

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f437igt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripher	als	STM32F437 Vx	STM32F439 Vx	STM32F437Zx	STM32F437AI	STM32F439AI	STM32F439Zx	STM32F437Ix	STM32F439Ix	STM32F439Bx	STM32F439Nx	
	SPI / I ² S	4/2 (full o	duplex) ⁽²⁾				6/2 (full duplex) ⁽²⁾					
	l ² C						3					
	USART/ UART						4/4					
Communication interfaces	USB OTG FS						Yes					
	USB OTG HS						Yes					
	CAN						2					
	SAI						1					
	SDIO						Yes					
Camera interface	9		Yes									
LCD-TFT		No	Yes	٢	lo	Yes	Yes	No		Yes		
Chrom-ART Acco (DMA2D)	elerator™						Yes					
Cryptography							Yes					
GPIOs		8	32	114				14	40	168	168	
12-bit ADC							3					
Number of chann	nels	1	16 24									
12-bit DAC Number of chanr	nels	Yes 2										
Maximum CPU frequency 180 MHz												
Operating voltage 1.7 to 3.6 V ⁽³⁾												
Operating tompo	raturaa				Ambie	ent temperatures: -	40 to +85 °C /–40	to +105 °C				
Operating tempe	ratures					Junction tempera	ture: -40 to + 125	S°C				
Package		LQF	P100	WLCSP143 LQFP144	UFBC	GA169	WLCSP143 LQFP144		GA176 P176	LQFP208	TFBGA216	

Table 2. STM32F437xx and STM32F439xx features and peripheral counts (continued)

1. For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

3. V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

DocID024244 Rev 10

16/240

3.26 Inter-integrated sound (I²S)

Two standard I²S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx can be served by the DMA controller.

Note: For I2S2 full-duplex mode, I2S2_CK and I2S2_WS signals can be used only on GPIO Port B and GPIO Port D.

3.27 Serial Audio interface (SAI1)

The serial audio interface (SAI1) is based on two independent audio sub-blocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub-blocks can be configured in master or in slave mode.

In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency.

The two sub-blocks can be configured in synchronous mode when full-duplex mode is required.

SAI1 can be served by the DMA controller.

3.28 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S and SAI applications. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I²S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I²S/SAI flow with an external PLL (or Codec output).

3.29 Audio and LCD PLL(PLLSAI)

An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLLSAI is also used to generate the LCD-TFT clock.

			Pin nu	Imber	-								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	91	G11	J15	110	G4	133	J15	PG6	I/O	FT	-	FMC_INT2, DCMI_D12, LCD_R7, EVENTOUT	-
-	92	G12	J14	111	H1	134	J14	PG7	I/O	FT	-	USART6_CK, FMC_INT3, DCMI_D13, LCD_CLK, EVENTOUT	-
-	93	F13	H14	112	G2	135	H14	PG8	I/O	FT	-	SPI6_NSS, USART6_RTS, ETH_PPS_OUT, FMC_SDCLK, EVENTOUT	-
-	94	J7	G12	113	D2	136	G10	V _{SS}	S		-	-	-
-	95	E6	H13	114	G1	137	G11	V _{DD}	S		-	-	-
63	96	F9	H15	115	F2	138	H15	PC6	I/O	FT	-	TIM3_CH1, TIM8_CH1, I2S2_MCK, USART6_TX, SDIO_D6, DCMI_D0, LCD_HSYNC, EVENTOUT	-
64	97	F10	G15	116	F3	139	G15	PC7	I/O	FT	-	TIM3_CH2, TIM8_CH2, I2S3_MCK, USART6_RX, SDIO_D7, DCMI_D1, LCD_G6, EVENTOUT	-
65	98	F11	G14	117	E4	140	G14	PC8	I/O	FT	-	TIM3_CH3, TIM8_CH3, USART6_CK, SDIO_D0, DCMI_D2, EVENTOUT	-
66	99	F12	F14	118	E3	141	F14	PC9	I/O	FT	-	MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, SDIO_D1, DCMI_D3, EVENTOUT	-
67	100	E13	F15	119	F1	142	F15	PA8	I/O	FT	-	MCO1, TIM1_CH1, I2C3_SCL, USART1_CK, OTG_FS_SOF, LCD_R6, EVENTOUT	-

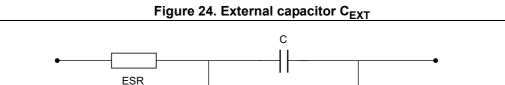
 Table 10. STM32F437xx and STM32F439xx pin and ball definitions (continued)

Pinouts and pin description

- 4. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website: www.st.com.
- 5. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
- If the device is delivered in an WLCSP143, UFBGA169, UFBGA176, LQFP176 or TFBGA216 package, and the BYPASS_REG pin is set to V_{DD} (Regulator OFF/internal reset ON mode), then PA0 is used as an internal Reset (active low).
- 7. PI0 and PI1 cannot be used for I2S2 full-duplex mode.
- 8. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum HCLK frequency vs Flash memory wait states (1)(2)	I/O operation	Possible Flash memory operations
V _{DD} =1.7 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz ⁽⁴⁾	168 MHz with 8 wait states and over-drive OFF	No I/O compensation	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1.2 Msps	22 MHz	180 MHz with 8 wait states and over-drive ON	No I/O compensation	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2.4 Msps	24 MHz	180 MHz with 7 wait states and over-drive ON	I/O compensation works	16-bit erase and program operations
$V_{DD} = 2.7 \text{ to}$ 3.6 V ⁽⁵⁾	Conversion time up to 2.4 Msps	30 MHz	180 MHz with 5 wait states and over-drive ON	I/O compensation works	32-bit erase and program operations

 Table 18. Limitations depending on the operating power supply range


1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

- V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).
- 4. Prefetch is not available.
- 5. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V.

6.3.2 VCAP1/VCAP2 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor C_{EXT} to the VCAP1/VCAP2 pins. C_{EXT} is specified in *Table 19*.

MS19044V2

1. Legend: ESR is the equivalent series resistance.

Table 19. VCAP1/VCAP2 operating conditions⁽¹⁾

R _{Leak}

Symbol	Parameter	Conditions
CEXT	Capacitance of external capacitor	2.2 µF
ESR	ESR of external capacitor	< 2 Ω

1. When bypassing the voltage regulator, the two 2.2 μ F V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

6.3.3 Operating conditions at power-up / power-down (regulator ON)

Subject to general operating conditions for T_A .

Symbol	Parameter	Min	Мах	Unit	
t en	V _{DD} rise time rate	20	∞	us/V	
^I VDD	V _{DD} fall time rate	20	∞	μs/v	

Table 20. Operating conditions at power-up / power-down (regulator ON)

6.3.4 Operating conditions at power-up / power-down (regulator OFF)

Subject to general operating conditions for T_A .

Table 21. Operating conditions at power-up / power-down (regulator OFF)⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
+	V _{DD} rise time rate	Power-up	20	8	
tvdd	V _{DD} fall time rate	Power-down	20	8	µs/V
t	V_{CAP_1} and V_{CAP_2} rise time rate	Power-up	20	8	μ5/ ν
t _{VCAP}	V_{CAP_1} and V_{CAP_2} fall time rate	Power-down	20	8	

1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when V_{DD} reach below 1.08 V.

Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	Unit
			168	65.5	
			150	55.5	
			144	53.5	
		All Deripherale enabled	120	39.0	
		All Peripherals enabled	90	31.6	
			60	21.7	
	Supply current in Sleep mode from V _{DD} supply		30	9.8	
			25	8.8	
I _{DD}			168	15.7	mA
			150	13.7	1
			144	12.7	
		All Deripherale dischlod	120	9.7	-
		All Peripherals disabled	90	7.7	
			60	5.7	
			30	4.7	
			25	2.8	

Table 32. Typical curre	nt consumption in Slee	ep mode, regulator Ol	λ. V _{DD} =1.7 V ⁽¹⁾
Table of Typical curre	ni consumption in oice	spiniouc, regulator of	•, •DD=1./ •

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.

Symbol	Deremeter	Conditions	£ (MU-)	VDD:	=3.3 V	VDD	=1.7 V	Unit	
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}		
			180	61.5	1.4	-	-		
			168	59.4	1.3	59.4	1.0		
			150	53.9	1.3	53.9	1.0		
			144	49.0	1.3	49.0	1.0		
		All Peripherals enabled	120	38.0	1.2	38.0	0.9		
I _{DD12} /I _{DD}			90	29.3	1.4	29.3	1.1		
	Supply current in Sleep mode from V_{12} and V_{DD} supply			60	20.2	1.2	20.2	0.9	
			30	11.9	1.2	11.9	0.9		
			25	10.4	1.2	10.4	0.9		
			180	14.9	1.4	-	-	- mA	
			168	14.0	1.3	14.0	1.0		
			150	12.6	1.3	12.6	1.0		
			144	11.5	1.3	11.5	1.0	1	
		All Peripherals disabled	120	8.7	1.2	8.7	0.9		
		aloubiou	90	7.1	1.4	7.1	1.1		
			60	5.0	1.2	5.0	0.9		
			30	3.1	1.2	3.1	0.9		
			25	2.8	1.2	2.8	0.9		

Table 33. Tyical current consumption in Sleep mode, regulator OFF ⁽¹⁾
--

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 56: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 35: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DD} is the MCU supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

				,,		
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz	0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz	0.30 0.55	-	0.40 0.85	mA

Table 44. PLLI2S (audio PLL) characteristics (continued)

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

Table 45. PLLISAI (audio and LCD-TFT PLL) characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{PLLSAI_IN}	PLLSAI input clock ⁽¹⁾			0.95 ⁽²⁾	1	2.10	MHz
f _{PLLSAI_OUT}	PLLSAI multiplier output clock			-	-	216	MHz
f _{VCO_OUT}	PLLSAI VCO output			100	-	432	MHz
+	PLLSAI lock time	VCO freq = 100 MHz VCO freq = 432 MHz		75	-	200	110
t _{LOCK}				100	-	300	μs
		Cycle to cycle at	RMS	-	90	-	
	Main SAI clock jitter	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
Jitter ⁽³⁾		Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples		-	90	-	ps
	FS clock jitter	Cycle to cycle at 48 KHz on 1000 samples		-	400	-	ps
I _{DD(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V_{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz		0.30 0.55	-	0.40 0.85	mA

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

6.3.15 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESD S5.3.1 standards.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C conforming to ANSI/ESDA/JEDEC JS-001	2	2000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device	T_A = +25 °C conforming to ANSI/ESD S5.3.1, LQFP100/144/176, UFBGA169/176, TFBGA176 and WLCSP143 packages	C3	250	V
	model)	$T_A = +25$ °C conforming to ANSI/ESD S5.3.1, LQFP208 package	C3	250	

Table 53. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

Table 54. Electrical sensitivities

Symbol	Parameter			Тур	Max	Unit
t _{w(SCKH)}	SCK high and low time	Master mode, SPI presc = 2, 2.7 V≤V _{DD} ≤3.6 V	T _{PCLK} -0.5	T _{PCLK}	T _{PCLK} +0.5	
t _{w(SCKL)}		Master mode, SPI presc = 2, 1.7 V≤V _{DD} ≤3.6 V	T _{PCLK} – 2	T _{PCLK}	T _{PCLK} +2	
t _{su(NSS)}	NSS setup time	NSS setup time Slave mode, SPI presc = 2 4T _{PCLK}				
t _{h(NSS)}	NSS hold time Slave mode, SPI presc = 2		2T _{PCLK}	-	-	
t _{su(MI)}	Data input actus timo	Master mode	3	-	-	
t _{su(SI)}	Data input setup time	Slave mode	0	-	-	ns
t _{h(MI)}	Data input hold time	Master mode	0.5	-	-	
t _{h(SI)}	Data input hold time	Slave mode	2	-	-	
t _{a(SO})	Data output access time	Slave mode, SPI presc = 2	0	-	4T _{PCLK}	
+	Data output disable time	Slave mode, SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V	0	-	8.5	
t _{dis(SO)}	Data output disable time	Slave mode, SPI1/2/3/4/5/6 and 1.7 V≤V _{DD} ≤3.6 V	0	-	16.5	
		Slave mode (after enable edge), SPI1/4/5/6 and 2.7V $\leq V_{DD} \leq 3.6V$	-	11	13	
t _{v(SO)}	Data output valid/hold	Slave mode (after enable edge), SPI2/3, 2.7 V≤V _{DD} ≤3.6 V	-	14	15	
t _{h(SO)}	time	Slave mode (after enable edge), SPI1/4/5/6, 1.7 V≤V _{DD} ≤3.6 V	-	15.5	19	
		Slave mode (after enable edge), SPI2/3, 1.7 V≤V _{DD} ≤3.6 V	-	15.5	17.5	ns
+	Data output valid time	Master mode (after enable edge), SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V	-	-	2.5	
t _{v(MO)}	Data output valid time	Master mode (after enable edge), SPI1/2/3/4/5/6, 1.7 V≤V _{DD} ≤3.6 V	-	-	4.5	
t _{h(MO)}	Data output hold time	Master mode (after enable edge)	0	-	-	

Table 62. SPI o	ynamic characteristics ⁽¹⁾	(continued)
-----------------	---------------------------------------	-------------

1. Guaranteed by characterization results.

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50%

Electrical characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
t _{SC}	Control in (ULPI_DIR, ULPI_NXT) setup time		2	-	-			
t _{HC}	Control in (ULPI_DIR, ULPI_NXT) hold time		0.5	-	-			
t _{SD}	Data in setup time		1.5	-	-			
t _{HD}	Data in hold time		2	-	-			
t _{DC} /t _{DD} Data/control output delay		2.7 V < V _{DD} < 3.6 V, C _L = 15 pF and OSPEEDRy[1:0] = 11	-	9	9.5	ns		
	Data/control output delay	2.7 V < V _{DD} < 3.6 V, C _L = 20 pF and OSPEEDRy[1:0] = 10	-	12	15			
		1.7 V < V _{DD} < 3.6 V, C _L = 15 pF and OSPEEDRy[1:0] = 11	-	12	15			

Table 70. Dynamic characteristics: USB ULPI⁽¹⁾

1. Guaranteed by characterization results.

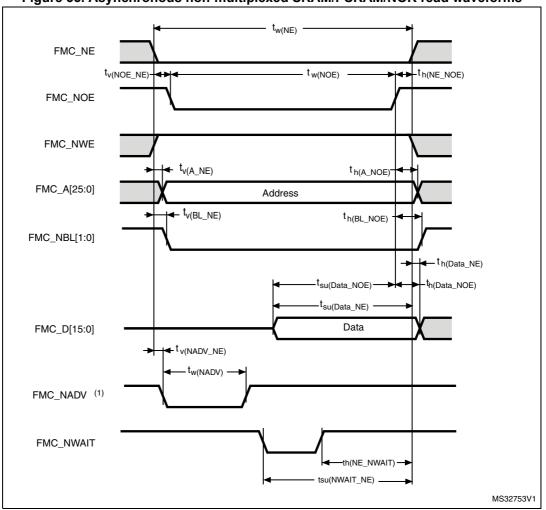


Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR -
read timings ⁽¹⁾⁽²⁾
read unings (A)

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	2T _{HCLK} – 0.5	2 T _{HCLK} +0.5	ns
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	0	1	ns
t _{w(NOE)}	FMC_NOE low time	2T _{HCLK}	2T _{HCLK} + 0.5	ns
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	ns
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	2	ns
t _{h(A_NOE)}	Address hold time after FMC_NOE high	0	-	ns
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	ns
t _{h(BL_NOE)}	FMC_BL hold time after FMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} + 2.5	-	ns
t _{su(Data_NOE)}	Data to FMC_NOEx high setup time	T _{HCLK} +2	-	ns

DocID024244 Rev 10

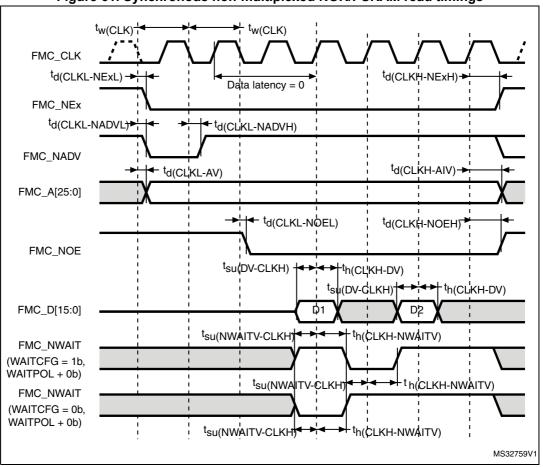


Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings

Table 96. Synchronous non-multiplexed NOR/PSRAM read timings ⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} – 1	-	ns
t _(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	0.5	ns
t _{d(CLKH-} NExH)	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	ns
t _{d(CLKL} - NADVL)	FMC_CLK low to FMC_NADV low	-	0	ns
t _{d(CLKL-} NADVH)	FMC_CLK low to FMC_NADV high	0	-	ns
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK} – 0.5	-	ns
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	T _{HCLK} +2	ns
t _{d(CLKH-} NOEH)	FMC_CLK high to FMC_NOE high	T _{HCLK} – 0.5	-	ns
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	5	_	ns

DocID024244 Rev 10

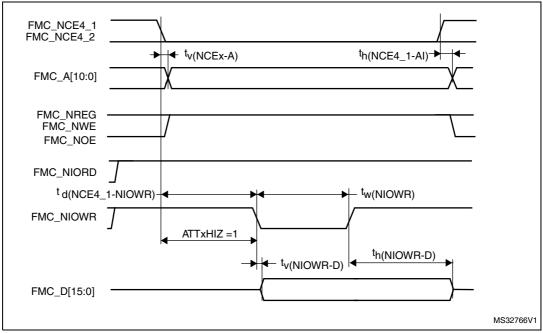


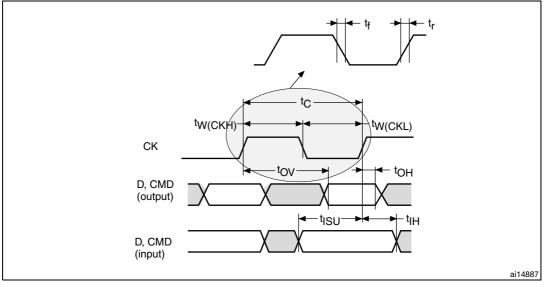
Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access

Table 98. Switching characteristics for PC Card/CF read and write cycles in attribute/common space $^{(1)(2)}$

Symbol	Parameter	Min	Мах	Unit
t _{v(NCEx-A)}	FMC_Ncex low to FMC_Ay valid	-	0	ns
t _{h(NCEx_AI)}	FMC_NCEx high to FMC_Ax invalid	0	-	ns
t _{d(NREG-NCEx)}	FMC_NCEx low to FMC_NREG valid	-	1	ns
t _{h(NCEx-NREG)}	FMC_NCEx high to FMC_NREG invalid	T _{HCLK} – 2	-	ns
t _{d(NCEx-NWE)}	FMC_NCEx low to FMC_NWE low	-	5T _{HCLK}	ns
t _{w(NWE)}	FMC_NWE low width	8T _{HCLK} – 0.5	8T _{HCLK} +0.5	ns
t _{d(NWE_NCEx)}	FMC_NWE high to FMC_NCEx high	5T _{HCLK} +1	-	ns
t _{V(NWE-D)}	FMC_NWE low to FMC_D[15:0] valid	-	0	ns
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15:0] invalid	9T _{HCLK} – 0.5	-	ns
t _{d(D-NWE)}	FMC_D[15:0] valid before FMC_NWE high	13T _{HCLK} – 3		ns
t _{d(NCEx-NOE)}	FMC_NCEx low to FMC_NOE low	-	5T _{HCLK}	ns
t _{w(NOE)}	FMC_NOE low width	8 T _{HCLK} – 0.5	8 T _{HCLK} +0.5	ns
t _{d(NOE_NCEx)}	FMC_NOE high to FMC_NCEx high	5T _{HCLK} – 1	-	ns
t _{su (D-NOE)}	FMC_D[15:0] valid data before FMC_NOE high	T _{HCLK}	-	ns
t _{h(NOE-D)}	FMC_NOE high to FMC_D[15:0] invalid	0	-	ns

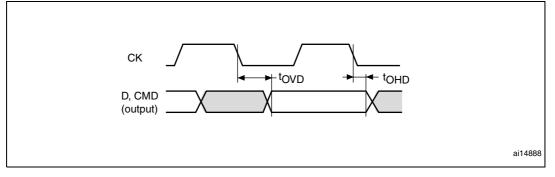
1. C_L = 30 pF.

2. Guaranteed by characterization results.



6.3.29 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 108* for the SDIO/MMC interface are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:


- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Figure 78. SDIO high-speed mode

Figure 79. SD default mode

Cumhal		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
CCC	-	-	0.080	-	-	0.0031

Table 110. LQPF100 100-pin, 14 x 14 mm low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Dimension	Recommended values
Pitch	0.4
Dpad	260 µm max. (circular)
	220 µm recommended
Dsm	300 µm min. (for 260 µm diameter pad)
PCB pad design	Non-solder mask defined via underbump allowed.

 Table 112. WLCSP143 recommended PCB design rules (0.4 mm pitch)

Device marking for WLCSP143

The following figure gives an example of topside marking orientation versus ball A 1 identifier location.

Other optional marking or inset/upset marks, which depends assembly location, are not indicated below.

Figure 85. WLCSP143 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

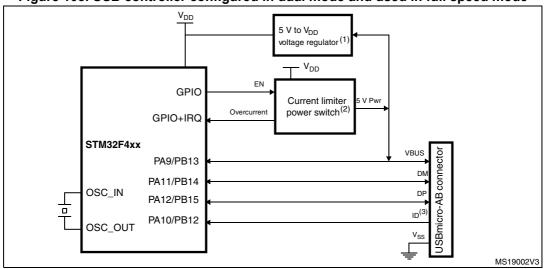


Figure 105. USB controller configured in dual mode and used in full speed mode

- 1. External voltage regulator only needed when building a $V_{\mbox{BUS}}$ powered device.
- The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.
- 3. The ID pin is required in dual role only.
- 4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

