

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	169-UFBGA
Supplier Device Package	169-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f437aih6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling.

In Stop modes

The MR can be configured in two ways during stop mode: MR operates in normal mode (default mode of MR in stop mode) MR operates in under-drive mode (reduced leakage mode).

LPR is used in the Stop modes:

The LP regulator mode is configured by software when entering Stop mode.

Like the MR mode, the LPR can be configured in two ways during stop mode:

- LPR operates in normal mode (default mode when LPR is ON)
- LPR operates in under-drive mode (reduced leakage mode).
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.

Two external ceramic capacitors should be connected on V_{CAP_1} and V_{CAP_2} pin. Refer to *Figure 22: Power supply scheme* and *Table 19: VCAP1/VCAP2 operating conditions*.

All packages have the regulator ON feature.

Voltage regulator configuration	Run mode	Sleep mode	Stop mode	Standby mode
Normal mode	MR	MR	MR or LPR	-
Over-drive mode ⁽²⁾	MR	MR	-	-
Under-drive mode	-	-	MR or LPR	-
Power-down mode	-	-	-	Yes

Table 3. Voltage regulator configuration mode versus device operating mode⁽¹⁾

1. - means that the corresponding configuration is not available.

2. The over-drive mode is not available when V_{DD} = 1.7 to 2.1 V.

3.18.2 Regulator OFF

This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V₁₂ voltage source through V_{CAP 1} and V_{CAP 2} pins.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. Refer to *Table 17: General operating conditions*. The two 2.2 μ F ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Figure 22: Power supply scheme*.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

3.42 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.43 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F43x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

			Pin nı	ımber	-								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	-	C11	D14	132	-	155	D14	PI1	I/O	FT	-	SPI2_SCK/I2S2_CK ⁽⁷⁾ , FMC_D25, DCMI_D8, LCD_G6, EVENTOUT	-
-	-	B12	C14	133	-	156	C14	PI2	I/O	FT	-	TIM8_CH4, SPI2_MISO, I2S2ext_SD, FMC_D26, DCMI_D9, LCD_G7, EVENTOUT	-
-	-	A12	C13	134	-	157	C13	PI3	I/O	FT	-	TIM8_ETR, SPI2_MOSI/I2S2_SD, FMC_D27, DCMI_D10, EVENTOUT	-
-	-	D11	D9	135	F5	-	F9	V_{SS}	S		-	-	-
-	-	D3	C9	136	A1	158	E10	V _{DD}	S		-	-	-
76	109	A11	A14	137	B1	159	A14	PA14 (JTCK- SWCLK)	I/O	FT	-	JTCK-SWCLK/ EVENTOUT	-
77	110	B11	A13	138	C2	160	A13	PA15 (JTDI)	I/O	FT	-	JTDI, TIM2_CH1/TIM2_ETR, SPI1_NSS, SPI3_NSS/I2S3_WS, EVENTOUT	-
78	111	C10	B14	139	A2	161	B14	PC10	I/O	FT	-	SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, SDI0_D2, DCMI_D8, LCD_R2, EVENTOUT	-
79	112	B10	B13	140	B2	162	B13	PC11	I/O	FT	-	I2S3ext_SD, SPI3_MISO, USART3_RX, UART4_RX, SDIO_D3, DCMI_D4, EVENTOUT	-
80	113	A10	A12	141	C3	163	A12	PC12	I/O	FT	-	SPI3_MOSI/I2S3_SD, USART3_CK, UART5_TX, SDIO_CK, DCMI_D9, EVENTOUT	-
81	114	D9	B12	142	B3	164	B12	PD0	I/O	FT	-	CAN1_RX, FMC_D2, EVENTOUT	-

Table 10. STM32F437xx and STM32F439xx pin and ball definitions (continued)

Pin name	CF	NOR/PSRAM/	NOR/PSRAM	NAND16	SDRAM
		SRAM	Mux		
PF6	NIORD				
PF7	NREG				
PF8	NIOWR				
PF9	CD				
PF10	INTR				
PG6				INT2	
PG7				INT3	
PE0		NBL0	NBL0		NBL0
PE1		NBL1	NBL1		NBL1
PI4		NBL2			NBL2
PI5		NBL3			NBL3
PG8					SDCLK
PC0					SDNWE
PF11					SDNRAS
PG15					SDNCAS
PH2					SDCKE0
PH3					SDNE0
PH6					SDNE1
PH7					SDCKE1
PH5					SDNWE
PC2					SDNE0
PC3					SDCKE0
PB5					SDCKE1
PB6					SDNE1

Table 11. FMC pin definition (continued)

577

DocID024244 Rev 10

				Table 1	2. STM3	32F43	7xx and	d STM32	2F439xx	alternate	function	mapping	(continu	ued)			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	l2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ЕТН	FMC/SDIO /OTG2_FS	DCMI	LCD	SYS
	PH7	-	-	-	-	I2C3_ SCL	SPI5_ MISO	-	-	-	-	-	ETH_MII_ RXD3	FMC_ SDCKE1	DCMI_ D9	-	-
	PH8	-	-	-	-	I2C3_ SDA	-	-	-	-	-	-	-	FMC_D16	DCMI_ HSYNC	LCD_R2	EVEN TOUT
	PH9	-	-	-	-	I2C3_ SMBA	-	-	-	-	TIM12_CH2	-	-	FMC_D17	DCMI_ D0	LCD_R3	EVEN TOUT
	PH10	-	-	TIM5_ CH1	-	-	-	-	-	-	-	-	-	FMC_D18	DCMI_ D1	LCD_R4	EVEN TOUT
Port H	PH11	-	-	TIM5_ CH2	-	-	-	-	-	-	-	-	-	FMC_D19	DCMI_ D2	LCD_R5	EVEN TOUT
	PH12	-	-	TIM5_ CH3	-	-	-	-	-	-	-	-	-	FMC_D20	DCMI_ D3	LCD_R6	EVEN TOUT
	PH13	-	-	-	TIM8_ CH1N	-	-	-	-	-	CAN1_TX	-	-	FMC_D21	-	LCD_G2	EVEN TOUT
	PH14	-	-	-	TIM8_ CH2N	-	-	-	-	-	-	-	-	FMC_D22	DCMI_ D4	LCD_G3	EVEN TOUT
	PH15	-	-	-	TIM8_ CH3N	-	-	-	-	-	-	-	-	FMC_D23	DCMI_ D11	LCD_G4	EVEN TOUT
	P10	-	-	TIM5_ CH4	-	-	SPI2_ NSS/I2 S2_WS	-	-	-	-	-	-	FMC_D24	DCMI_ D13	LCD_G5	EVEN TOUT
	PI1	-	-	-	-	-	SPI2_ SCK/I2 S2_CK	-	-	-	-	-	-	FMC_D25	DCMI_ D8	LCD_G6	EVEN TOUT
	PI2	-	-	-	TIM8_ CH4	-	SPI2_ MISO	I2S2ext_ SD	-	-	-	-	-	FMC_D26	DCMI_ D9	LCD_G7	EVEN TOUT
Port I	PI3	-	-	-	TIM8_ ETR	-	SPI2_M OSI/I2S 2_SD							FMC_D27	DCMI_D 10		EVEN TOUT
	PI4	-	-	-	TIM8_ BKIN	-	-	-	-	-	-	-	-	FMC_ NBL2	DCMI_D 5	LCD_B4	EVEN TOUT
	PI5	-	-	-	TIM8_ CH1	-	-	-	-	-	-	-	-	FMC_ NBL3	DCMI_ VSYNC	LCD_B5	EVEN TOUT
	PI6	-	-	-	TIM8_ CH2	-	-	-	-	-	-	-	-	FMC_D28	DCMI_ D6	LCD_B6	EVEN TOUT

STM32F437xx and STM32F439xx

Pinouts and pin description

82/240

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit
	Input voltage on RST and FT	2 V ≤V _{DD} ≤3.6 V	- 0.3	-	5.5	
	pins ⁽⁷⁾	V _{DD} ≤2 V	- 0.3	-	5.2	
V _{IN}	Input voltage on TTa pins		- 0.3	-	V _{DDA} + 0.3	V
	Input voltage on BOOT0 pin		0	-	9	
		LQFP100	-	-	465	
		WLCSP143	-	-	641	
D_	Power dissipation at $T_A = 85 \degree C$	LQFP144	-	-	500	
		UFBGA169	-	-	385	m\//
P_D	for suffix 6 or $T_A = 105 \text{ °C}$ for suffix 7 ⁽⁸⁾	LQFP176	-	-	526	mW
		UFBGA176	-	-	513	
		LQFP208	-	-	1053	
		TFBGA216	-	-	690	
	Ambient temperature for 6 suffix	Maximum power dissipation	- 40		85	°C
т.	version	Low power dissipation ⁽⁹⁾	- 40		105	
ΤΑ	Ambient temperature for 7 suffix	Maximum power dissipation	- 40		105	°C
	version	Low power dissipation ⁽⁹⁾	- 40		125	
ТJ	lunction tomporature range	6 suffix version	- 40		105	°C
IJ	Junction temperature range	7 suffix version	- 40		125	

Table 17. General operating conditions (continued)

1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.

 V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

3. When the ADC is used, refer to *Table 74: ADC characteristics*.

4. If V_{REF+} pin is present, it must respect the following condition: $V_{DDA}-V_{REF+} < 1.2$ V.

5. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and power-down operation.

- 6. The over-drive mode is not supported when the internal regulator is OFF.
- 7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled

8. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .

9. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax}.

6.3.5 Reset and power control block characteristics

The parameters given in *Table 22* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19	V
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08	V
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37	V
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25	V
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51	V
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39	V
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65	V
V	Programmable voltage	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V
V _{PVD}	detector level selection	PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71	V
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99	V
		PLS[2:0]=101 (falling edge)	2.65	2.84	2.92	V
	PLS[2:0]=110 (rising edge)	2.96	3.03	3.10	V	
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99	V
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21	V
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis		-	100	-	mV
	Power-on/power-down	Falling edge	1.60	1.68	1.76	V
V _{POR/PDR}	reset threshold	Rising edge	1.64	1.72	1.80	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis		-	40	-	mV
M	Brownout level 1	Falling edge	2.13	2.19	2.24	V
V _{BOR1}	threshold	Rising edge	2.23	2.29	2.33	V
M	Brownout level 2	Falling edge	2.44	2.50	2.56	V
V _{BOR2}	threshold	Rising edge	2.53	2.59	2.63	V
V	Brownout level 3	Falling edge	2.75	2.83	2.88	V
V _{BOR3}	threshold	Rising edge	2.85	2.92	2.97	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis		-	100	-	mV
T _{RSTTEMPO}	POR reset temporization		0.5	1.5	3.0	ms

Symbol	Deremeter	Conditions	£ (MU-)	VDD:	=3.3 V	VDD	=1.7 V	Unit
Symbol	Parameter	Conditions	f _{HCLK} (MHz) -	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	
			180	61.5	1.4	-	-	
			168	59.4	1.3	59.4	1.0	
			150	53.9	1.3	53.9	1.0	
			144	49.0	1.3	49.0	1.0	
		All Peripherals enabled	120	38.0	1.2	38.0	0.9	
			90	29.3	1.4	29.3	1.1	-
	Supply surrent		60	20.2	1.2	20.2	0.9	
			30	11.9	1.2	11.9	0.9	
1 /1	Supply current in Sleep mode		25	10.4	1.2	10.4	0.9	
I _{DD12} /I _{DD}	from V ₁₂ and		180	14.9	1.4	-	-	- mA -
	V_{DD} supply		168	14.0	1.3	14.0	1.0	
			150	12.6	1.3	12.6	1.0	
			144	11.5	1.3	11.5	1.0	
		All Peripherals disabled	120	8.7	1.2	8.7	0.9	
		aloubiou	90	7.1	1.4	7.1	1.1	-
			60	5.0	1.2	5.0	0.9	
			30	3.1	1.2	3.1	0.9	
			25	2.8	1.2	2.8	0.9	

Table 33. Tyical current consumption in Sleep mode, regulator OFF ⁽¹⁾
--

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 56: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 35: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

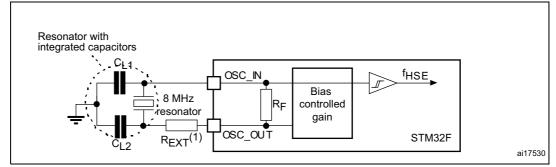
$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DD} is the MCU supply voltage

 f_{SW} is the I/O switching frequency


C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 29*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

		(LOL				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _F	Feedback resistor		-	18.4	-	MΩ
I _{DD}	LSE current consumption		-	-	1	μA
ACC _{LSE} ⁽²⁾	LSE accuracy		- 500	-	500	ppm
G _m _crit_max	Maximum critical crystal g _m	Startup	-	-	0.56	μA/V
t _{SU(LSE)} ⁽³⁾	startup time	V _{DD} is stabilized	-	2	-	s

Table 40. LSE oscillator characteristics (f_{LSE} = 32.768 kHz) ⁽¹⁾

1. Guaranteed by design.

2. This parameter depends on the crystal used in the application. Refer to application note AN2867.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is based on characterization and not tested in production. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

6.3.13 Memory characteristics

Flash memory

The characteristics are given at TA = -40 to 105 °C unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Write / Erase 8-bit mode, V_{DD} = 1.7 V	-	5	-	
I _{DD}	I _{DD} Supply current	Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V _{DD} = 3.3 V	-	12	-	

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs
		Program/erase parallelism (PSIZE) = x 8	-	400	800	
t _{ERASE16KB}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms
		Program/erase parallelism (PSIZE) = x 32	-	250	500	
		Program/erase parallelism (PSIZE) = x 8	-	1200	2400	
t _{ERASE64KB}	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms
		Program/erase parallelism (PSIZE) = x 32	-	550	1100	
		Program/erase parallelism (PSIZE) = x 8	-	2	4	
t _{ERASE128KB}	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6	s
		Program/erase parallelism (PSIZE) = x 32	-	1	2	
		Program/erase parallelism (PSIZE) = x 8	-	16	32	
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	11	22	s
		Program/erase parallelism (PSIZE) = x 32	-	8	16	

Table 48. Flash memory programming

6.3.15 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESD S5.3.1 standards.

Symbol	Ratings	Conditions		Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C conforming to ANSI/ESDA/JEDEC JS-001		2000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device	T_A = +25 °C conforming to ANSI/ESD S5.3.1, LQFP100/144/176, UFBGA169/176, TFBGA176 and WLCSP143 packages	C3	250	V
*ESD(CDM)	model)	$T_A = +25$ °C conforming to ANSI/ESD S5.3.1, LQFP208 package	C3	250	

Table 53. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.

	Symbol	Parameter	Conditions	Class
ſ	LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

Table 54. Electrical sensitivities

6.3.19 TIM timer characteristics

The parameters given in Table 60 are guaranteed by design.

Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter Conditions ⁽³⁾ Min		Min	Max	Unit	
t _{res(TIM)}	Timer resolution time	AHB/APBx prescaler=1 or 2 or 4, f _{TIMxCLK} = 180 MHz	1	-	t _{TIMxCLK}	
,		AHB/APBx prescaler>4, f _{TIMxCLK} = 90 MHz	1	-	t _{TIMxCLK}	
f _{EXT}	Timer external clock frequency on CH1 to CH4	f _{TIMxCLK} = 180 MHz	0	f _{TIMxCLK} /2	MHz	
Res _{TIM}	Timer resolution		-	16/32	bit	
t _{MAX_COUNT}	Maximum possible count with 32-bit counter		-	65536 × 65536	t _{TIMxCLK}	

Table 60	. TIMx	characteristics ⁽¹⁾⁽²⁾
----------	--------	-----------------------------------

1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.

2. Guaranteed by design.

 The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK = 4x PCLKx.

6.3.20 Communications interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s.

The I²C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0090 reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present. Refer to Section 6.3.17: I/O port characteristics for more details on the I²C I/O characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Symbol	Parameter	Min	Max	Unit		
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns		

Table 61	. I2C	analog	filter	characte	eristics ⁽¹⁾
----------	-------	--------	--------	----------	-------------------------

- 1. Guaranteed by design.
- 2. Spikes with widths below $t_{AF(min)}$ are filtered.
- 3. Spikes with widths above $t_{AF(max)}$ are not filtered

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 62* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
		Master mode, SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V				45	
		Slave mode,	Receiver	-	-	45	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V	Transmitter/ full-duplex			38 ⁽²⁾	MHz
		Master mode, SPI1/2/3/4/5/6, 1.7 V≤V _{DD} ≤3.6 V				22.5	
		Slave mode, SPI1/2/3/4/5/6, 1.7 V≤V _{DD} ≤3.6 V			-	-	22.5
Duty(SCK)	Duty cycle of SPI clock frequency	Slave mode		30	50	70	%

Table 62. SPI dynamic characteristics⁽¹⁾

I²S interface characteristics

Unless otherwise specified, the parameters given in *Table 63* for the I²S interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

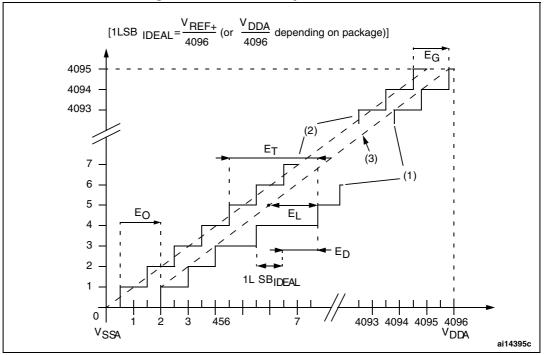
Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	I2S Main clock output	-	256x8K	256xFs ⁽²⁾	MHz
f	129 clock froguency	Master data: 32 bits	-	64xFs	MHz
f _{CK}	I2S clock frequency	Slave data: 32 bits	-	64xFs	
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	0	6	
t _{h(WS)}	WS hold time	Master mode	0	-	
t _{su(WS)}	WS setup time	Slave mode	1	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	7.5	-	
t _{su(SD_SR)}		Slave receiver	2	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	0	-	ns
t _{h(SD_SR)}		Slave receiver	0	-	
t _{v(SD_ST)}		Slave transmitter (after enable edge)	-	27	
t _{h(SD_ST)}	Data output valid time				
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	20	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	2.5	-	

Table 63. I ² S c	dynamic characteristics ⁽¹⁾
------------------------------	--

1. Guaranteed by characterization results.

2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency).

Note: Refer to the I2S section of RM0090 reference manual for more details on the sampling frequency (F_S).


 f_{MCK} , f_{CK} , and D_{CK} values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. D_{CK} depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F_S maximum value is supported for each mode/condition.

DocID024244 Rev 10

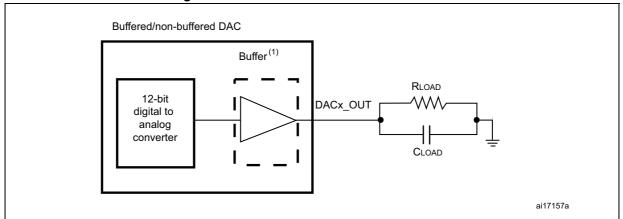
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.17 does not affect the ADC accuracy.

- 1. See also Table 76.
- 2. Example of an actual transfer curve.
- 3. Ideal transfer curve.
- 4. End point correlation line.
- E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

Electrical characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	Comments	
eysei				.76	max	•••••		
t _{WAKEUP} (Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	-	6.5	10	μs	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$ input code between lowest and highest possible ones.	
PSRR+ (2)	Power supply rejection ratio (to V _{DDA}) (static DC measurement)	-	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF	


Table 85. DAC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

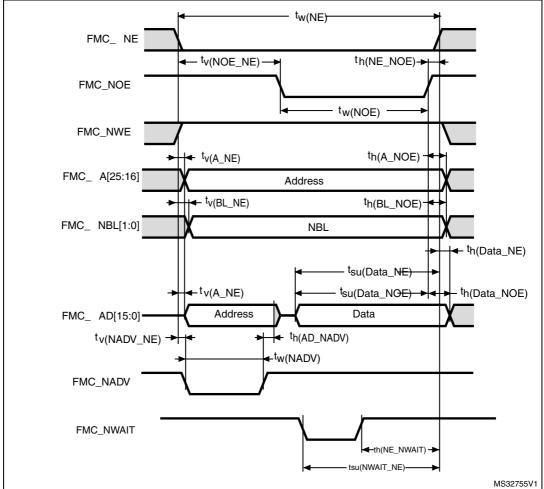
2. Guaranteed by design.

The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed by characterization.

Figure 54. 12-bit buffered /non-buffered DAC

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.



Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +1	8T _{HCLK} +2	ns
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} – 1	6T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +1.5	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1		ns

Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings $^{(1)(2)}$

1. C_L = 30 pF.

2. Guaranteed by characterization results.

Symbol	Parameter	Min	Max	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{su(SDCLKH _Data)}	Data input setup time	2	-	
t _{h(SDCLKH_Data)}	Data input hold time	0	-	
$t_{d(SDCLKL_Add)}$	Address valid time	-	1.5	
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	0.5	ns
$t_{h(SDCLKL_SDNE)}$	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	0.5	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	0.5	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

Table 102. SDRAM read timings⁽¹⁾⁽²⁾

1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.

2. Guaranteed by characterization results.

Table 103. LPSDR SDRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit		
t _{W(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5			
t _{su(SDCLKH_Data)}	Data input setup time	2.5	-			
^t h(SDCLKH_Data)	Data input hold time	0	-			
t _{d(SDCLKL_Add)}	Address valid time	-	1			
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	1	ns		
t _{h(SDCLKL_SDNE)}	Chip select hold time	1	-	115		
t _{d(SDCLKL_SDNRAS}	SDNRAS valid time	-	1			
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	1	-			
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	1			
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	1	-			

1. CL = 10 pF.

2. Guaranteed by characterization results.

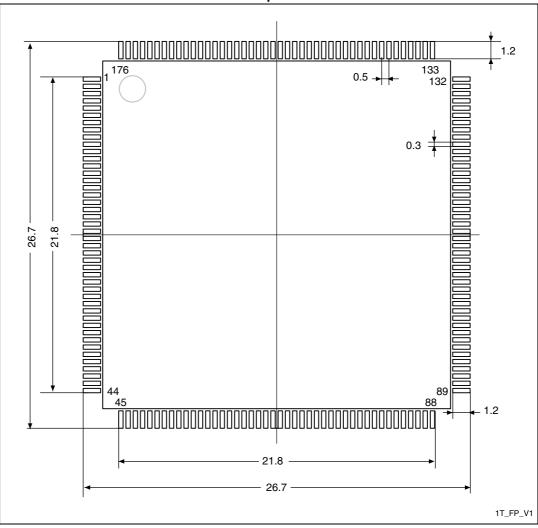


Figure 90. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

