

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f437iit7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.22	Timers and watchdogs	33
	3.22.1 Advanced-control timers (TIM1, TIM8)	35
	3.22.2 General-purpose timers (TIMx)	35
	3.22.3 Basic timers TIM6 and TIM7	35
	3.22.4 Independent watchdog	36
	3.22.5 Window watchdog	36
	3.22.6 SysTick timer	36
3.23	Inter-integrated circuit interface (I ² C)	36
3.24	Universal synchronous/asynchronous receiver transmitters (USART)	36
3.25	Serial peripheral interface (SPI)	37
3.26	Inter-integrated sound (I ² S)	38
3.27	Serial Audio interface (SAI1)	38
3.28	Audio PLL (PLLI2S)	38
3.29	Audio and LCD PLL(PLLSAI)	38
3.30	Secure digital input/output interface (SDIO)	39
3.31	Ethernet MAC interface with dedicated DMA and IEEE 1588 support .	39
3.32	Controller area network (bxCAN)	39
3.33	Universal serial bus on-the-go full-speed (OTG_FS)	40
3.34	Universal serial bus on-the-go high-speed (OTG_HS)	40
3.35	Digital camera interface (DCMI)	41
3.36	Cryptographic acceleration	41
3.37	Random number generator (RNG)	41
3.38	General-purpose input/outputs (GPIOs)	41
3.39	Analog-to-digital converters (ADCs)	42
3.40		42
3.41	Digital-to-analog converter (DAC)	42
3.42	Serial wire JTAG debug port (SWJ-DP)	43
3.43	Embedded Trace Macrocell™	43
Pinou	uts and pin description	44
Mem	ory mapping	85
Elect	rical characteristics	90
6.1	Parameter conditions	90
		_

DocID024244 Rev 10

4

5

6

reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.17.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.

An external power supply supervisor should monitor V_{DD} and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON should be connected to this external power supply supervisor. Refer to *Figure 6: Power supply supervisor interconnection with internal reset OFF*.

Figure 6. Power supply supervisor interconnection with internal reset OFF

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V (see *Figure 7*).

A comprehensive set of power-saving mode allows to design low-power applications.

When the internal reset is OFF, the following integrated features are no more supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD}.

All packages, except for the LQFP100, allow to disable the internal reset through the PDR_ON signal.

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or from the V_{BAT} pin.

3.20 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5: Voltage regulator modes in stop mode*):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)
Normal mode	MR ON	LPR ON
Under-drive mode	MR in under-drive mode	LPR in under-drive mode

Table 5. Voltage regulator modes in stop mode

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary output	Max interface clock (MHz)	Max timer clock (MHz) (1)
Advanced -control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	90	180
	TIM2, TIM5 32-bit		Up, Down, Up/down	Any integer between 1 and 65536	Yes	Yes 4 No		45	90/180
General	TIM3, TIM4 16-bit		Up, Down, Up/down	Any integer between 1 and 65536	Yes	es 4 No		45	90/180
	TIM9	16-bit Up		Any integer between 1 and 65536	No	2	No	90	180
purpose	TIM10 TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	90	180
	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	45	90/180
	TIM13 TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	45	90/180
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	45	90/180

 Table 6. Timer feature comparison

1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

3.26 Inter-integrated sound (I²S)

Two standard I²S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx can be served by the DMA controller.

Note: For I2S2 full-duplex mode, I2S2_CK and I2S2_WS signals can be used only on GPIO Port B and GPIO Port D.

3.27 Serial Audio interface (SAI1)

The serial audio interface (SAI1) is based on two independent audio sub-blocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub-blocks can be configured in master or in slave mode.

In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency.

The two sub-blocks can be configured in synchronous mode when full-duplex mode is required.

SAI1 can be served by the DMA controller.

3.28 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S and SAI applications. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I²S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I²S/SAI flow with an external PLL (or Codec output).

3.29 Audio and LCD PLL(PLLSAI)

An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLLSAI is also used to generate the LCD-TFT clock.

FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN.

3.33 Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

- Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 4 bidirectional endpoints
- 8 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

3.34 Universal serial bus on-the-go high-speed (OTG_HS)

The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The major features are:

- Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 6 bidirectional endpoints
- 12 host channels with periodic OUT support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

Figure 14. STM32F43x LQFP176 pinout

1. The above figure shows the package top view.

					-		-					- 11 F) (= = = =	, ,		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	I2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ЕТН	FMC/SDIO /OTG2_FS	DCMI	LCD
	PA13	JTMS- SWDI O	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Port A	PA14	JTCK- SWCL K	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PA15	JTDI	TIM2_ CH1/TIM2 _ETR	-	-	-	SPI1_ NSS	SPI3_ NSS/ I2S3_WS	-	-	-	-	-	-	-	-
	PB0	-	TIM1_ CH2N	TIM3_ CH3	TIM8_ CH2N	-	-	-	-	-	LCD_R3	OTG_HS_ ULPI_D1	ETH_MII_ RXD2	-	-	-
	PB1	-	TIM1_ CH3N	TIM3_ CH4	TIM8_ CH3N	-	-	-	-	-	LCD_R6	OTG_HS_ ULPI_D2	ETH_MII_ RXD3	-	-	-
	PB2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PB3	JTDO/ TRAC ESWO	TIM2_ CH2	-	-	-	SPI1_ SCK	SPI3_ SCK/ I2S3_CK	-	-	-	-	-	-	-	-
	PB4	NJTR ST	-	TIM3_ CH1	-	-	SPI1_ MISO	SPI3_ MISO	I2S3ext_ SD	-	-	-	-	-	-	-
Port B	PB5	-	-	TIM3_ CH2	-	I2C1_ SMBA	SPI1_ MOSI	SPI3_ MOSI/ I2S3_SD	-	-	CAN2_RX	OTG_HS_ ULPI_D7	ETH_PPS _OUT	FMC_ SDCKE1	DCMI_ D10	-
	PB6	-	-	TIM4_ CH1	-	I2C1_ SCL	-	-	USART1_ TX	-	CAN2_TX	-	-	FMC_ SDNE1	DCMI_ D5	-
	PB7	-	-	TIM4_ CH2	-	I2C1_ SDA	-	-	USART1_ RX	-	-	-	-	FMC_NL	DCMI_ VSYNC	-
	PB8	-	-	TIM4_ CH3	TIM10_ CH1	I2C1_ SCL	-	-	-	-	CAN1_RX	-	ETH_MII_ TXD3	SDIO_D4	DCMI_ D6	LCD_B6
	PB9	-	-	TIM4_ CH4	TIM11_ CH1	I2C1_ SDA	SPI2_ NSS/I2 S2_WS	-	-	-	CAN1_TX	-	-	SDIO_D5	DCMI_ D7	LCD_B7
	PB10	-	TIM2_ CH3	-	-	I2C2_ SCL	SPI2_ SCK/I2 S2_CK	-	USART3_ TX	-	-	OTG_HS_ ULPI_D3	ETH_MII_ RX_ER	-	-	LCD_G4

Table 12. STM32F437xx and STM32F439xx alternate function mapping (continued)

DocID024244 Rev 10

STM32F437xx and STM32F439xx

Pinouts and pin description

AF15

SYS

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN

TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN

TOUT

TOUT EVEN TOUT

EVEN TOUT

EVEN TOUT

1

DocID024244 Rev 10

83/240

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF12 AF13	AF14	AF15
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	l2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ETH	FMC/SDIO /OTG2_FS	DCMI	LCD	SYS
	PI7	-	-	-	TIM8_ CH3	-	-	-	-	-	-	-	-	FMC_D29	DCMI_ D7	LCD_B7	EVEN TOUT
	PI8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PI9	-	-	-	-	-	-	-	-	-	CAN1_RX	-	-	FMC_D30	-	LCD_ VSYNC	EVEN TOUT
	PI10	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_ RX_ER	FMC_D31	-	LCD_ HSYNC	EVEN TOUT
Port I	PI11	-	-	-	-	-	-	-	-	-	-	OTG_HS_ ULPI_DIR	-	-	-	-	EVEN TOUT
	PI12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_ HSYNC	EVEN TOUT
	PI13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_ VSYNC	EVEN TOUT
	PI14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_ CLK	EVEN TOUT
	PI15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R0	EVEN TOUT
	PJ0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R1	EVEN TOUT
	PJ1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R2	EVEN TOUT
	PJ2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R3	EVEN TOUT
Port I	PJ3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R4	EVEN TOUT
T OIL 3	PJ4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R5	EVEN TOUT
	PJ5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R6	EVEN TOUT
	PJ6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R7	EVEN TOUT
	PJ7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G0	EVEN TOUT

 Table 12. STM32F437xx and STM32F439xx alternate function mapping (continued)

6.3.3 Operating conditions at power-up / power-down (regulator ON)

Subject to general operating conditions for T_A .

Symbol	Parameter	Min	Мах	Unit	
t	V _{DD} rise time rate	20	∞	ue/\/	
۷DD	V _{DD} fall time rate	20	~	μ5/ V	

Table 20. Operating conditions at power-up / power-down (regulator ON)

6.3.4 Operating conditions at power-up / power-down (regulator OFF)

Subject to general operating conditions for T_A .

Table 21. Operating conditions at power-up / power-down (regulator OFF)⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
t _{VDD}	V _{DD} rise time rate	Power-up	20	8	µs/V
	V _{DD} fall time rate	Power-down	20	8	
t _{VCAP}	V_{CAP_1} and V_{CAP_2} rise time rate	Power-up	20	8	
	V_{CAP_1} and V_{CAP_2} fall time rate	Power-down	20	8	

1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when V_{DD} reach below 1.08 V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power- on (POR or wakeup from Standby)		-	160	200	mA
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power- on (POR or wakeup from Standby)	V _{DD} = 1.7 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC

 Table 22. reset and power control block characteristics (continued)

1. Guaranteed by design.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

6.3.6 Over-drive switching characteristics

When the over-drive mode switches from enabled to disabled or disabled to enabled, the system clock is stalled during the internal voltage set-up.

The over-drive switching characteristics are given in *Table 23*. They are sbject to general operating conditions for T_A .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Over_drive switch	HSI	-	45	-	
Tod_swen		HSE max for 4 MHz and min for 26 MHz	45	-	100	
		External HSE 50 MHz	-	40	-	116
		HSI	-	20	-	μο
Tod_swdis	Over_drive switch	HSE max for 4 MHz and min for 26 MHz.	20	-	80	
		External HSE 50 MHz	-	15	-	

Table 23. Over-drive switching characteristics⁽¹⁾

1. Guaranteed by design.

				Typ ⁽¹⁾			Max ⁽²⁾			
Symbol	Parameter	Conditions	Т	A = 25 °0	C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
			V _{DD} = 1.7 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	V _{DD} = 3.6 V				
I _{DD_STBY}	Supply current in Standby mode	Backup SRAM ON, low-speed oscillator (LSE) and RTC ON	2.80	3.00	3.60	7.00	19.00	36.00		
		Backup SRAM OFF, low- speed oscillator (LSE) and RTC ON	2.30	2.60	3.10	6.00	16.00	31.00	μA	
		Backup SRAM ON, RTC and LSE OFF	2.30	2.50	2.90	6.00 ⁽³⁾	18.00 ⁽³⁾	35.00 ⁽³⁾		
		Backup SRAM OFF, RTC and LSE OFF	1.70	1.90	2.20	5.00 ⁽³⁾	15.00 ⁽³⁾	30.00 ⁽³⁾		

Table 28. Typical and maximum current consumptions in Standby mode

1. The typical current consumption values are given with PDR OFF (internal reset OFF). When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by additional 1.2 μ A.

2. Based on characterization, not tested in production unless otherwise specified.

3. Based on characterization, tested in production.

Table 29. Typical and maximum current consumptions in $\mathrm{V}_{\mathrm{BAT}}$ mode

		Conditions ⁽¹⁾	Тур			Ма		
Symbol	Parameter		T _A = 25 °C			T _A = 85 °C	T _A = 105 °C	Unit
			V _{BAT} = 1.7 V	V _{BAT} = 2.4 V	V _{BAT} = 3.3 V	V _{BAT} =	= 3.6 V	
I _{DD_VBAT}	Backup domain supply current	Backup SRAM ON, low-speed oscillator (LSE) and RTC ON	1.28	1.40	1.62	6	11	
		Backup SRAM OFF, low-speed oscillator (LSE) and RTC ON	0.66	0.76	0.97	3	5	uΔ
		Backup SRAM ON, RTC and LSE OFF	0.70	0.72	0.74	5	10	μΛ
		Backup SRAM OFF, RTC and LSE OFF	0.10	0.10	0.10	2	4	

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a C_L of 6 pF for typical values.

2. Guaranteed by characterization results.

Additional current consumption

The MCU is placed under the following conditions:

- All I/O pins are configured in analog mode.
- The Flash memory access time is adjusted to fHCLK frequency.
- The voltage scaling is adjusted to fHCLK frequency as follows:
 - Scale 3 for $f_{HCLK} \le 120$ MHz,
 - Scale 2 for 120 MHz < $f_{HCLK} \le 144$ MHz
 - Scale 1 for 144 MHz < $f_{HCLK} \le$ 180 MHz. The over-drive is only ON at 180 MHz.
- The system clock is HCLK, $f_{PCLK1} = f_{HCLK}/4$, and $f_{PCLK2} = f_{HCLK}/2$.
- HSE crystal clock frequency is 25 MHz.
- When the regulator is OFF, V12 is provided externally as described in *Table 17: General operating conditions*
- T_A= 25 °C .

Table 30. Typical current consumption in Run mode, code with data processing running from Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch), $V_{DD}=1.7 V^{(1)}$

Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	Unit
		All Peripheral	168	88.2	
			150	74.3	
			144	71.3	
			120	52.9	
		enabled	90	42.6	
	Supply current in RUN mode from V _{DD} supply		60	28.6	
			30	15.7	
			25	12.3	m۸
DD			168	40.6	ША
			150	30.6	
			144	32.6	
		All Peripheral	120	24.7	
		disabled	90	19.7	
			60	13.6	
			30	7.7	
			25	6.7	

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherls (such as ADC, or DAC) is not included.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 56: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 35: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DD} is the MCU supply voltage

f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Peripheral		I _{DD} (Тур) ⁽¹⁾			l l mit
		Scale 1 Scale 2		Scale 3	Unit
	SDIO	8.11	8.75	7.83	
	TIM1	17.11	15.97	14.17	
	TIM8	17.33	16.11	14.33	
	TIM9	7.22	6.67	6.00	
	TIM10	4.56	4.31	3.83	
	TIM11	4.78	4.44	4.00	
	ADC1 ⁽⁵⁾	4.67	4.31	3.83	
	ADC2 ⁽⁵⁾	4.78	4.44	4.00	
APB2	ADC3 ⁽⁵⁾	4.56	4.17	3.67	/
(up to 90 MHz)	SPI1	1.44	1.39	1.17	μΑ/ΜΗΖ
,	USART1	4.00	3.75	3.33	
	USART6	4.00	3.75	3.33	
	SPI4	1.44	1.39	1.17	
	SPI5	1.44	1.39	1.17	
•	SPI6	1.44	1.39	1.17	
	SYSCFG	0.78	0.69	0.67	
	LCD_TFT	39.89	37.22	33.17	
	SAI1	3.78	3.47	3.17	

Table 35. Peri	pheral current	consumption	(continued)

1. When the I/O compensation cell is ON, I_{DD} typical value increases by 0.22 mA.

2. The BusMatrix is automatically active when at least one master is ON.

3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.

4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of 0.8 mA per DAC channel for the analog part.

5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

10

-

-

Figure 53. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are both available on UFBGA176. V_{REF+} is also available on LQFP100, LQFP144, and LQFP176. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} .

6.3.22 Temperature sensor characteristics

Table 00. Temperature sensor characteristics								
Symbol	Parameter	Min	Тур	Max	Unit			
$T_L^{(1)}$	V _{SENSE} linearity with temperature	-	±1	±2	°C			
Avg_Slope ⁽¹⁾	Average slope	-	2.5		mV/°C			
V ₂₅ ⁽¹⁾	Voltage at 25 °C	-	0.76		V			
t _{START} ⁽²⁾	Startup time	-	6	10	μs			

ADC sampling time when reading the temperature (1 °C accuracy)

Table 80. Temperature sensor characteristics

1. Guaranteed by characterization results.

2. Guaranteed by design.

 $T_{S_{temp}}^{(2)}$

Symbol	Parameter	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V_{DDA} = 3.3 V	0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C, V _{DDA} = 3.3 V	0x1FFF 7A2E - 0x1FFF 7A2F

Table 81. Temperature sensor calibration values

μs

Symbol	Parameter	Min	Мах	Unit
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	ns
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	ns
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0	ns
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} +1	ns

Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings $^{(1)(2)}$ (continued)

1. C_L = 30 pF.

2. Guaranteed by characterization results.

Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -
NWAIT timings ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	7T _{HCLK} +0.5	7T _{HCLK} +1	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} – 1.5	5T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} +1.5	-	
^t h(NE_NWAIT)	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

1. C_L = 30 pF.

2. Guaranteed by characterization results.

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +1	8T _{HCLK} +2	ns
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} – 1	6T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +1.5	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1		ns

Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings $^{(1)(2)}$

1. C_L = 30 pF.

2. Guaranteed by characterization results.

6.3.29 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 108* for the SDIO/MMC interface are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Figure 78. SDIO high-speed mode

Figure 79. SD default mode

Date	Revision	Changes
		Update SPI/IS2 in Table 2: STM32F437xx and STM32F439xx features and peripheral counts. Updated LQFP208 in Table 4: Regulator ON/OFF and internal reset ON/OFF availability. Updated Figure 19: Memory map.
		Changed PLS[2:0]=101 (falling edge) maximum value in <i>Table 22:</i> reset and power control block characteristics.
		Updated current consumption with all peripherals disabled in <i>Table 24:</i> <i>Typical and maximum current consumption in Run mode, code with</i> <i>data processing running from Flash memory (ART accelerator</i> <i>enabled except prefetch) or RAM.</i>
		Updated note 1. in Table 28: Typical and maximum current consumptions in Standby mode.
		Updated t _{WUSTOP} in <i>Table 36: Low-power mode wakeup timings</i> . Updated ESD standards and <i>Table 53: ESD absolute maximum ratings</i> .
		Updated Table 56: I/O static characteristics.
	6	Section : I2C interface characteristics: updated section introduction, removed Table I2C characteristics, Figure I2C bus AC waveforms and measurement circuit and Table SCL frequency; added Table 61: I2C analog filter characteristics.
		Updated measurement conditions in <i>Table 62: SPI dynamic characteristics</i> .
19-Feb-2015		Updated Figure 51: Typical connection diagram using the ADC.
		Updated Section : Device marking for LQFP100.
		Updated Figure 83: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package outline and Table 111: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package mechanical data; added Figure 84: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale recommended footprint and Table 112: WLCSP143 recommended PCB design rules (0.4 mm pitch). Updated Figure 85: WLCSP143 marking example (package top view) and related note. Updated Section : Device marking for WLCSP143.
		Updated Section : Device marking for LQFP144.
		Updated Section : Device marking for LQFP176.
		Updated Figure 92: LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline; Updated Section : Device marking for LQFP208.
		Modified UFBGA169 pitch, updated <i>Figure 95: UFBGA169 - 169-ball 7</i> x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array package outline and <i>Table 116: UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data</i> ; updated Section : Device marking for LQFP208.
		updated Section : Device marking for UFBGA169, Section : Device marking for UFBGA176+25 and Section : Device marking for TFBGA176.
		Updated Z pin count in <i>Table 122: Ordering information scheme</i> .

Table 124. Document revision history (continued)

