E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f437vgt7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 180 MHz while the maximum frequency of the high-speed APB domains is 90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.

The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio class performance. In this case, the I^2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

3.15 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial interface. Refer to application note AN2606 for details.

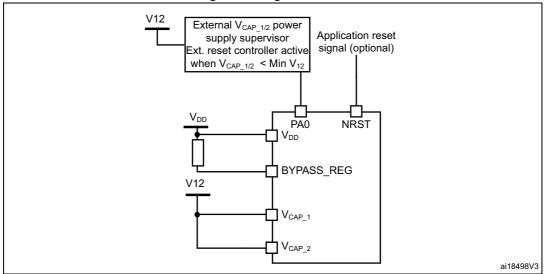
3.16 Power supply schemes

- V_{DD} = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Note: V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option.

3.17 **Power supply supervisor**

3.17.1 Internal reset ON


On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V₁₂ logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.
- The Standby mode is not available.

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 9*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 10*).
- If V_{CAP_1} and V_{CAP_2} go below V₁₂ minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.

Note: The minimum value of V_{12} depends on the maximum frequency targeted in the application (see Table 17: General operating conditions).

3.18.3 Regulator ON/OFF and internal reset ON/OFF availability

Table	4. Regulator ON/		reset ON/OFF ava	anability
Package	Regulator ON	Regulator OFF	Internal reset ON	Internal reset OFF
LQFP100	Yes	No	Yes	No
LQFP144, LQFP208	165	NO		Yes
WLCSP143, LQFP176, UFBGA169, UFBGA176, TFBGA216	Yes BYPASS_REG set to V _{SS}	Yes BYPASS_REG set to V _{DD}	Yes PDR_ON set to V _{DD}	PDR_ON connected to an external power supply supervisor

Table 4. Regulator ON/OFF and internal reset ON/OFF availability

3.19 Real-time clock (RTC), backup SRAM and backup registers

The backup domain includes:

- The real-time clock (RTC)
- 4 Kbytes of backup SRAM
- 20 backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format.

It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.

Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data which need to be retained in VBAT and standby mode. This memory area is disabled by default to minimize power consumption (see *Section 3.20: Low-power modes*). It can be enabled by software.

The backup registers are 32-bit registers used to store 80 bytes of user application data when V_{DD} power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 3.20: Low-power modes).

3.30 Secure digital input/output interface (SDIO)

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

3.31 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.

The devices include the following features:

- Supports 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F4xx reference manual for details)
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes.
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

3.32 Controller area network (bxCAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive

			Pin nu	ımbei	r								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type			Alternate functions	Additional functions
49	71	N9	M10	81	N2	92	L11	V _{CAP_1}	S	-	-	-	-
-	I	-	-	-	H2	93	K9	V _{SS}	S	-	1	-	-
50	72	F8	N10	82	J6	94	L10	V _{DD}	S	-	I	-	-
-	I	-	-	-	-	95	M14	PJ5	I/O	-	I	LCD_R6, EVENTOUT	-
-	-	N10	M11	83	-	96	P13	PH6	I/O	FT	-	I2C2_SMBA, SPI5_SCK, TIM12_CH1, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8, EVENTOUT	-
-	-	M10	N12	84	-	97	N13	PH7	I/O	FT	-	I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9, EVENTOUT	-
-	-	L10	M12	85	-	98	P14	PH8	I/O	FT	-	I2C3_SDA, FMC_D16, DCMI_HSYNC, LCD_R2, EVENTOUT	-
-	-	K10	M13	86	-	99	N14	PH9	I/O	FT	-	I2C3_SMBA, TIM12_CH2, FMC_D17, DCMI_D0, LCD_R3, EVENTOUT	-
-	-	N11	L13	87	-	100	P15	PH10	I/O	FT	-	TIM5_CH1, FMC_D18, DCMI_D1, LCD_R4, EVENTOUT	-
-	-	M11	L12	88	-	101	N15	PH11	I/O	FT	-	TIM5_CH2, FMC_D19, DCMI_D2, LCD_R5, EVENTOUT	-
-	-	L11	K12	89	-	102	M15	PH12	I/O	FT	-	TIM5_CH3, FMC_D20, DCMI_D3, LCD_R6, EVENTOUT	-
-	I	E7	H12	90	-	-	K10	V _{SS}	S	-	-	-	-
-	-	H8	J12	91	-	103	K11	V _{DD}	S	-	-	-	-

Table 10.	STM32F437xx and	STM32F439xx pin	and ball definitions	(continued)

			Pin nu	Imber	-								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	91	G11	J15	110	G4	133	J15	PG6	I/O	FT	-	FMC_INT2, DCMI_D12, LCD_R7, EVENTOUT	-
-	92	G12	J14	111	H1	134	J14	PG7	I/O	FT	-	USART6_CK, FMC_INT3, DCMI_D13, LCD_CLK, EVENTOUT	-
-	93	F13	H14	112	G2	135	H14	PG8	I/O	FT	-	SPI6_NSS, USART6_RTS, ETH_PPS_OUT, FMC_SDCLK, EVENTOUT	-
-	94	J7	G12	113	D2	136	G10	V _{SS}	S		-	-	-
-	95	E6	H13	114	G1	137	G11	V _{DD}	S		-	-	-
63	96	F9	H15	115	F2	138	H15	PC6	I/O	FT	-	TIM3_CH1, TIM8_CH1, I2S2_MCK, USART6_TX, SDIO_D6, DCMI_D0, LCD_HSYNC, EVENTOUT	-
64	97	F10	G15	116	F3	139	G15	PC7	I/O	FT	-	TIM3_CH2, TIM8_CH2, I2S3_MCK, USART6_RX, SDIO_D7, DCMI_D1, LCD_G6, EVENTOUT	-
65	98	F11	G14	117	E4	140	G14	PC8	I/O	FT	-	TIM3_CH3, TIM8_CH3, USART6_CK, SDIO_D0, DCMI_D2, EVENTOUT	-
66	99	F12	F14	118	E3	141	F14	PC9	I/O	FT	-	MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, SDIO_D1, DCMI_D3, EVENTOUT	-
67	100	E13	F15	119	F1	142	F15	PA8	I/O	FT	-	MCO1, TIM1_CH1, I2C3_SCL, USART1_CK, OTG_FS_SOF, LCD_R6, EVENTOUT	-

 Table 10. STM32F437xx and STM32F439xx pin and ball definitions (continued)

			Pin nu	ımbeı	•								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type I / O structure Notes		Notes	Alternate functions	Additional functions
96	140	C4	B4	168	В9	199	B4	PB9	I/O	FT	-	TIM4_CH4, TIM11_CH1, I2C1_SDA, SPI2_NSS/I2S2_WS, CAN1_TX, SDIO_D5, DCMI_D7, LCD_B7, EVENTOUT	-
97	141	B4	A4	169	B10	200	A6	PE0	I/O	FT	-	TIM4_ETR, UART8_RX, FMC_NBL0, DCMI_D2, EVENTOUT	-
98	142	A4	A3	170	A10	201	A5	PE1	I/O	FT	-	UART8_Tx, FMC_NBL1, DCMI_D3, EVENTOUT	-
99	-	F5	D5	-	-	202	F6	V_{SS}	S		-		-
-	143	C3	C6	171	A11	203	E5	PDR_ON	S		-		-
100	144	K6	C5	172	D7	204	E7	V _{DD}	S		-		-
-	-	В3	D4	173	-	205	C3	Pl4	I/O	FT	-	TIM8_BKIN, FMC_NBL2, DCMI_D5, LCD_B4, EVENTOUT	-
-	-	A3	C4	174	-	206	D3	PI5	I/O	FT	-	TIM8_CH1, FMC_NBL3, DCMI_VSYNC, LCD_B5, EVENTOUT	-
-	-	A2	C3	175	-	207	D6	Pl6	I/O	FT	-	TIM8_CH2, FMC_D28, DCMI_D6, LCD_B6, EVENTOUT	-
-	-	B1	C2	176	-	208	D4	PI7	I/O	FT	-	TIM8_CH3, FMC_D29, DCMI_D7, LCD_B7, EVENTOUT	-

Table 10. STM32F437xx and STM32F439xx pin and ball definitions (continued)

1. Function availability depends on the chosen device.

2. NC (not-connected) pins are not bonded. They must be configured by software to output push-pull and forced to 0 in the output data register to avoid extra current consumption in low power modes.

PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:

 The speed should not exceed 2 MHz with a maximum load of 30 pF.
 These I/Os must not be used as a current source (e.g. to drive an LED).

51

`

DocID024244 Rev 10

83/240

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	Port		TIM1/2	TIM3/4/5	TIM8/9/ 10/11	l2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ETH	FMC/SDIO /OTG2_FS	DCMI	LCD	SYS
	PI7	-	-	-	TIM8_ CH3	-	-	-	-	-	-	-	-	FMC_D29	DCMI_ D7	LCD_B7	EVEN TOUT
	PI8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PI9	-	-	-	-	-	-	-	-	-	CAN1_RX	-	-	FMC_D30	-	LCD_ VSYNC	EVEN TOUT
	PI10	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_ RX_ER	FMC_D31	-	LCD_ HSYNC	EVEN TOUT
Port I	PI11	-	-	-	-	-	-	-	-	-	-	OTG_HS_ ULPI_DIR	-	-	-	-	EVEN TOUT
	PI12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_ HSYNC	EVEN TOUT
	PI13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_ VSYNC	EVEN TOUT
	PI14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_ CLK	EVEN TOUT
	PI15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R0	EVEN TOUT
	PJ0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R1	EVEN TOUT
	PJ1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R2	EVEN TOUT
	PJ2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R3	EVEN TOUT
Port J	PJ3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R4	EVEN TOUT
1 OIT 5	PJ4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R5	EVEN TOUT
	PJ5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R6	EVEN TOUT
	PJ6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R7	EVEN TOUT
	PJ7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G0	EVEN TOUT

 Table 12. STM32F437xx and STM32F439xx alternate function mapping (continued)

DocID024244 Rev 10

84/240

1. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.

τ
Ē
-
0
2
T
S
a
ā
_
σ
3
Q
Φ
S
C
Ξ.
-
Ă
<u> </u>
¥
_

STM32F437xx and STM32F439xx

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Port		SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	l2C1/ 2/3	SPI1/2/ 3/4/5/6			USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ЕТН	FMC/SDIO /OTG2_FS	DCMI	LCD	SYS
	PJ8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G1	EVEN TOUT
	PJ9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G2	EVEN TOUT
	PJ10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G3	EVEN TOUT
	PJ11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G4	EVEN TOUT
Port J	PJ12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B0	EVEN TOUT
	PJ13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B1	EVEN TOUT
	PJ14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B2	EVEN TOUT
	PJ15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B3	EVEN TOUT
	PK0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G5	EVEN TOUT
	PK1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G6	EVEN TOUT
	PK2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_G7	EVEN TOUT
D. UK	PK3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B4	EVEN TOUT
Port K	PK4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B5	EVEN TOUT
	PK5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B6	EVEN TOUT
	PK6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B7	EVEN TOUT
	PK7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DE	EVEN TOUT

Table 12. STM32F437xx and STM32F439xx alternate function mapping (continued)

					Max ⁽²⁾			
Symbol	Parameter	arameter Conditions f _{HCLK} (Parameter Conditions f _{HCLK} (MHz) Typ	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			180	98	104 ⁽⁵⁾	123	141 ⁽⁵⁾	
			168	89	98 ⁽⁵⁾	116	133 ⁽⁵⁾	
			150	75	84	100	115	
			144	72	81	96	112	
			120	54	58	72	85	
		All	90	43	45	56	66	
		Peripherals	60	29	30	38	45	
		enabled ⁽³⁾⁽⁴⁾	30	16	20	34	46	
			25	13	16	30	43	-
			16	11	13	27	39	
			8	5	9	23	36	
		4	4	8	21	34	1	
1	Supply current in		2	2	7	20	33	mA
I _{DD}	RUN mode		180	44	47 ⁽⁵⁾	69	87 ⁽⁵⁾	ШA
			168	41	45 ⁽⁵⁾	66	83 ⁽⁵⁾	
			150	36	39	57	73	
			144	33	37	56	72	
			120	25	29	43	56	
		All	90	20	21	32	41	1
		Peripherals	60	14	15	22	28	
	disabled ⁽³⁾	30	8	8	12	26	1	
			25	7	7	10	24	
			16	7	9	22	35	
			8	3	7	21	34	
			4	3	6	20	33	
			2	2	6	20	33	

Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled except prefetch) or RAM⁽¹⁾

1. Code and data processing running from SRAM1 using boot pins.

2. Guaranteed by characterization.

3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

5. Guaranteed by test in production.

6.3.9 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 56: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 27*.

The characteristics given in *Table 37* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Cymbol	T drameter	Conditions	WIIII	- YP	max	Onic
f _{HSE_ext}	External user clock source frequency ⁽¹⁾		1	-	50	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V_{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	10	113
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾		-	5	-	pF
$DuCy_{(HSE)}$	Duty cycle		45	-	55	%
١ _L	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 37. High-speed external user clock characteristics

1. Guaranteed by design.

I²S interface characteristics

Unless otherwise specified, the parameters given in *Table 63* for the I²S interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	I2S Main clock output	-	256x8K	256xFs ⁽²⁾	MHz
f	129 clock froguency	Master data: 32 bits	-	64xFs	MHz
f _{CK}	I2S clock frequency	Slave data: 32 bits	-	64xFs	
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	0	6	
t _{h(WS)}	WS hold time	Master mode	0	-	
t _{su(WS)}	WS setup time	Slave mode	1	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	7.5	-	
t _{su(SD_SR)}		Slave receiver	2	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	0	-	ns
t _{h(SD_SR)}		Slave receiver	0	-	
t _{v(SD_ST)}		Slave transmitter (after enable edge)	-	27	
t _{h(SD_ST)}	Data output valid time				
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	20	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	2.5	-	

Table 63. I ² S c	dynamic characteristics ⁽¹⁾
------------------------------	--

1. Guaranteed by characterization results.

2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency).

Note: Refer to the I2S section of RM0090 reference manual for more details on the sampling frequency (F_S).

 f_{MCK} , f_{CK} , and D_{CK} values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. D_{CK} depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F_S maximum value is supported for each mode/condition.

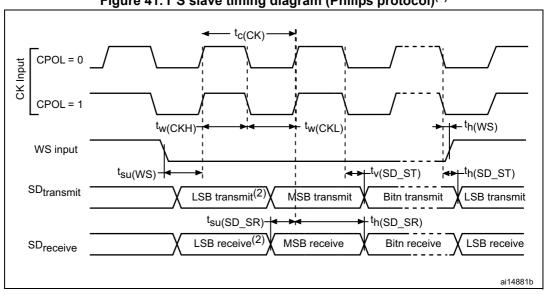
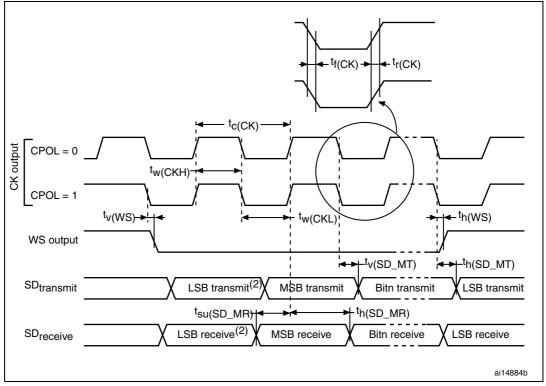



Figure 41. I²S slave timing diagram (Philips protocol)⁽¹⁾

1. .LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 42. I²S master timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

STM32F437xx and STM32F439xx

Symbol	Parameter	Table 85. DAC charact	Min		Max	Unit	Comments
Symbol	Parameter	Conditions	win	Тур	wax	Unit	
	DAC DC VDDA	-	-	280	380	μA	With no load, middle code (0x800) on the inputs
I _{DDA} ⁽⁴⁾	current consumption in quiescent mode ⁽³⁾	-	-	475	625	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
DNL ⁽⁴⁾	Differential non linearity Difference between two	-	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code- 1LSB)	-	-	-	±2	LSB	Given for the DAC in 12-bit configuration.
	Integral non linearity (difference between	-	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽⁴⁾	measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error	-	-	-	±10	mV	Given for the DAC in 12-bit configuration
Offset ⁽⁴⁾	(difference between measured value at Code (0x800) and the	-	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
	ideal value = $V_{\text{REF+}}/2$)	-	-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V
Gain error ⁽⁴⁾	Gain error	-	-	-	±0.5	%	Given for the DAC in 12-bit configuration
^t SETTLIN G	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB	-	-	3	6	μs	C _{LOAD} ≤50 pF, R _{LOAD} ≥ 5 kΩ
THD ⁽⁴⁾	Total Harmonic Distortion Buffer ON	-	-	-	-	dB	C _{LOAD} ≤50 pF, R _{LOAD} ≥ 5 kΩ
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	-	1	MS/ s	C _{LOAD} ≤50 pF, R _{LOAD} ≥ 5 kΩ

Table 85. DAC characteristics (continued)

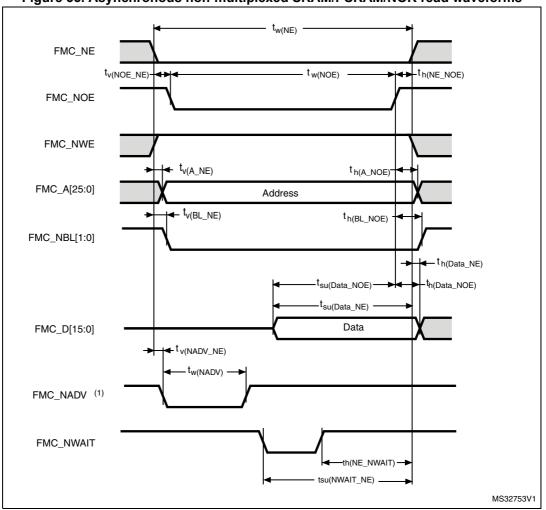


Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR -
read timings ⁽¹⁾⁽²⁾
read unings (A)

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	2T _{HCLK} – 0.5	2 T _{HCLK} +0.5	ns
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	0	1	ns
t _{w(NOE)}	FMC_NOE low time	2T _{HCLK}	2T _{HCLK} + 0.5	ns
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	ns
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	2	ns
t _{h(A_NOE)}	Address hold time after FMC_NOE high	0	-	ns
$t_{v(BL_NE)}$	FMC_NEx low to FMC_BL valid	-	2	ns
t _{h(BL_NOE)}	FMC_BL hold time after FMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} + 2.5	-	ns
t _{su(Data_NOE)}	Data to FMC_NOEx high setup time	T _{HCLK} +2	-	ns

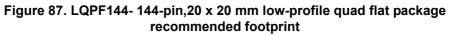
Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	3.5	
t _{h(SDCLKL} _Data)	Data output hold time	0	-	
$t_{d(SDCLKL_Add)}$	Address valid time	-	1.5	
t _{d(SDCLKL_SDNWE)}	SDNWE valid time	-	1	
t _{h(SDCLKL_SDNWE)}	SDNWE hold time	0	-	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	0.5	ns
t _{h(SDCLKLSDNE)}	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	2	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	0.5	
t _{d(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	
t _{d(SDCLKL_NBL)} NBL valid time		-	0.5	
t _{h(SDCLKL_NBL)}	NBLoutput time	0	-	

Table 104. SDRAM write timings⁽¹⁾⁽²⁾

1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.

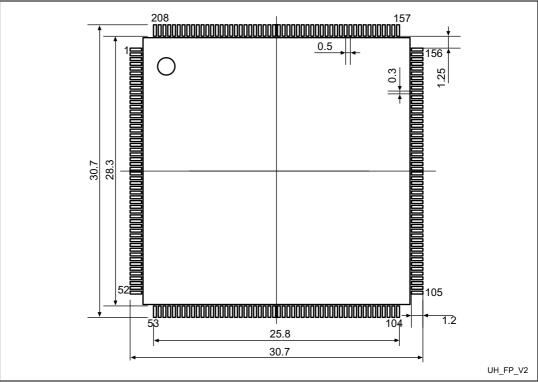
2. Guaranteed by characterization results.


Table 105. LPSDR SDRAM write timings⁽¹⁾⁽²⁾


Symbol	Parameter	Min	Max	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL _Data})	Data output valid time	-	5	
t _{h(SDCLKL} _Data)	Data output hold time	2	-	
$t_{d(SDCLKL_Add)}$	Address valid time	-	2.8	
t _{d(SDCLKL-SDNWE)}	SDNWE valid time	-	2	
t _{h(SDCLKL-SDNWE)}	SDNWE hold time	1	-	
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	1.5	
t _{h(SDCLKL} - SDNE)	Chip select hold time	1	-	ns
t _d (SDCLKL-SDNRAS)	SDNRAS valid time	-	1.5	
t _{h(SDCLKL-SDNRAS)}	SDNRAS hold time	1.5	-	
t _d (SDCLKL-SDNCAS)	SDNCAS valid time	-	1.5	
t _d (SDCLKL-SDNCAS)	SDNCAS hold time	1.5	-	
$t_{d(SDCLKL_NBL)}$	NBL valid time	-	1.5	
t _{h(SDCLKL-NBL)}	NBL output time	1.5	-	

1. CL = 10 pF.

2. Guaranteed by characterization results.



1. Dimensions are expressed in millimeters.

Figure 93. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

8 Part numbering

Table 122. Ordering infor	mation sc	heme				
Example:	STM32	F	439 V	ΙT	6	ххх
Device family						
STM32 = ARM-based 32-bit microcontroller						
Product type						
F = general-purpose						
Device subfamily						
437= STM32F437xx, USB OTG FS/HS, camera interface, Ethernet, cryptographic acceleration						
439= STM32F439xx, USB OTG FS/HS, camera interface, Ethernet, LCD-TFT, cryptographic acceleration						
Pin count						
V = 100 pins						
Z = 143 and 144 pins						
A = 169 pins						
I = 176 pins						
B = 208 pins						
N = 216 pins						
Flash memory size						
G = 1024 Kbytes of Flash memory						
I = 2048 Kbytes of Flash memory						
Package						
T = LQFP						
H = BGA						
Y = WLCSP						
Temperature range						
6 = Industrial temperature range, -40 to 85 °C.						
7 = Industrial temperature range, -40 to 105 °C.						
Options						

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

Date	Revision	Changes
Date 19-Feb-2015	6 Revision	Changes Update SPI/IS2 in Table 2: STM32F437xx and STM32F439xx features and peripheral counts. Updated LQFP208 in Table 4: Regulator ON/OFF and internal reset ON/OFF availability. Updated Figure 19: Memory map. Changed PLS[2:0]=101 (falling edge) maximum value in Table 22: reset and power control block characteristics. Updated current consumption with all peripherals disabled in Table 24: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM. Updated note 1. in Table 28: Typical and maximum current consumptions in Standby mode. Updated Table 56: I/O static characteristics. Section : I2C interface characteristics: updated section introduction, removed Table 12C characteristics, Figure 12C bus AC waveforms and measurement circuit and Table SCL frequency; added Table 61: I2C analog filter characteristics. Updated Figure 51: Typical connection diagram using the ADC. Updated Figure 51: Typical connection diagram using the ADC. Updated Figure 83: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package outline and Table 111: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package mechanical data; added Figure 84: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale recommended footprint and Table 112: WLCSP143 recommended PCB design rules (0.4 mm pitch). Updated Figure 85: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale recommended footprint and Table 112: WLCSP143 recommended PCB design rules (0.4 m

Table 124. Document revision history (continued)

