E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

υ	е	ta	aı	IS

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f437vit7tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 180 MHz while the maximum frequency of the high-speed APB domains is 90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.

The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio class performance. In this case, the I^2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

3.15 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial interface. Refer to application note AN2606 for details.

3.16 Power supply schemes

- V_{DD} = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Note: V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option.

3.17 **Power supply supervisor**

3.17.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is

DocID024244 Rev 10

The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling.

In Stop modes

The MR can be configured in two ways during stop mode: MR operates in normal mode (default mode of MR in stop mode) MR operates in under-drive mode (reduced leakage mode).

LPR is used in the Stop modes:

The LP regulator mode is configured by software when entering Stop mode.

Like the MR mode, the LPR can be configured in two ways during stop mode:

- LPR operates in normal mode (default mode when LPR is ON)
- LPR operates in under-drive mode (reduced leakage mode).
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.

Two external ceramic capacitors should be connected on V_{CAP_1} and V_{CAP_2} pin. Refer to *Figure 22: Power supply scheme* and *Table 19: VCAP1/VCAP2 operating conditions*.

All packages have the regulator ON feature.

Voltage regulator configuration	Run mode	Sleep mode	Stop mode	Standby mode
Normal mode	MR	MR	MR or LPR	-
Over-drive mode ⁽²⁾	MR	MR	-	-
Under-drive mode	-	-	MR or LPR	-
Power-down mode	-	-	-	Yes

Table 3. Voltage regulator configuration mode versus device operating mode⁽¹⁾

1. - means that the corresponding configuration is not available.

2. The over-drive mode is not available when V_{DD} = 1.7 to 2.1 V.

3.18.2 Regulator OFF

This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V₁₂ voltage source through V_{CAP 1} and V_{CAP 2} pins.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. Refer to *Table 17: General operating conditions*. The two 2.2 μ F ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Figure 22: Power supply scheme*.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary output	Max interface clock (MHz)	Max timer clock (MHz) (1)
Advanced -control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	90	180
	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	45	90/180
General	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	45	90/180
	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	90	180
purpose	TIM10 , TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	90	180
	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	45	90/180
	TIM13 , TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	45	90/180
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	45	90/180

 Table 6. Timer feature comparison

1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

3.22.4 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

3.22.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.22.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

3.23 Inter-integrated circuit interface (I²C)

Up to three I²C bus interfaces can operate in multimaster and slave modes. They can support the standard (up to 100 KHz), and fast (up to 400 KHz) modes. They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

The devices also include programmable analog and digital noise filters (see *Table 7*).

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks

Table 7. Comparison of I2C analog and digital filters

3.24 Universal synchronous/asynchronous receiver transmitters (USART)

The devices embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and four universal asynchronous receiver transmitters (UART4, UART5, UART7, and UART8).

These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to

3.26 Inter-integrated sound (I²S)

Two standard I²S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx can be served by the DMA controller.

Note: For I2S2 full-duplex mode, I2S2_CK and I2S2_WS signals can be used only on GPIO Port B and GPIO Port D.

3.27 Serial Audio interface (SAI1)

The serial audio interface (SAI1) is based on two independent audio sub-blocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub-blocks can be configured in master or in slave mode.

In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency.

The two sub-blocks can be configured in synchronous mode when full-duplex mode is required.

SAI1 can be served by the DMA controller.

3.28 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S and SAI applications. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I²S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I²S/SAI flow with an external PLL (or Codec output).

3.29 Audio and LCD PLL(PLLSAI)

An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLLSAI is also used to generate the LCD-TFT clock.

Fast I/O handling allowing maximum I/O toggling up to 90 MHz.

3.39 Analog-to-digital converters (ADCs)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

3.40 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V_{BAT}, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V_{BAT} conversion are enabled at the same time, only V_{BAT} conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.41 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 10-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

			Pin nı	Imbe	r							•	
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	10	F2	E2	16	F11	16	D2	PF0	I/O	FT	-	I2C2_SDA, FMC_A0, EVENTOUT	-
-	11	F3	H3	17	E9	17	E2	PF1	I/O	FT	-	I2C2_SCL, FMC_A1, EVENTOUT	-
-	12	G5	H2	18	F10	18	G2	PF2	I/O	FT	-	I2C2_SMBA, FMC_A2, EVENTOUT	-
-	-	-	-	-	-	19	E3	PI12	I/O	FT	-	LCD_HSYNC, EVENTOUT	-
-	-	-	-	-	-	20	G3	PI13	I/O	FT	-	LCD_VSYNC, EVENTOUT	-
-	-	-	-	-	-	21	H3	PI14	I/O	FT		LCD_CLK, EVENTOUT	-
-	13	G4	J2	19	G11	22	H2	PF3	I/O	FT	(5)	FMC_A3, EVENTOUT	ADC3_IN9
-	14	G3	J3	20	F9	23	J2	PF4	I/O	FT	(5)	FMC_A4, EVENTOUT	ADC3_ IN14
-	15	H3	K3	21	F8	24	K3	PF5	I/O	FT	(5)	FMC_A5, EVENTOUT	ADC3_ IN15
10	16	G7	G2	22	H7	25	H6	V _{SS}	S	-	-	-	-
11	17	G8	G3	23	-	26	H5	V _{DD}	S	-	-	-	-
-	18	NC (2)	K2	24	G10	27	K2	PF6	I/O	FT	(5)	TIM10_CH1, SPI5_NSS, SAI1_SD_B, UART7_Rx, FMC_NIORD, EVENTOUT	ADC3_IN4
-	19	NC (2)	K1	25	F7	28	K1	PF7	I/O	FT	(5)	TIM11_CH1, SPI5_SCK, SAI1_MCLK_B, UART7_Tx, FMC_NREG, EVENTOUT	ADC3_IN5
-	20	NC (2)	L3	26	H11	29	L3	PF8	I/O	FT	(5)	SPI5_MISO, SAI1_SCK_B, TIM13_CH1, FMC_NIOWR, EVENTOUT	ADC3_IN6

Table 10. STM32F437xx and STM32F439xx pin and ball definitions (continued)	Table 10.	STM32F437xx and	STM32F439xx	pin and ball	definitions	(continued)
--	-----------	-----------------	-------------	--------------	-------------	-------------

			Pin nu	ımbei	r							· ·	
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
22	33	J4	R1	39	L10	42	R1	V _{DDA}	S	-	-	-	-
23	34	J5	N3	40	K9	43	N3	PA0-WKUP (PA0)	I/O	FT	(6)	TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, USART2_CTS, UART4_TX, ETH_MII_CRS, EVENTOUT	ADC123_ IN0/WKUP (5)
24	35	K1	N2	41	K8	44	N2	PA1	I/O	FT	(5)	TIM2_CH2, TIM5_CH2, USART2_RTS, UART4_RX, ETH_MII_RX_CLK/ETH _RMII_REF_CLK, EVENTOUT	ADC123_ IN1
25	36	K2	P2	42	L9	45	P2	PA2	I/O	FT	(5)	TIM2_CH3, TIM5_CH3, TIM9_CH1, USART2_TX, ETH_MDIO, EVENTOUT	ADC123_ IN2
-	-	L2	F4	43	-	46	K4	PH2	I/O	FT	-	ETH_MII_CRS, FMC_SDCKE0, LCD_R0, EVENTOUT	-
-	-	L1	G4	44	-	47	J4	PH3	I/O	FT	-	ETH_MII_COL, FMC_SDNE0, LCD_R1, EVENTOUT	-
-	-	M2	H4	45	-	48	H4	PH4	I/O	FT	-	I2C2_SCL, OTG_HS_ULPI_NXT, EVENTOUT	-
-	-	L3	J4	46	-	49	J3	PH5	I/O	FT	-	I2C2_SDA, SPI5_NSS, FMC_SDNWE, EVENTOUT	-
26	37	K3	R2	47	M11	50	R2	PA3	I/O	FT	(5)	TIM2_CH4, TIM5_CH4, TIM9_CH2, USART2_RX, OTG_HS_ULPI_D0, ETH_MII_COL, LCD_B5, EVENTOUT	ADC123_ IN3
27	38	-	-		-	51	K6	V_{SS}	S	-	-	-	-

Table 10. STM32F437xx and STM32F439xx pin and ball definitions (continued)

Operating conditions 6.3

6.3.1 **General operating conditions**

Table 17	. General operating conditions	

Symbol	Parameter	Conditions ⁽¹⁾		Min	Тур	Max	Unit
		Power Scale 3 (VOS[1:0] bits PWR_CR register = 0x01), Re ON, over-drive OFF		0	-	120	
f _{HCLK}		Power Scale 2 (VOS[1:0] bits	Over- drive OFF	0	-	144	
	Internal AHB clock frequency	in PWR_CR register = 0x10), Regulator ON	Over- drive ON	0	-	168	
		Power Scale 1 (VOS[1:0] bits in PWR_CR register= 0x11),	Over- drive OFF	0	-	168	MHz
		Regulator ON	Over- drive ON	0	-	180	
f	Internal ADD1 clock froquency	Over-drive OFF	0	-	42		
f _{PCLK1}	Internal APB1 clock frequency	Over-drive ON	0	-	45		
f	Internal ADP2 clock frequency	Over-drive OFF	0	-	84		
f _{PCLK2}	Internal APB2 clock frequency	Over-drive ON		0	-	90	
V_{DD}	Standard operating voltage			1.7 ⁽²⁾	-	3.6	
V _{DDA} (3)(4)	Analog operating voltage (ADC limited to 1.2 M samples)		1.7 ⁽²⁾	-	2.4	- V	
(3)(4)	Analog operating voltage (ADC limited to 2.4 M samples)	Must be the same potential as	2.4	-	3.6		
V_{BAT}	Backup operating voltage			1.65	-	3.6	
		Power Scale 3 ((VOS[1:0] bits PWR_CR register = 0x01), 12 HCLK max frequency		1.08	1.14	1.20	
	Regulator ON: 1.2 V internal voltage on V _{CAP_1} /V _{CAP_2} pins	Power Scale 2 ((VOS[1:0] bits PWR_CR register = 0x10), 14 HCLK max frequency with ove OFF or 168 MHz with over-driv	1.20	1.26	1.32	V	
V ₁₂		Power Scale 1 ((VOS[1:0] bits PWR_CR register = 0x11), 16 HCLK max frequency with ove OFF or 180 MHz with over-driv	1.26	1.32	1.40		
	Regulator OFF: 1.2 V external	Max frequency 120 MHz	1.10	1.14	1.20		
	voltage must be supplied from external regulator on	Max frequency 144 MHz		1.20	1.26	1.32	
	$V_{CAP_1}/V_{CAP_2} pins^{(6)}$	Max frequency 168 MHz	1.26	1.32	1.38	1	

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- I/O compensation cell enabled.
- The ART accelerator is ON.
- Scale 1 mode selected, internal digital voltage V12 = 1.32 V.
- HCLK is the system clock. f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.
 The given value is calculated by measuring the difference of current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
 - f_{HCLK} = 180 MHz (Scale1 + over-drive ON), f_{HCLK} = 144 MHz (Scale 2), f_{HCLK} = 120 MHz (Scale 3)"
- Ambient operating temperature is 25 °C and V_{DD} =3.3 V.

Table 35. Peripheral current consumption											
E	Peripheral		I _{DD} (Typ) ⁽¹⁾		Unit						
	rempheral	Scale 1	Scale 2	Scale 3							
	GPIOA	2.50	2.36	2.08							
	GPIOB	2.56	2.36	2.08							
	GPIOC	2.44	2.29	2.00							
	GPIOD	2.50	2.36	2.08	-						
	GPIOE	2.44	2.29	2.00	-						
	GPIOF	2.44	2.29	2.00	-						
	GPIOG	2.39	2.22	2.00	-						
	GPIOH	2.33	2.15	1.92	-						
	GPIOI	2.39	2.22	2.00	-						
AHB1	GPIOJ	2.33	2.15	1.92							
(up to 180 MHz)	GPIOK	2.33	2.15	1.92	µA/MHz						
100 101 12)	OTG_HS+ULPI	27.00	24.86	21.92	-						
	CRC	0.44	0.42	0.33	-						
	BKPSRAM	0.78	0.69	0.58	-						
	DMA1	25.33	23.26	20.50	-						
	DMA2	24.72	22.71	20.00							
	DMA2D	28.50	26.32	23.33							
	ETH_MAC ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP	ETH_MAC ETH_MAC_TX ETH_MAC_RX	21.56	20.07	17.75						

Table 35. Peripheral current consumption

6.3.26 FMC characteristics

Unless otherwise specified, the parameters given in *Table 86* to *Table 101* for the FMC interface are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10 except at V_{DD} range 1.7 to 2.1V where OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Asynchronous waveforms and timings

Figure 55 through *Figure 58* represent asynchronous waveforms and *Table 86* through *Table 93* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0
- For SDRAM memories, V_{DD} ranges from 2.7 to 3.6 V and maximum frequency FMC_SDCLK = 90 MHz
- For Mobile LPSDR SDRAM memories, V_{DD} ranges from 1.7 to 1.95 V and maximum frequency FMC_SDCLK = 84 MHz

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	3.5	
t _{h(SDCLKL} _Data)	Data output hold time	0	-	
$t_{d(SDCLKL_Add)}$	Address valid time	-	1.5	
t _{d(SDCLKL_SDNWE)}	SDNWE valid time	-	1	
t _{h(SDCLKL_SDNWE)}	SDNWE hold time	0	-	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	0.5	ns
t _{h(SDCLKLSDNE)}	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	2	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	0.5	
t _{d(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	
t _{d(SDCLKL_NBL)}	NBL valid time	-	0.5	
t _{h(SDCLKL_NBL)}	NBLoutput time	0	-	

Table 104. SDRAM write timings⁽¹⁾⁽²⁾

1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.

2. Guaranteed by characterization results.

Table 105. LPSDR SDRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL _Data})	Data output valid time	-	5	
t _{h(SDCLKL} _Data)	Data output hold time	2	-	
$t_{d(SDCLKL_Add)}$	Address valid time	-	2.8	
t _{d(SDCLKL-SDNWE)}	SDNWE valid time	-	2	
t _{h(SDCLKL-SDNWE)}	SDNWE hold time	1	-	
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	1.5	
t _{h(SDCLKL} - SDNE)	Chip select hold time	1	-	ns
t _d (SDCLKL-SDNRAS)	SDNRAS valid time	-	1.5	
t _{h(SDCLKL-SDNRAS)}	SDNRAS hold time	1.5	-	
t _d (SDCLKL-SDNCAS)	SDNCAS valid time	-	1.5	
t _d (SDCLKL-SDNCAS)	SDNCAS hold time	1.5	-	
$t_{d(SDCLKL_NBL)}$	NBL valid time	-	1.5	
t _{h(SDCLKL-NBL)}	NBL output time	putput time 1.5 -		

1. CL = 10 pF.

2. Guaranteed by characterization results.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 package information

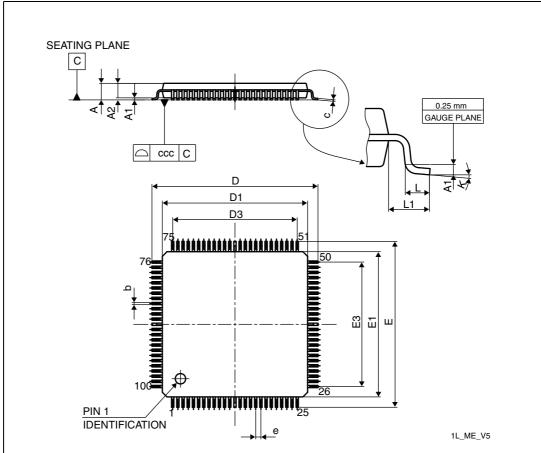


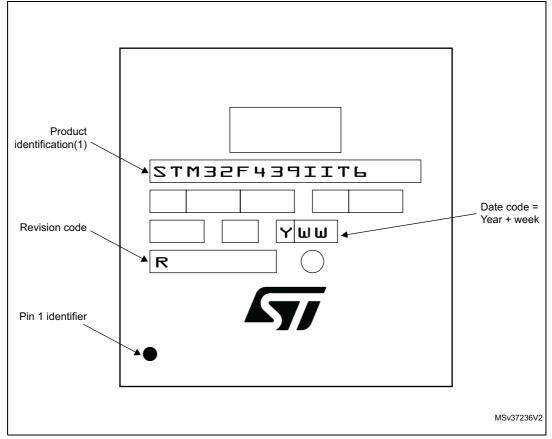
Figure 80. LQFP100 -100-pin, 14 x 14 mm low-profile quad flat package outline

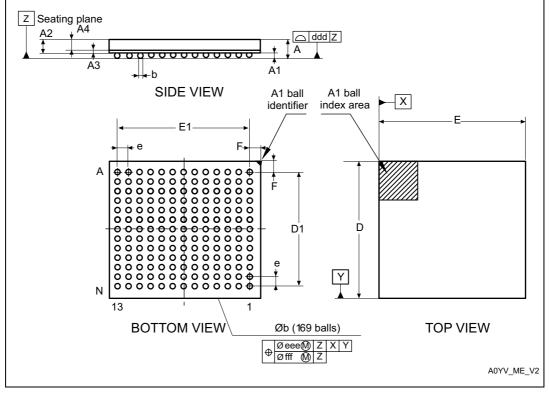
1. Drawing is not to scale.

Device marking for LQFP176

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depends assembly location, are not indicated below.




Figure 91. LQFP176 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.6 UFBGA169 package information

Figure 95. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 116. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid arraypackage mechanical data

Cumula al	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Мах	
А	0.460	0.530	0.600	0.0181	0.0209	0.0236	
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043	
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197	
A3	-	0.130	-	-	0.0051	-	
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146	
b	0.230	0.280	0.330	0.0091	0.0110	0.0130	
D	6.950	7.000	7.050	0.2736	0.2756	0.2776	
D1	5.950	6.000	6.050	0.2343	0.2362	0.2382	
Е	6.950	7.000	7.050	0.2736	0.2756	0.2776	
E1	5.950	6.000	6.050	0.2343	0.2362	0.2382	
е	-	0.500	-	-	0.0197	-	

Table 118. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,ultra fine pitch ball grid array package mechanical data (continued)

Symbol		millimeters				
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 99. UFBGA176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package recommended footprint

000000000000000000000000000000000000	
0000 0000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	A0E7_FP_V1

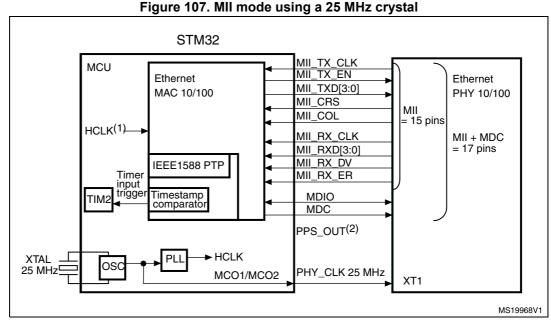
Table 119. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) Image: Commended PCB design rules (0.65 mm pitch BGA) Image: Commended PCB design rules (0.65 mm pitch BGA)

Dimension	Recommended values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

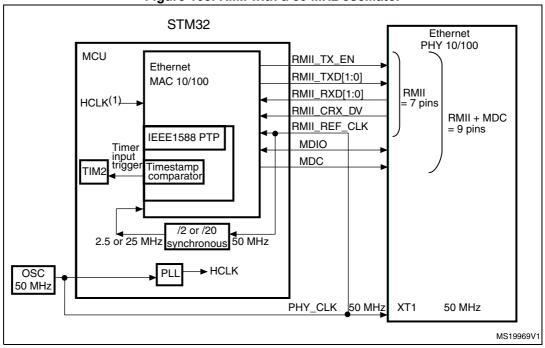
8 Part numbering

Table 122. Ordering infor	mation sc	heme				
Example:	STM32	F	439 V	ΙT	6	ххх
Device family						
STM32 = ARM-based 32-bit microcontroller						
Product type						
F = general-purpose						
Device subfamily						
437= STM32F437xx, USB OTG FS/HS, camera interface, Ethernet, cryptographic acceleration						
439= STM32F439xx, USB OTG FS/HS, camera interface, Ethernet, LCD-TFT, cryptographic acceleration						
Pin count						
V = 100 pins						
Z = 143 and 144 pins						
A = 169 pins						
I = 176 pins						
B = 208 pins						
N = 216 pins						
Flash memory size						
G = 1024 Kbytes of Flash memory						
I = 2048 Kbytes of Flash memory						
Package						
T = LQFP						
H = BGA						
Y = WLCSP						
Temperature range						
6 = Industrial temperature range, -40 to 85 °C.						
7 = Industrial temperature range, -40 to 105 °C.						
Options						

xxx = programmed parts


TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.


DocID024244 Rev 10

B.3 Ethernet interface solutions

1. f_{HCLK} must be greater than 25 MHz.

2. Pulse per second when using IEEE1588 PTP optional signal.

Figure 108. RMII with a 50 MHz oscillator

1. f_{HCLK} must be greater than 25 MHz.

9 Revision history

Date	Revision	Changes	
12-Aug-2013	1	Initial release.	
10-Sep-2013	2	Added STM32F439xx part numbers and related informations. STM32F437xx part numbers: Replaced FSMC by FMC added Chrom-ART Accelerator and SAI interface. Increased core, timer, GPIOs, SPI maximum frequencies Updated Figure 4: STM32F437xx and STM32F439xx block diagram. Updated Figure 5: STM32F437xx and STM32F439xx Multi-AHB matrix. Removed note in Section -: Standby mode. Updated Figure 14: STM32F437xx and STM32F439xx pin and ball definitions and Table 12: STM32F437xx and STM32F439xx alternate function mapping Modified Figure 19: Memory map. Updated Table 17: General operating conditions, Table 18: Limitations depending on the operating power supply range. Removed note 1 in Table 22: reset and power control block characteristics. Added Table 23: Over-drive switching characteristics. Updated Section : Typical and maximum current consumption, Table 34: Switching output I/O current consumption, Table 35: Peripheral current consumption and Section : On-chip peripheral current consumption. Updated Table 36: Low-power mode wakeup timings. Modified Section : High-speed external user clock generated from an external source, and Section 6.3.10: Internal clock source characteristics. Updated Table 43: Main PLL characteristics and Table 45: PLLISAI (audio and LCD-TFT PLL) characteristics. Updated Table 57: Output voltage characteristics and Table 58: I/O AC characteristics. Updated Table 60: TIMx characteristics, Table 61: I2C characteristics, Table 62: SPI dynamic characteristics, Section : SAI characteristics, Table 62: SPI dynamic characteristics, Section : SAI characteristics, Updated Table 60: TIMx characteristics, Table 61: I2C characteristics, Updated Table 60: TIMx characteristics, Section : SAI characteristics, Updated Table 60: SDRAM read timings and Table 104: SDRAM write timings.	

Table 124.	Document revision history

Date	Revision	Changes
24-Apr-2014	5	Changed SVGA (800x600) into XGA1024x768) on cover page and in Section 3.10: LCD-TFT controller (available only on STM32F439xx). Added DCMI_VSYNC alternate function on PG9 and updated note 6. in Table 10: STM32F437xx and STM32F439xx pin and ball definitions and Table 12: STM32F437xx and STM32F439xx alternate function mapping. Added note 2.belowFigure 16: STM32F43x UFBGA169 ballout. Updated Section 3.18.2: Regulator OFF. Updated signal corresponding to pin L5 in Figure 12: STM32F43x WLCSP143 ballout. Updated Table 53: ESD absolute maximum ratings. Updated V _{IH} in Table 56: I/O static characteristics. Added condition V_{DD} >1.7 V in Table 56: I/O AC characteristics. Added ACC _{HSE} in Table 39: HSE 4-26 MHz oscillator characteristics and ACC _{LSE} in Table 40: LSE oscillator characteristics (fLSE = 32.768 kHz). Removed note 3 in Table 80: Temperature sensor characteristics. Added Figure 82: LQFP100 marking example (package top view), Figure 85: WLCSP143 marking example (package top view), Figure 85: LQFP144 marking example (package top view), Figure 88: LQFP144 marking example (package top view), Figure 87: WLCSP143 marking example (package top view), Figure 88: LQFP144 marking example (package top view), Figure 88: LQFP144 marking example (package top view), Figure 87: UCSP143 marking example (package top view), Figure 88: LQFP144 marking example (package top view), Figure 88: LQFP144 marking example (package top view), Figure 87: UCSP143 marking example (package top view), Figure 88: LQFP144 marking example (package top vi

Table 124.	Document	revision	history	(continued)

