E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f437zit6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 44. Figure 45.	SAI slave timing waveforms	150 152
Figure 46.		153
Figure 47.		155
Figure 48.		150
Figure 49.		157
Figure 50.		161
Figure 51.		162
Figure 52.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	163
Figure 53.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	164
Figure 54.	12-bit buffered /non-buffered DAC	168
Figure 55.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	170
Figure 56.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	172
Figure 57.	Asynchronous multiplexed PSRAM/NOR read waveforms.	173
Figure 58.	Asynchronous multiplexed PSRAM/NOR write waveforms	175
Figure 59.	Synchronous multiplexed NOR/PSRAM read timings	177
Figure 60.	Synchronous multiplexed PSRAM write timings	178
Figure 61.	Synchronous non-multiplexed NOR/PSRAM read timings	180
Figure 62.	Synchronous non-multiplexed PSRAM write timings	181
Figure 63.	PC Card/CompactFlash controller waveforms for common memory read access	183
Figure 64.	PC Card/CompactFlash controller waveforms for common memory write access	183
Figure 65.	PC Card/CompactFlash controller waveforms for attribute memory	
-	read access	184
Figure 66.	PC Card/CompactFlash controller waveforms for attribute memory write access	185
Figure 67.	PC Card/CompactFlash controller waveforms for I/O space read access	185
Figure 68.	PC Card/CompactFlash controller waveforms for I/O space write access	186
Figure 69.	NAND controller waveforms for read access	188
Figure 70.	NAND controller waveforms for write access	188
Figure 71.	NAND controller waveforms for common memory read access	189
Figure 72.	NAND controller waveforms for common memory write access.	189
Figure 73.	SDRAM read access waveforms (CL = 1)	190
Figure 74.	SDRAM write access waveforms	192
Figure 75.	DCMI timing diagram	194
Figure 76	I CD-TET horizontal timing diagram	196
Figure 77	I CD-TFT vertical timing diagram	196
Figure 78	SDIO high-speed mode	197
Figure 79	SD default mode	197
Figure 80	I OEP100 -100-pin 14 x 14 mm low-profile quad flat package outline	100
Figure 81	LOPE100 = 100-pin, 14 x 14 mm low-profile guad flat	100
rigule of.	recommended footprint	201
Eiguro 92		201
Figure 02.	WI CSD142 142 boll 4 521y 5 547 mm 0.4 mm niteb water level abin apple	202
Figure 65.	vvLCSP145 - 145-ball, 4.521X 5.547 mm, 0.4 mm pitch water level chip scale	202
		203
Figure 84.	WLCSP143 - 143-bail, 4.521X 5.547 mm, 0.4 mm pitch water level chip scale	004
F '		204
Figure 85.		205
Figure 86.	LQFP144-144-pin, 20 X 20 mm low-profile quad flat package outline	206
Figure 87.	LQPF144-144-pin,20 x 20 mm low-profile quad flat package	
-	recommended tootprint.	208
Figure 88.	LQFP144 marking example (package top view).	209
Figure 89.	LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package outline	210

DocID024244 Rev 10

2.1 Full compatibility throughout the family

The STM32F437xx and STM32F439xx devices are part of the STM32F4 family. They are fully pin-to-pin, software and feature compatible with the STM32F2xx devices, allowing the user to try different memory densities, peripherals, and performances (FPU, higher frequency) for a greater degree of freedom during the development cycle.

The STM32F437xx and STM32F439xx devices maintain a close compatibility with the whole STM32F10xx family. All functional pins are pin-to-pin compatible. The STM32F437xx and STM32F439xx, however, are not drop-in replacements for the STM32F10xx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xx to the STM32F43x family remains simple as only a few pins are impacted.

Figure 1, *Figure 2*, and *Figure 3*, give compatible board designs between the STM32F4xx, STM32F2xx, and STM32F10xx families.

Figure 1. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package

1. The timers connected to APB2 are clocked from TIMxCLK up to 180 MHz, while the timers connected to APB1 are clocked from TIMxCLK either up to 90 MHz or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

2. The LCD-TFT is available only on STM32F439xx devices.

DocID024244 Rev 10

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V₁₂ logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.
- The Standby mode is not available.

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 9*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 10*).
- If V_{CAP_1} and V_{CAP_2} go below V₁₂ minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.

Note: The minimum value of V_{12} depends on the maximum frequency targeted in the application (see Table 17: General operating conditions).

Figure 9. Startup in regulator OFF: slow V_{DD} slope - power-down reset risen after V_{CAP} $_1/V_{CAP}$ $_2$ stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

Figure 10. Startup in regulator OFF mode: fast V_{DD} slope - power-down reset risen before V_{CAP_1}/V_{CAP_2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

Figure 14. STM32F43x LQFP176 pinout

1. The above figure shows the package top view.

Pinouts and pin description

- 4. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website: www.st.com.
- 5. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
- If the device is delivered in an WLCSP143, UFBGA169, UFBGA176, LQFP176 or TFBGA216 package, and the BYPASS_REG pin is set to V_{DD} (Regulator OFF/internal reset ON mode), then PA0 is used as an internal Reset (active low).
- 7. PI0 and PI1 cannot be used for I2S2 full-duplex mode.
- 8. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.

DocID024244 Rev 10

79/240

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	l2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ЕТН	FMC/SDIO /OTG2_FS	DCMI	LCD	SYS
	PE7	-	TIM1_ ETR	-	-	-	-	-	-	UART7_Rx	-	-	-	FMC_D4	-	-	EVEN TOUT
	PE8	-	TIM1_ CH1N	-	-	-	-	-	-	UART7_Tx	-	-	-	FMC_D5	-	-	EVEN TOUT
	PE9	-	TIM1_ CH1	-	-	-	-	-	-	-	-	-	-	FMC_D6	-	-	EVEN TOUT
	PE10	-	TIM1_ CH2N	-	-	-	-	-	-	-	-	-	-	FMC_D7	-	-	EVEN TOUT
Port E	PE11	-	TIM1_ CH2	-	-	-	SPI4_ NSS	-	-	-	-	-	-	FMC_D8	-	LCD_G3	EVEN TOUT
	PE12	-	TIM1_ CH3N	-	-	-	SPI4_ SCK	-	-	-	-	-	-	FMC_D9	-	LCD_B4	EVEN TOUT
	PE13	-	TIM1_ CH3	-	-	-	SPI4_ MISO	-	-	-	-	-	-	FMC_D10	-	LCD_DE	EVEN TOUT
	PE14	-	TIM1_ CH4	-	-	-	SPI4_ MOSI	-	-	-	-	-	-	FMC_D11	-	LCD_ CLK	EVEN TOUT
	PE15	-	TIM1_ BKIN	-	-	-		-	-	-	-	-	-	FMC_D12	-	LCD_R7	EVEN TOUT
	PF0	-	-	-	-	I2C2_ SDA	-	-	-	-	-	-	-	FMC_A0	-	-	EVEN TOUT
	PF1	-				I2C2_ SCL	-	-	-	-	-	-	-	FMC_A1	-	-	EVEN TOUT
	PF2	-	-	-	-	I2C2_ SMBA	-	-	-	-	-	-	-	FMC_A2	-	-	EVEN TOUT
Dort C	PF3	-	-	-	-		-	-	-	-	-	-	-	FMC_A3	-	-	EVEN TOUT
POILF	PF4	-	-	-	-		-	-	-	-	-	-	-	FMC_A4	-	-	EVEN TOUT
	PF5	-	-	-	-		-	-	-	-	-	-	-	FMC_A5	-	-	EVEN TOUT
	PF6	-	-	-	TIM10_ CH1	-	SPI5_ NSS	SAI1_ SD_B	-	UART7_Rx	-	-	-	FMC_ NIORD	-	-	EVEN TOUT
	PF7	-	-	-	TIM11_ CH1	-	SPI5_ SCK	SAI1_ MCLK_B	-	UART7_Tx	-	-	-	FMC_ NREG	-	-	EVEN TOUT

Table 12. STM32F437xx and STM32F439xx alternate function mapping (continued)

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V (for the 1.7 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 20*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 21*.

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all V_{DD_x} power lines (source) ⁽¹⁾	270	
ΣI_{VSS}	Total current out of sum of all V_{SS_x} ground lines $(sink)^{(1)}$	- 270	
I _{VDD}	Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
I _{VSS}	Maximum current out of each V_{SS_x} ground line (sink) ⁽¹⁾	- 100	
I _{IO}	Output current sunk by any I/O and control pin	25	
	Output current sourced by any I/Os and control pin	- 25	
ΣI	Total output current sunk by sum of all I/O and control pins ⁽²⁾	120	mA
210	Total output current sourced by sum of all I/Os and control $pins^{(2)}$	- 120	
	Injected current on FT pins ⁽⁴⁾	5/10	
I _{INJ(PIN)} ⁽³⁾	Injected current on NRST and BOOT0 pins ⁽⁴⁾	- 5/+0	
	Injected current on TTa pins ⁽⁵⁾	±5	
$\Sigma I_{\rm INJ(PIN)}^{(5)}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	±25	1

Table 15. Current characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.21: 12-bit ADC characteristics.

4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

5. A positive injection is induced by $V_{IN} > V_{DDA}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 14* for the values of the maximum allowed input voltage.

6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 16. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	- 65 to +150	°C
TJ	Maximum junction temperature	125	°C

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 56: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 35: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DD} is the MCU supply voltage

f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Figure 32. ACC_{LSI} versus temperature

6.3.11 PLL characteristics

The parameters given in *Table 43* and *Table 44* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{PLL_IN}	PLL input clock ⁽¹⁾		0.95 ⁽²⁾	1	2.10	MHz
f _{PLL_OUT}	PLL multiplier output clock		24	-	180	MHz
f _{PLL48_OUT}	48 MHz PLL multiplier output clock		-	48	75	MHz
f _{VCO_OUT}	PLL VCO output		100	-	432	MHz
t _{LOCK}	PLL lock time	VCO freq = 100 MHz	75	-	200	116
		VCO freq = 432 MHz	100	-	300	μο

Table 43. Main PLL characteristics

Symbol	Parameter Conditions		Min	Тур	Мах	Unit
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz	0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V _{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz	0.30 0.55	-	0.40 0.85	mA

Table 44. PLLI2S (audio PLL) characteristics (continued)

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

Table 45. PLLISAI (audio and LCD-TFT PLL) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{PLLSAI_IN}	PLLSAI input clock ⁽¹⁾			0.95 ⁽²⁾	1	2.10	MHz
f _{PLLSAI_OUT}	PLLSAI multiplier output clock			-	-	216	MHz
f _{VCO_OUT}	PLLSAI VCO output			100	-	432	MHz
+	DLLSALlock time	VCO freq = 100 MHz	2	75	-	200	110
LOCK		VCO freq = 432 MHz	100	-	300	μο	
Jitter ⁽³⁾		Cycle to cycle at	RMS	-	90	-	
	Main SAL clock jitter	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
		Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples		-	90	-	ps
	FS clock jitter	Cycle to cycle at 48 KHz on 1000 samples		-	400	-	ps
I _{DD(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V_{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz		0.30 0.55	-	0.40 0.85	mA

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +1	8T _{HCLK} +2	ns
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} – 1	6T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +1.5	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1		ns

Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings $^{(1)(2)}$

1. C_L = 30 pF.

2. Guaranteed by characterization results.

6.3.29 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 108* for the SDIO/MMC interface are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Figure 78. SDIO high-speed mode

Figure 79. SD default mode

1. Dimensions are expressed in millimeters.

Table 118. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,ultra fine pitch ball grid array package mechanical data (continued)

Symbol		millimeters				
	Min.	Тур.	Max.	Min.	Тур.	Max.
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 99. UFBGA176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package recommended footprint

Table 119. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) Image: Commended PCB design rules (0.65 mm pitch BGA) Image: Commended PCB design rules (0.65 mm pitch BGA)

Dimension	Recommended values		
Pitch	0.65 mm		
Dpad	0.300 mm		
Dsm	0.400 mm typ. (depends on the soldermask registration tolerance)		
Stencil opening	0.300 mm		
Stencil thickness	Between 0.100 mm and 0.125 mm		
Pad trace width	0.100 mm		

7.8 **TFBGA216** package information

Figure 101. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 120. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid arraypackage mechanical data

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.100	-	-	0.0433	
A1	0.150	-	-	0.0059	-	-	
A2	-	0.760	-	-	0.0299	-	
b	0.350	0.400	0.450	0.0138	0.0157	0.0177	
D	12.850	13.000	13.150	0.5118	0.5118	0.5177	
D1	-	11.200	-	-	0.4409	-	
E	12.850	13.000	13.150	0.5118	0.5118	0.5177	
E1	-	11.200	-	-	0.4409	-	
е	-	0.800	-	-	0.0315	-	
F	-	0.900	-	-	0.0354	-	
ddd	-	-	0.100	-	-	0.0039	

8 Part numbering

Table 122. Ordering infor	mation sc	heme				
Example:	STM32	F	439 V	ΙT	6	ххх
Device family						
STM32 = ARM-based 32-bit microcontroller						
Product type						
F = general-purpose						
Device subfamily						
437= STM32F437xx, USB OTG FS/HS, camera interface, Ethernet, cryptographic acceleration						
439= STM32F439xx, USB OTG FS/HS, camera interface, Ethernet, LCD-TFT, cryptographic acceleration						
Pin count						
V = 100 pins						
Z = 143 and 144 pins						
A = 169 pins						
I = 176 pins						
B = 208 pins						
N = 216 pins						
Flash memory size						
G = 1024 Kbytes of Flash memory						
I = 2048 Kbytes of Flash memory						
Package						
T = LQFP						
H = BGA						
Y = WLCSP						
Temperature range						
6 = Industrial temperature range, –40 to 85 °C.						
7 = Industrial temperature range, -40 to 105 °C.						
Options						

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

DocID024244 Rev 10

Date	Revision	Changes		
11-Jan-2016	9	Updated <i>Figure 22: Power supply scheme</i> . Added $t_{d(TXD)}$ values corresponding to 1.71 V < V _{DD} < 3.6 V in <i>Table 72: Dynamics characteristics: Ethernet MAC signals for RMII</i> .		
18-Jul-2016	10	Updated Figure 1: Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package. Added mission profile compliance with JEDEC JESD47 in Section 6.2: Absolute maximum ratings. Changed Figure 31 HSI deviation versus temperature to ACCHSI versus temperature. Updated R _{LOAD} in Table 85: DAC characteristics. Added note 2. related to the position of the external capacitor below Figure 37: Recommended NRST pin protection. Updated Figure 40: SPI timing diagram - master mode. Added reference to optional marking or inset/upset marks in all package device marking sections. Updated Figure 85: WLCSP143 marking example (package top view), Figure 88: LQFP144 marking example (package top view), Figure 91: LQFP176 marking (package top view), Figure 94: LQFP208 marking example (package top view), Figure 102: TFBGA169 marking example (package top view). Updated Figure 98: UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball grid array package outline and Table 118: UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package mechanical data.		

Table 124	Document revision	history	(continued)
	Document revision	matory	(continueu)

