—	μΑ	_	LP Clock mode and Sleep (requires FVR and BOR to be disabled)		
D010			7.0	16	μA	1.8	Fosc = 32 kHz		
		—	9.0	20	μA	3.0	LP Oscillator mode (Note 4), -40°C \leq Ta \leq +85°C		
D010			29	63	μA	1.8	Fosc = 32 kHz		
			37	74	μA	3.0	LP Oscillator mode (Note 4, 5), $-40^{\circ}C \le TA \le +85^{\circ}C$		
			40	79	μΑ	5.0			
D010A			7.0	23	μA	1.8	Fosc = 32 kHz		
		—	9.0	27	μA	3.0	LP Oscillator mode (Note 4) -40°C ≤ TA ≤ +125°C		
D010A			29	68	μA	1.8	Fosc = 32 kHz		
			37	88	μA	3.0	LP Oscillator mode (Note 4, 5) $-40^{\circ}C \le TA \le +125^{\circ}C$		
			40	95	μΑ	5.0	$-40.0 \leq 14 \leq +125.0$		
D011		_	140	200	μΑ	1.8	Fosc = 1 MHz		
		_	250	330	μΑ	3.0	XT Oscillator mode		
D011		_	160	260	μΑ	1.8	Fosc = 1 MHz		
		—	280	480	μΑ	3.0	XT Oscillator mode (Note 5)		
		-	390	690	μA	5.0			
D012		_	430	650	μA	1.8	Fosc = 4 MHz		
		—	750	1000	μΑ	3.0	XT Oscillator mode		
D012		—	450	700	μΑ	1.8	Fosc = 4 MHz		
		_	770	1100	μA	3.0	XT Oscillator mode (Note 5)		
	_		930	1300	μA	5.0			

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

- 4: FVR and BOR are disabled.
- 5: 0.1 μ F capacitor on VCAP (RA0).
- 6: 8 MHz crystal oscillator with 4x PLL enabled.

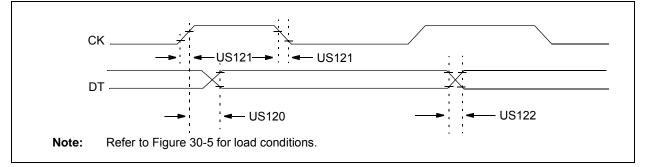
Operating	Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated).							
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
CM01	VIOFF	Input Offset Voltage	_	±7.5	±60	mV	High-Power mode	
CM02	VICM	Input Common Mode Voltage	0	_	Vdd	V		
CM03	CMRR	Common Mode Rejection Ratio	_	50	_	dB		
CM04A		Response Time Rising Edge	_	400	800	ns	High-Power mode	
CM04B	TRESP	Response Time Falling Edge	—	200	400	ns	High-Power mode	
CM04C	TRESP	Response Time Rising Edge	_	1200	_	ns	Low-Power mode	
CM04D	1	Response Time Falling Edge	_	550	_	ns	Low-Power mode	
CM05	Тмс2о∨	Comparator Mode Change to Output Valid*	_	_	10	μs		
CM06	CHYSTER	Comparator Hysteresis	—	45	—	mV	Hysteresis on	

TABLE 30-10: COMPARATOR SPECIFICATIONS

These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: Comparator Hysteresis is available when the CxHYS bit of the CMxCON0 register is enabled.

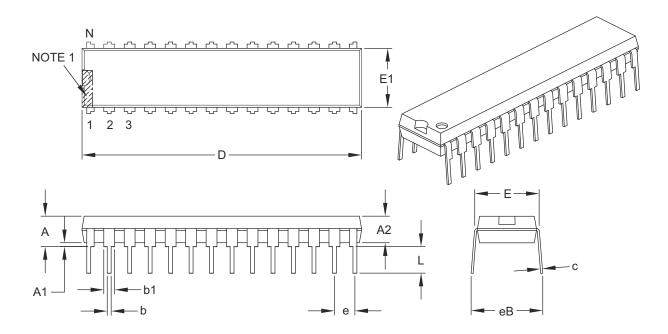

TABLE 30-11: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Operating Conditions: 2.5V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated).								
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
DAC01*	CLSB	Step Size	_	VDD/32		V		
DAC02*	CACC	Absolute Accuracy	—	—	± 1/2	LSb		
DAC03*	CR	Unit Resistor Value (R)	—	5000		Ω		
DAC04*	CST	Settling Time ⁽¹⁾	_	_	10	μS		
*	* These parameters are characterized but not tested							

These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '0000' to '1111'.

FIGURE 30-14: **USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING**



33.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			
	Dimension Limits		NOM	MAX	
Number of Pins	N		28		
Pitch	е		.100 BSC		
Top to Seating Plane	A	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	_	.430	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (12/2008)

Original release

Revision B (04/2009)

Revised data sheet title; Revised Features section.

Revision C (10/2009)

Added PIC16L/LF1933/34. General updates.

Revision D (12/2009)

General updates.

Revision E (5/2011)

Separated 193X data sheet into three separate data sheets. Added Characterization Data.

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This discusses some of the issues in migrating from other $\text{PIC}^{\textcircled{0}}$ devices to the PIC16(L)F1934/6/7 family of devices.

B.1 PIC16F917 to PIC16F1937

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F917	PIC16F1937
Max. Operating Speed	20 MHz	32 MHz
Max. Program Memory (Words)	8K	8K
Max. SRAM (Bytes)	368	512
A/D Resolution	10-bit	10-bit
Timers (8/16-bit)	2/1	4/1
Oscillator Modes	4	8
Brown-out Reset	Y	Y
Internal Pull-ups	RB<7:0>	RB<7:0>
Interrupt-on-change	RB<7:4>	RB<7:0>
Comparator	2	2
AUSART/EUSART	1/0	0/1
Extended WDT	Y	Y
Software Control Option of WDT/BOR	N	Y
INTOSC Frequencies	30 kHz - 8 MHz	500 kHz - 32 MHz
Clock Switching	Y	Y
Capacitive Sensing	N	Y
CCP/ECCP	2/0	2/3
Enhanced PIC16 CPU	Ν	Y
MSSP/SSP	0/1	1/0
LCD	Y	Y

NOTES: