

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f437iit6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

STM32F437xx and STM32F439xx

These features make the STM32F437xx and STM32F439xx microcontrollers suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances

Figure 4 shows the general block diagram of the device family.

	Table 2. OT 11021 407AX and OT 11021 400AX realities and perphetal counts																																				
Peripherals		STM3 \	STM32F437 Vx		STM32F439 Vx		STM32F439 Vx		STM32F439 Vx		F437Zx	STM32F437AI	STM32F439AI	STM32	F439Zx	STM32	:F437lx	STM32	2F439lx	STM32	F439Bx	STM32	F439Nx														
Flash memory in Kbytes		1024	2048	1024	2048	1024	2048	2048	2048	1024	2048	1024	2048	1024	2048	1024	2048	1024	2048																		
SRAM in Kbytes	System		256(112+16+64+64)																																		
	Backup		4																																		
FMC memory controller			Yes ⁽¹⁾																																		
Ethernet										Yes																											
	General- purpose		10																																		
Timers	Advance d-control									2																											
	Basic									2																											
Random number generator										Yes																											

Table 2. STM32F437xx and STM32F439xx features and peripheral counts

3.21 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present.

 V_{BAT} operation is activated when V_{DD} is not present.

The V_{BAT} pin supplies the RTC, the backup registers and the backup SRAM.

Note: When the microcontroller is supplied from V_{BAT} , external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

When PDR_ON pin is not connected to V_{DD} (Internal Reset OFF), the V_{BAT} functionality is no more available and V_{BAT} pin should be connected to VDD.

3.22 Timers and watchdogs

The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 6 compares the features of the advanced-control, general-purpose and basic timers.

Pinouts and pin description

STM32F437xx and STM32F439xx

1. The above figure shows the package top view.

51

 Table 12. STM32F437xx and STM32F439xx alternate function mapping (continued)

						,	, , , , , , , , , , , , , , , , , , , ,										
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	Port	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	l2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ЕТН	FMC/SDIO /OTG2_FS	DCMI	LCD	SYS
	PD7	-	-	-	-	-	-	-	USART2_ CK	-	-	-	-	FMC_NE1/ FMC_ NCE2	-	-	EVEN TOUT
	PD8	-	-	-	-	-	-	-	USART3_ TX	-	-	-	-	FMC_D13	-	-	EVEN TOUT
	PD9	-	-	-	-	-	-	-	USART3_ RX	-	-	-	-	FMC_D14	-	-	EVEN TOUT
	PD10	-	-	-	-	-	-	-	USART3_ CK	-	-	-	-	FMC_D15	-	LCD_B3	EVEN TOUT
Port D	PD11	-	-	-	-	-	-	-	USART3_ CTS	-	-	-	-	FMC_A16	-	-	EVEN TOUT
	PD12	-	-	TIM4_ CH1	-	-	-	-	USART3_ RTS	-	-	-	-	FMC_A17	-	-	EVEN TOUT
	PD13	-	-	TIM4_ CH2	-	-	-	-	-	-	-	-	-	FMC_A18	-	-	EVEN TOUT
	PD14	-	-	TIM4_ CH3	-	-	-	-	-	-	-	-	-	FMC_D0	-	-	EVEN TOUT
	PD15	-	-	TIM4_ CH4	-	-	-	-	-	-	-	-	-	FMC_D1	-	-	EVEN TOUT
	PE0	-	-	TIM4_ ETR	-	-	-	-	-	UART8_Rx	-	-	-	FMC_ NBL0	DCMI_ D2	-	EVEN TOUT
	PE1	-	-	-	-	-	-	-	-	UART8_Tx	-	-	-	FMC_ NBL1	DCMI_ D3	-	EVEN TOUT
	PE2	TRAC ECLK	-	-	-	-	SPI4_ SCK	SAI1_ MCLK_A	-	-	-	-	ETH_MII_ TXD3	FMC_A23	-	-	EVEN TOUT
Port E	PE3	TRAC ED0	-	-	-	-	-	SAI1_ SD_B	-	-	-	-	-	FMC_A19	-	-	EVEN TOUT
	PE4	TRAC ED1	-	-	-	-	SPI4_ NSS	SAI1_ FS_A	-	-	-	-	-	FMC_A20	DCMI_ D4	LCD_B0	EVEN TOUT
	PE5	TRAC ED2	-	-	TIM9_ CH1	-	SPI4_M ISO	SAI1_ SCK_A	-	-	-	-	-	FMC_A21	DCMI_ D6	LCD_G0	EVEN TOUT
	PE6	TRAC ED3	-	-	TIM9_ CH2	-	SPI4_ MOSI	SAI1_ SD_A	-	-	-	-	-	FMC_A22	DCMI_ D7	LCD_G1	EVEN TOUT

STM32F437xx and STM32F439xx

Pinouts and pin description

78/240

DocID024244 Rev 10

Bus	Boundary address	Peripheral
	0x4000 8000- 0x4000 FFFF	Reserved
	0x4000 7C00 - 0x4000 7FFF	UART8
	0x4000 7800 - 0x4000 7BFF	UART7
	0x4000 7400 - 0x4000 77FF	DAC
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6C00 - 0x4000 6FFF	Reserved
	0x4000 6800 - 0x4000 6BFF	CAN2
	0x4000 6400 - 0x4000 67FF	CAN1
	0x4000 6000 - 0x4000 63FF	Reserved
	0x4000 5C00 - 0x4000 5FFF	I2C3
	0x4000 5800 - 0x4000 5BFF	I2C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 5000 - 0x4000 53FF	UART5
	0x4000 4C00 - 0x4000 4FFF	UART4
	0x4000 4800 - 0x4000 4BFF	USART3
	0x4000 4400 - 0x4000 47FF	USART2
	0x4000 4000 - 0x4000 43FF	I2S3ext
AFDI	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	I2S2ext
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 2400 - 0x4000 27FF	Reserved
	0x4000 2000 - 0x4000 23FF	TIM14
	0x4000 1C00 - 0x4000 1FFF	TIM13
	0x4000 1800 - 0x4000 1BFF	TIM12
	0x4000 1400 - 0x4000 17FF	TIM7
	0x4000 1000 - 0x4000 13FF	TIM6
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

Table 13. STM32F437xx and STM32F439xx register boundary addresses (continued)

6.3.5 Reset and power control block characteristics

The parameters given in *Table 22* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19	V
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08	V
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37	V
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25	V
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51	V
V _{PVD}		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39	V
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65	V
	Programmable voltage	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V
	detector level selection	PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71	V
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99	V
		PLS[2:0]=101 (falling edge)	2.65	2.84	2.92	V
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10	V
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99	V
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21	V
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis		-	100	-	mV
M	Power-on/power-down	Falling edge	1.60	1.68	1.76	V
♥ POR/PDR	reset threshold	Rising edge	1.64	1.72	1.80	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis		-	40	-	mV
M	Brownout level 1	Falling edge	2.13	2.19	2.24	V
VBOR1	threshold	Rising edge	2.23	2.29	2.33	V
M	Brownout level 2	Falling edge	2.44	2.50	2.56	V
VBOR2	threshold	Rising edge	2.53	2.59	2.63	V
M	Brownout level 3	Falling edge	2.75	2.83	2.88	V
VBOR3	threshold	Rising edge	2.85	2.92	2.97	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis		-	100	-	mV
T _{RSTTEMPO}	POR reset temporization		0.5	1.5	3.0	ms

Table 22.	reset and	power	control	block	characteristics
-----------	-----------	-------	---------	-------	-----------------

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 56: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 35: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DD} is the MCU supply voltage

f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Peripheral			l _{DD} (Typ) ⁽¹⁾		11
F	renpheral	Scale 1	Scale 2	Scale 3	Unit
	SDIO	8.11	8.75	7.83	
	TIM1	17.11	15.97	14.17	
	TIM8	17.33	16.11	14.33	
	TIM9	7.22	6.67	6.00	
	TIM10	4.56	4.31	3.83	
	TIM11	4.78	4.44	4.00	
	ADC1 ⁽⁵⁾	4.67	4.31	3.83	
	ADC2 ⁽⁵⁾	4.78	4.44	4.00	
APB2	ADC3 ⁽⁵⁾	4.56	4.17	3.67	/
(up to 90 MHz)	SPI1	1.44	1.39	1.17	μΑνινιπΖ
,	USART1	4.00	3.75	3.33	
	USART6	4.00	3.75	3.33	
	SPI4	1.44	1.39	1.17	
	SPI5	1.44	1.39	1.17	
	SPI6	1.44	1.39	1.17	
	SYSCFG	0.78	0.69	0.67	
	LCD_TFT	39.89	37.22	33.17	
	SAI1	3.78	3.47	3.17	

Table 35. Peri	pheral current	consumption	(continued)

1. When the I/O compensation cell is ON, I_{DD} typical value increases by 0.22 mA.

2. The BusMatrix is automatically active when at least one master is ON.

3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.

4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of 0.8 mA per DAC channel for the analog part.

5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 56: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 28*.

The characteristics given in *Table 38* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V _{SS}	-	0.3V _{DD}	
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ne
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾		-	5	-	рF
DuCy _(LSE)	Duty cycle		30	-	70	%
ΙL	OSC32_IN Input leakage current	$V_{SS} \!\leq\! \! V_{IN} \!\leq\! \! V_{DD}$	-	-	±1	μA

Table 38. Low-spe	eed external user	clock characteristics
-------------------	-------------------	-----------------------

1. Guaranteed by design.

6.3.13 Memory characteristics

Flash memory

The characteristics are given at TA = -40 to 105 °C unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD}	Supply current	Write / Erase 8-bit mode, V_{DD} = 1.7 V	-	5	-	
		Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V_{DD} = 3.3 V	-	12	-	

Table 47	. Flash memor	y characteristics
----------	---------------	-------------------

Symbol	Parameter Conditions		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs	
		Program/erase parallelism (PSIZE) = x 8	-	400	800	800	
t _{erase16kb}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms	
		Program/erase parallelism (PSIZE) = x 32	-	250	500		
terase64kb		Program/erase parallelism (PSIZE) = x 8	-	1200	2400		
	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms	
		Program/erase parallelism (PSIZE) = x 32	-	550	1100		
		Program/erase parallelism (PSIZE) = x 8	-	2	4		
t _{ERASE128KB}	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6	s	
		Program/erase parallelism (PSIZE) = x 32	-	1	2		
t _{ME}		Program/erase parallelism (PSIZE) = x 8	-	16	32		
	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	11	22	S	
		Program/erase parallelism (PSIZE) = x 32	-	8	16		

Table 48. Flash memory programming

Figure 35. FT I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14, PC15 and PI8 which can sink or source up to ± 3 mA. When using the PC13 to PC15 and PI8 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*. In particular:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 15*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 15*).

6.3.19 TIM timer characteristics

The parameters given in Table 60 are guaranteed by design.

Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽³⁾ Min		Max	Unit
t _{res(TIM)}	Timer resolution time	AHB/APBx prescaler=1 or 2 or 4, f _{TIMxCLK} = 180 MHz	1	-	t _{TIMxCLK}
100(1111)		AHB/APBx prescaler>4, f _{TIMxCLK} = 90 MHz	1	-	t _{TIMxCLK}
f _{EXT}	Timer external clock frequency on CH1 to CH4	f _{TIMxCLK} = 180 MHz	0	f _{TIMxCLK} /2	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
t _{MAX_COUNT}	Maximum possible count with 32-bit counter		-	65536 × 65536	t _{TIMxCLK}

Table 60	. TIMx	characteristics ⁽	1)(2)
----------	--------	------------------------------	-------

1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.

2. Guaranteed by design.

 The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK = 4x PCLKx.

6.3.20 Communications interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s.

The I²C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0090 reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present. Refer to Section 6.3.17: I/O port characteristics for more details on the I²C I/O characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _S ⁽²⁾		12-bit resolution Single ADC	-	-	2	Msps
	Sampling rate (f _{ADC} = 30 MHz, and t _S = 3 ADC cycles)	12-bit resolution Interleave Dual ADC mode	-	-	3.75	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	6	Msps
I _{VREF+} ⁽²⁾	ADC V _{REF} DC current consumption in conversion mode		-	300	500	μA
I _{VDDA} ⁽²⁾	ADC V _{DDA} DC current consumption in conversion mode		-	1.6	1.8	mA

 Table 74. ADC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

2. Guaranteed by characterization results.

3. V_{REF} is internally connected to V_{DDA} and V_{REF} is internally connected to $V_{\mathsf{SSA}}.$

4. R_{ADC} maximum value is given for V_{DD} =1.7 V, and minimum value for V_{DD} =3.3 V.

5. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in Table 74.

Equation 1: RAIN max formula

$$R_{AIN} = \frac{(k-0.5)}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit
ET	Total unadjusted error	((0))	±3	±4	
EO	Offset error	T _{ADC} =18 MHZ V _{DDA} = 1.7 to 3.6 V	±2	±3	
EG	Gain error	V_{REF} = 1.7 to 3.6 V	±1	±3	LSB
ED	Differential linearity error	V _{DDA} –V _{REF} < 1.2 V	±1	±2	
EL	Integral linearity error		±2	±3	

Table 75. ADC static accuracy at f_{ADC} = 18 MHz

1. Guaranteed by characterization results.

Figure 51. Typical connection diagram using the ADC

1. Refer to Table 74 for the values of $\mathsf{R}_{\mathsf{AIN}},\,\mathsf{R}_{\mathsf{ADC}}\,\mathsf{and}\,\mathsf{C}_{\mathsf{ADC}}.$

 $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

6.3.27 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in *Table 106* for DCMI are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 17*, with the following configuration:

- DCMI_PIXCLK polarity: falling
- DCMI_VSYNC and DCMI_HSYNC polarity: high
- Data formats: 14 bits

Symbol	Parameter	Min	Max	Unit
	Frequency ratio DCMI_PIXCLK/f _{HCLK}	-	0.4	
DCMI_PIXCLK	Pixel clock input	-	54	MHz
D _{Pixel}	Pixel clock input duty cycle	30	70	%
t _{su(DATA)}	Data input setup time	2	-	
t _{h(DATA)}	Data input hold time	2.5	-	
t _{su(HSYNC)} t _{su(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input setup time	0.5	-	ns
t _{h(HSYNC)} t _{h(VSYNC)}	DCMI_HSYNC/DCMI_VSYNC input hold time	1	-	

Table 106. DCMI characteristics

Figure 75. DCMI timing diagram

Symbol	millimeters in			inches ⁽¹⁾	nches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
ZD	-	1.250	-	-	0.0492	-
E	23.900	-	24.100	0.9409	-	0.9488
HE	25.900	-	26.100	1.0197	-	1.0276
ZE	-	1.250	-	-	0.0492	-
е	-	0.500	-	-	0.0197	-
L ⁽²⁾	0.450	-	0.750	0.0177	-	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	-	7°	0°	-	7°
CCC	-	-	0.080	-	-	0.0031

Table 114. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.

Device marking for LQFP176

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depends assembly location, are not indicated below.

Figure 91. LQFP176 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.9 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max x \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	43	
	Thermal resistance junction-ambient WLCSP143	31.2	
Θ _{JA}	Thermal resistance junction-ambient LQFP144 - 20 × 20 mm / 0.5 mm pitch	40	
	Thermal resistance junction-ambient LQFP176 - 24 × 24 mm / 0.5 mm pitch	38	°C 1.01
	Thermal resistance junction-ambient LQFP208 - 28 × 28 mm / 0.5 mm pitch	19	0/11
	Thermal resistance junction-ambient UFBGA169 - 7 × 7mm / 0.5 mm pitch	52	
	Thermal resistance junction-ambient UFBGA176 - 10× 10 mm / 0.5 mm pitch	39	
	Thermal resistance junction-ambient TFBGA216 - 13 × 13 mm / 0.8 mm pitch	29	

Table 121. Package thermal characteristics

Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

Date	Revision	Changes
		Update SPI/IS2 in Table 2: STM32F437xx and STM32F439xx features and peripheral counts. Updated LQFP208 in Table 4: Regulator ON/OFF and internal reset ON/OFF availability. Updated Figure 19: Memory map.
		Changed PLS[2:0]=101 (falling edge) maximum value in <i>Table 22:</i> reset and power control block characteristics.
		Updated current consumption with all peripherals disabled in <i>Table 24:</i> <i>Typical and maximum current consumption in Run mode, code with</i> <i>data processing running from Flash memory (ART accelerator</i> <i>enabled except prefetch) or RAM.</i>
		Updated note 1. in Table 28: Typical and maximum current consumptions in Standby mode.
		Updated t _{WUSTOP} in <i>Table 36: Low-power mode wakeup timings</i> . Updated ESD standards and <i>Table 53: ESD absolute maximum ratings</i> .
		Updated Table 56: I/O static characteristics.
		Section : I2C interface characteristics: updated section introduction, removed Table I2C characteristics, Figure I2C bus AC waveforms and measurement circuit and Table SCL frequency; added Table 61: I2C analog filter characteristics.
		Updated measurement conditions in <i>Table 62: SPI dynamic characteristics</i> .
19-Feb-2015	6	Updated Figure 51: Typical connection diagram using the ADC.
		Updated Section : Device marking for LQFP100.
		Updated Figure 83: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package outline and Table 111: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package mechanical data; added Figure 84: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale recommended footprint and Table 112: WLCSP143 recommended PCB design rules (0.4 mm pitch). Updated Figure 85: WLCSP143 marking example (package top view) and related note. Updated Section : Device marking for WLCSP143.
		Updated Section : Device marking for LQFP144.
		Updated Section : Device marking for LQFP176.
		Updated <i>Figure 92: LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline</i> ; Updated <i>Section : Device marking for LQFP208.</i>
		Modified UFBGA169 pitch, updated <i>Figure 95: UFBGA169 - 169-ball 7</i> x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array package outline and <i>Table 116: UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra</i> fine pitch ball grid array package mechanical data; updated Section : Device marking for LQFP208.
		updated Section : Device marking for UFBGA169, Section : Device marking for UFBGA176+25 and Section : Device marking for TFBGA176.
		Updated Z pin count in <i>Table 122: Ordering information scheme</i> .

Table 124. Document revision history (continued)

Date	Revision	Changes
11-Jan-2016	9	Updated <i>Figure 22: Power supply scheme</i> . Added $t_{d(TXD)}$ values corresponding to 1.71 V < V _{DD} < 3.6 V in <i>Table 72: Dynamics characteristics: Ethernet MAC signals for RMII</i> .
18-Jul-2016	10	Updated Figure 1: Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package. Added mission profile compliance with JEDEC JESD47 in Section 6.2: Absolute maximum ratings. Changed Figure 31 HSI deviation versus temperature to ACCHSI versus temperature. Updated R _{LOAD} in Table 85: DAC characteristics. Added note 2. related to the position of the external capacitor below Figure 37: Recommended NRST pin protection. Updated Figure 40: SPI timing diagram - master mode. Added reference to optional marking or inset/upset marks in all package device marking sections. Updated Figure 85: WLCSP143 marking example (package top view), Figure 88: LQFP144 marking example (package top view), Figure 91: LQFP176 marking (package top view), Figure 94: LQFP208 marking example (package top view), Figure 102: TFBGA169 marking example (package top view). Updated Figure 98: UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball grid array package outline and Table 118: UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package mechanical data.

Table 124	Document revision	history	(continued)
	Document revision	matory	(commueu)

