STMicroelectronics - STM32F437ZIT7TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f437zit7tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Reference	Part number									
STM32F437xx	STM32F437VG, STM32F437ZG, STM32F437IG, STM32F437VI, STM32F437ZI, STM32F437II, STM32F437AI									
STM32F439xx	STM32F439VI, STM32F439VG, STM32F439ZG, STM32F439ZI, STM32F439IG, STM32F439II, STM32F439BG, STM32F439BI, STM32F439NI, STM32F439AI, STM32F439NG									

Table 1. Device summary

2.1 Full compatibility throughout the family

The STM32F437xx and STM32F439xx devices are part of the STM32F4 family. They are fully pin-to-pin, software and feature compatible with the STM32F2xx devices, allowing the user to try different memory densities, peripherals, and performances (FPU, higher frequency) for a greater degree of freedom during the development cycle.

The STM32F437xx and STM32F439xx devices maintain a close compatibility with the whole STM32F10xx family. All functional pins are pin-to-pin compatible. The STM32F437xx and STM32F439xx, however, are not drop-in replacements for the STM32F10xx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xx to the STM32F43x family remains simple as only a few pins are impacted.

Figure 1, *Figure 2*, and *Figure 3*, give compatible board designs between the STM32F4xx, STM32F2xx, and STM32F10xx families.

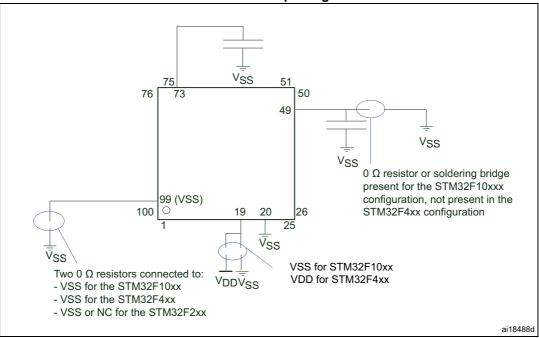


Figure 1. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package

3.26 Inter-integrated sound (I²S)

Two standard I²S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx can be served by the DMA controller.

Note: For I2S2 full-duplex mode, I2S2_CK and I2S2_WS signals can be used only on GPIO Port B and GPIO Port D.

3.27 Serial Audio interface (SAI1)

The serial audio interface (SAI1) is based on two independent audio sub-blocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub-blocks can be configured in master or in slave mode.

In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency.

The two sub-blocks can be configured in synchronous mode when full-duplex mode is required.

SAI1 can be served by the DMA controller.

3.28 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S and SAI applications. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I²S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I²S/SAI flow with an external PLL (or Codec output).

3.29 Audio and LCD PLL(PLLSAI)

An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLLSAI is also used to generate the LCD-TFT clock.

FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN.

3.33 Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

- Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 4 bidirectional endpoints
- 8 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

3.34 Universal serial bus on-the-go high-speed (OTG_HS)

The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The major features are:

- Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 6 bidirectional endpoints
- 12 host channels with periodic OUT support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

			Pin nu	ımbeı	r								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾ Notes Notes		Alternate functions	Additional functions		
38	58	N7	R8	68	L5	79	R8	PE7	I/O	FT	-	TIM1_ETR, UART7_Rx, FMC_D4, EVENTOUT	-
39	59	J8	P8	69	M5	80	N9	PE8	I/O	FT	-	TIM1_CH1N, UART7_Tx, FMC_D5, EVENTOUT	-
40	60	K8	P9	70	N5	81	P9	PE9	I/O	FT	-	TIM1_CH1, FMC_D6, EVENTOUT	-
-	61	J6	M9	71	H3	82	K8	V _{SS}	S		-		-
-	62	G10	N9	72	J5	83	L9	V _{DD}	S		-		-
41	63	L8	R9	73	J4	84	R9	PE10	I/O	FT	-	TIM1_CH2N, FMC_D7, EVENTOUT	-
42	64	M8	P10	74	K4	85	P10	PE11	I/O	FT	-	TIM1_CH2, SPI4_NSS, FMC_D8, LCD_G3, EVENTOUT	-
43	65	N8	R10	75	L4	86	R10	PE12	I/O	FT	-	TIM1_CH3N, SPI4_SCK, FMC_D9, LCD_B4, EVENTOUT	-
44	66	H9	N11	76	N4	87	R12	PE13	I/O	FT	-	TIM1_CH3, SPI4_MISO, FMC_D10, LCD_DE, EVENTOUT	-
45	67	J9	P11	77	M4	88	P11	PE14	I/O	FT	-	TIM1_CH4, SPI4_MOSI, FMC_D11, LCD_CLK, EVENTOUT	-
46	68	K9	R11	78	L3	89	R11	PE15	I/O	FT	-	TIM1_BKIN, FMC_D12, LCD_R7, EVENTOUT	-
47	69	L9	R12	79	M3	90	P12	PB10	I/O	FT	_	TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, USART3_TX, OTG_HS_ULPI_D3, ETH_MII_RX_ER, LCD_G4, EVENTOUT	-
48	70	M9	R13	80	N3	91	R13	PB11	I/O	FT	-	TIM2_CH4, I2C2_SDA, USART3_RX, OTG_HS_ULPI_D4, ETH_MII_TX_EN/ETH_ RMII_TX_EN, LCD_G5, EVENTOUT	-

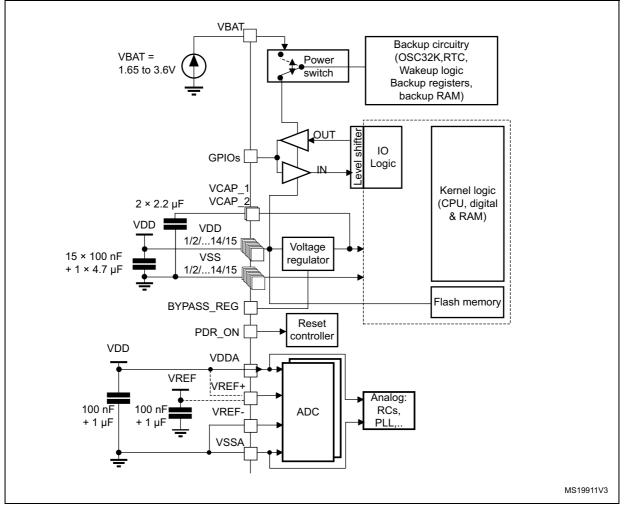
Table 10. STM32F437xx and STM32F439xx pin and ball definitions (continued)
--

			Pin nu	Imber	•								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
68	101	E8	E15	120	E2	143	E15	PA9	I/O	FT	-	TIM1_CH2, I2C3_SMBA, USART1_TX, DCMI_D0, EVENTOUT	OTG_FS_ VBUS
69	102	E9	D15	121	D5	144	D15	PA10	I/O	FT	-	TIM1_CH3, USART1_RX, OTG_FS_ID, DCMI_D1, EVENTOUT	-
70	103	E10	C15	122	D4	145	C15	PA11	I/O	FT	-	TIM1_CH4, USART1_CTS, CAN1_RX, LCD_R4, OTG_FS_DM, EVENTOUT	-
71	104	E11	B15	123	E1	146	B15	PA12	I/O	FT	-	TIM1_ETR, USART1_RTS, CAN1_TX, LCD_R5, OTG_FS_DP, EVENTOUT	-
72	105	E12	A15	124	D3	147	A15	PA13 (JTMS- SWDIO)	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-
73	106	D12	F13	125	D1	148	E11	V _{CAP_2}	S		-	-	-
74	107	J10	F12	126	D2	149	F10	V _{SS}	S		-	-	-
75	108	H4	G13	127	C1	150	F11	V _{DD}	S		-	-	-
-	-	D13	E12	128	-	151	E12	PH13	I/O	FT	-	TIM8_CH1N, CAN1_TX, FMC_D21, LCD_G2, EVENTOUT	-
-	-	C13	E13	129	-	152	E13	PH14	I/O	FT	-	TIM8_CH2N, FMC_D22, DCMI_D4, LCD_G3, EVENTOUT	-
-	-	C12	D13	130	-	153	D13	PH15	I/O	FT	-	TIM8_CH3N, FMC_D23, DCMI_D11, LCD_G4, EVENTOUT	-
-	-	B13	E14	131	-	154	E14	PIO	I/O	FT	-	TIM5_CH4, SPI2_NSS/I2S2_WS ⁽⁷⁾ , FMC_D24, DCMI_D13, LCD_G5, EVENTOUT	-

Table 10. STM32F437xx and STM32F439xx	nin and hall definitions (continued)
	pin and ball deminions (continued)

64/240

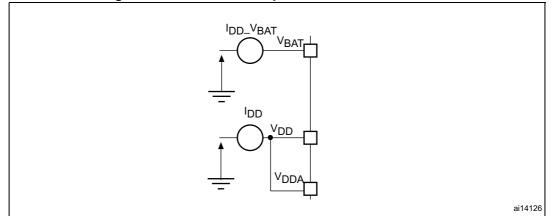
DocID024244 Rev 10



Bus	Boundary address	Peripheral
	0x4001 6C00- 0x4001 FFFF	Reserved
	0x4001 6800 - 0x4001 6BFF	LCD-TFT
	0x4001 5C00 - 0x4001 67FF	Reserved
	0x4001 5800 - 0x4001 5BFF	SAI1
	0x4001 5400 - 0x4001 57FF	SPI6
	0x4001 5000 - 0x4001 53FF	SPI5
	0x4001 4C00 - 0x4001 4FFF	Reserved
	0x4001 4800 - 0x4001 4BFF	TIM11
	0x4001 4400 - 0x4001 47FF	TIM10
	0x4001 4000 - 0x4001 43FF	TIM9
	0x4001 3C00 - 0x4001 3FFF	EXTI
APB2	0x4001 3800 - 0x4001 3BFF	SYSCFG
AFDZ	0x4001 3400 - 0x4001 37FF	SPI4
	0x4001 3000 - 0x4001 33FF	SPI1
	0x4001 2C00 - 0x4001 2FFF	SDIO
	0x4001 2400 - 0x4001 2BFF	Reserved
	0x4001 2000 - 0x4001 23FF	ADC1 - ADC2 - ADC3
	0x4001 1800 - 0x4001 1FFF	Reserved
	0x4001 1400 - 0x4001 17FF	USART6
	0x4001 1000 - 0x4001 13FF	USART1
	0x4001 0800 - 0x4001 0FFF	Reserved
	0x4001 0400 - 0x4001 07FF	TIM8
	0x4001 0000 - 0x4001 03FF	TIM1

Table 13. STM32F437xx and STM32F439xx register boundary addresses (continued)

6.1.6 Power supply scheme


Figure 22. Power supply scheme

1. To connect BYPASS_REG and PDR_ON pins, refer to Section 3.17: Power supply supervisor and Section 3.18: Voltage regulator

- 2. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF.
- 3. The 4.7 μF ceramic capacitor must be connected to one of the V_{DD} pin.
- 4. $V_{DDA}=V_{DD}$ and $V_{SSA}=V_{SS}$.
- **Caution:** Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} ...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.

6.1.7 Current consumption measurement

Figure 23. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 14: Voltage characteristics*, *Table 15: Current characteristics*, and *Table 16: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are available on demand.

Symbol	Ratings	Min	Max	Unit
$V_{DD}-V_{SS}$	External main supply voltage (including V_{DDA}, V_{DD} and VBAT) $^{(1)}$	- 0.3	4.0	
	Input voltage on FT pins ⁽²⁾	V _{SS} - 0.3	V _{DD} +4.0	
V _{IN}	Input voltage on TTa pins	V _{SS} - 0.3 4.0		V
	Input voltage on any other pin	V _{SS} – 0.3	4.0	
	Input voltage on BOOT0 pin	V _{SS}	9.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	
V _{SSX} -V _{SS}	Variations between all the different ground pins including V_{REF^-}	-	50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model) see Section 6.3.15: Absolute maximum ratings (electrical sensitivity)			

Table 14. Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum value must always be respected. Refer to *Table 15* for the values of the maximum allowed injected current.

DocID024244 Rev 10

					· · · · · ·	Max ⁽¹⁾						
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit				
			180	78	89 ⁽³⁾	110	130 ⁽³⁾					
			168	66	75 ⁽³⁾	93	110 ⁽³⁾					
			150	56	61	80	96					
			144	54	58	78	94					
			120	40	44	59	72					
		All	90	32	34	46	56					
		Peripherals	60	22	23	31	38					
		enabled ⁽²⁾	30	10	16	30	43					
	Supply current in Sleep mode		25	9	14	28	40	-				
			16	5	12	25	40					
			8	3	8	22	35					
			4	3	7	21	34					
1			2	2	6.5	20	33	mA				
I _{DD}		All	180	21	26 ⁽³⁾	54	76 ⁽³⁾	ШA				
			168	16	20 ⁽³⁾	41	58 ⁽³⁾					
			150	14	17	36	52					
			144	13	16.5	35	51					
			120	10	14	28	41					
			90	8	13	26	37					
		Peripherals	60	6	9	17	25					
		disabled	30	5	8	22	35					
			25	3	7	21	34					
			16	3	7	21	34					
			8	2	6	20	33					
			4	2	6	20	33					
			2	2	6	20	33					

Table 26	. Typical and	l maximum	current	consump	otion in	Sleep	mode
----------	---------------	-----------	---------	---------	----------	-------	------

1. Guaranteed by characterization unless otherwise specified.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. Based on characterization, tested in production.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{BE}		Program/erase parallelism (PSIZE) = x 8		16	32	
	Bank erase time	Program/erase parallelism (PSIZE) = x 16	-	11	22	s
		Program/erase parallelism (PSIZE) = x 32			16	
		32-bit program operation	2.7	-	3.6	V
V _{prog}	Programming voltage	16-bit program operation	2.1	-	3.6	V
		8-bit program operation	1.7	-	3.6	V

2. The maximum programming time is measured after 100K erase operations.

Table 49. Flash memory programming with V _{PP}						
Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs
t _{ERASE16KB}	Sector (16 KB) erase time	T _A = 0 to +40 °C	-	230	-	
t _{ERASE64KB}	Sector (64 KB) erase time	V _{DD} = 3.3 V	-	490	-	ms
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	-	
t _{ME}	Mass erase time		-	6.9	-	s
t _{BE}	Bank erase time		-	6.9	-	s
V _{prog}	Programming voltage		2.7	-	3.6	V
V _{PP}	V _{PP} voltage range		7	-	9	V
I _{PP}	Minimum current sunk on the $V_{\rm PP}$ pin		10	-	-	mA
t _{VPP} ⁽³⁾	Cumulative time during which V_{PP} is applied		-	-	1	hour

Table 49. Flash memory	v programming	with V_{PP}
------------------------	---------------	---------------

1. Guaranteed by design.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

Symbol	Parameter	Conditions	Value	Unit
Symbol	Farameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

 Table 50. Flash memory endurance and data retention

2. Cycling performed over the whole temperature range.

6.3.14 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 51*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 168 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, \text{LQFP176}, \text{T}_{\text{A}} = +25 \text{ °C},$ f _{HCLK} = 168 MHz, conforms to IEC 61000-4-2	4A

Table 51. EMS characteristics

When the application is exposed to a noisy environment, it is recommended to avoid pin exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1, PA2, PH2, PH3, PH4, PH5, PA3, PA4, PA5, PA6, PA7, PC4, and PC5.

As a consequence, it is recommended to add a serial resistor (1 k Ω) located as close as possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

DocID024244 Rev 10

6.3.16 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of – 5 μ A/+0 μ A range), or other functional failure (for example reset, oscillator frequency deviation).

Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in Table 55.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0 pin	- 0	NA	
	Injected current on NRST pin	- 0	NA	
I _{INJ}	Injected current on PA0, PA1, PA2, PA3, PA6, PA7, PB0, PC0, PC1, PC2, PC3, PC4, PC5, PH1, PH2, PH3, PH4, PH5	- 0	NA	mA
	Injected current on TTa pins: PA4 and PA5	- 0	+5	
	Injected current on any other FT pin	- 5	NA	

Table 55. I/O current injection susceptibility⁽¹⁾

1. NA = not applicable.

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Output voltage levels

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V ≤V _{DD} ≤3.6 V	V _{DD} - 0.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} =+ 8mA 2.7 V ≤V _{DD} ≤3.6 V	2.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA	-	1.3 ⁽⁴⁾	v
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	2.7 V ≤V _{DD} ≤3.6 V	V_{DD} - 1.3 ⁽⁴⁾	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA	-	0.4 ⁽⁴⁾	v
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.8 V ≤V _{DD} ≤3.6 V	V _{DD} -0.4 ⁽⁴⁾	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +4 mA	-	0.4 ⁽⁵⁾	v
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.7 V ≤V _{DD} ≤3.6V	V_{DD} -0.4 ⁽⁵⁾	-	v

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 15*. and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 15 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Based on characterization data.

5. Guaranteed by design.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{w(SCKH)}	SCK high and low time	Master mode, SPI presc = 2, 2.7 V≤V _{DD} ≤3.6 V	T _{PCLK} -0.5	T _{PCLK}	T _{PCLK} +0.5	
t _{w(SCKL)}		Master mode, SPI presc = 2, 1.7 V≤V _{DD} ≤3.6 V	T _{PCLK} – 2	T _{PCLK}	T _{PCLK} +2	
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4T _{PCLK}			
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2T _{PCLK}	-	-	
t _{su(MI)}	Data input actus timo	Master mode	3	-	-	
t _{su(SI)}	Data input setup time	Slave mode	0	-	-	ns
t _{h(MI)}	Data input hold time	Master mode	0.5	-	-	
t _{h(SI)}	Data input hold time	Slave mode	2	-	-	
t _{a(SO})	Data output access time	Slave mode, SPI presc = 2	0	-	4T _{PCLK}	
+	is(SO) Data output disable time	Slave mode, SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V	0	-	8.5	
^ı dis(SO)		Slave mode, SPI1/2/3/4/5/6 and 1.7 V≤V _{DD} ≤3.6 V	0	-	16.5	
		Slave mode (after enable edge), SPI1/4/5/6 and 2.7V $\leq V_{DD} \leq 3.6V$	-	11	13	
t _{v(SO)}	Data output valid/hold	Slave mode (after enable edge), SPI2/3, 2.7 V≤V _{DD} ≤3.6 V	-	14	15	
t _{h(SO)}	time	Slave mode (after enable edge), SPI1/4/5/6, 1.7 V≤V _{DD} ≤3.6 V	-	15.5	19	
		Slave mode (after enable edge), SPI2/3, 1.7 V≤V _{DD} ≤3.6 V	-	15.5	17.5	ns
+	Data output valid time	Master mode (after enable edge), SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V	-	-	2.5	
t _{v(MO)}	Data output valid time	Master mode (after enable edge), SPI1/2/3/4/5/6, 1.7 V≤V _{DD} ≤3.6 V	-	-	4.5	
t _{h(MO)}	Data output hold time	Master mode (after enable edge)	0	-	-	

Table 62. SPI o	ynamic characteristics ⁽¹⁾	(continued)
-----------------	---------------------------------------	-------------

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50%

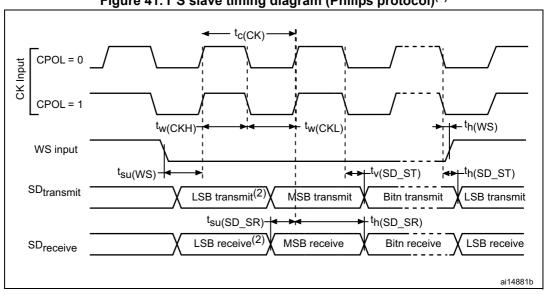
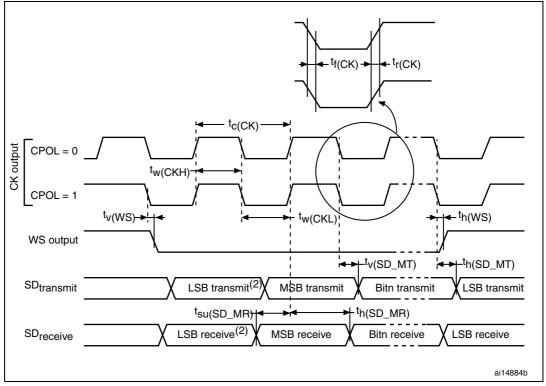



Figure 41. I²S slave timing diagram (Philips protocol)⁽¹⁾

1. .LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 42. I²S master timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

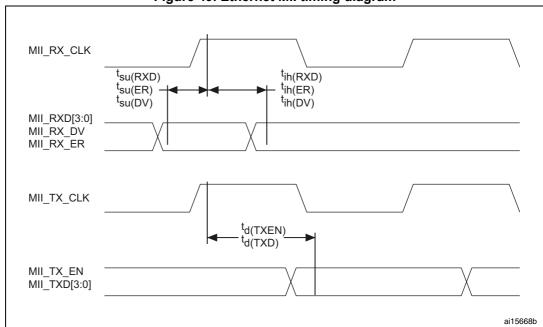


Figure 49. Ethernet MII timing diagram

Table 73. Dynamics characteristics: Ethernet MAC signals for MII ⁽¹⁾

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time		9	-	-	
t _{ih(RXD)}	Receive data hold time		10	-	-	
t _{su(DV)}	Data valid setup time	1.71 V < V _{DD} < 3.6 V	9	-	-	
t _{ih(DV)}	Data valid hold time	$1.71 v < v_{DD} < 3.0 v$	8	-	-	
t _{su(ER)}	Error setup time		6	-	-	ns
t _{ih(ER)}	Error hold time		8	-	-	115
+	Transmit anable valid dolov time	2.7 V < V _{DD} < 3.6 V	8	10	14	
t _{d(TXEN)}	Transmit enable valid delay time	1.71 V < V _{DD} < 3.6 V	8	10	16	
+	Transmit data valid delay time	2.7 V < V _{DD} < 3.6 V	7.5	10	15	
t _{d(TXD)}	Transmit data valid delay time	1.71 V < V _{DD} < 3.6 V	7.5	10	17	

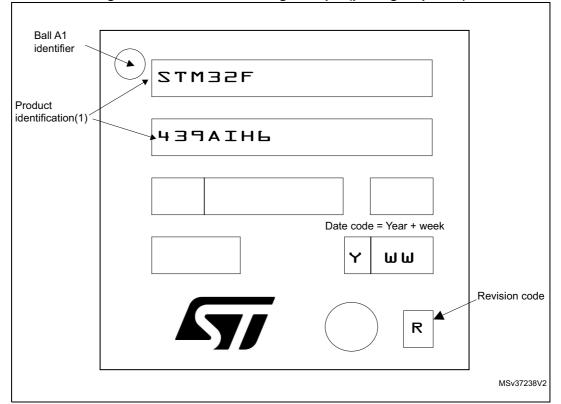
CAN (controller area network) interface

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period, VDD range= 2.7 to 3.6 V	2T _{HCLK} – 1	-	ns
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	1.5	ns
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	ns
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	ns
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	ns
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	ns
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	0	ns
t _(CLKH-NWEH)	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	ns
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3	ns
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	ns
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	3	ns
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	0	-	ns
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} -0.5	-	ns
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	4	-	ns
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0	-	ns

Table 95. Synchronous multiplexed PSRAM write timings⁽¹⁾⁽²⁾

1. C_L = 30 pF.


2. Guaranteed by characterization results.

Device marking for UFBGA169

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which depends assembly location, are not indicated below.

Figure 97. UFBGA169 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

	Table 124. Document revision history (continued)						
Date	Revision	Changes					
28-Sep-2015	7	Updated notes related to the minimum and maximum values guaranteed by design, characterization or test in production. Updated I _{DD_STOP_UDM} in <i>Table 27: Typical and maximum current</i> <i>consumptions in Stop mode</i> . Removed note related to tests in production in <i>Table 24: Typical and</i> <i>maximum current consumption in Run mode, code with data</i> <i>processing running from Flash memory</i> (<i>ART accelerator enabled</i> <i>except prefetch) or RAM</i> and <i>Table 26: Typical and maximum current</i> <i>consumption in Sleep mode</i> . Updated <i>Table 41: HSI oscillator characteristics. Figure 31</i> renamed <i>ACCHSI accuracy versus temperature</i> and updated. Updated <i>Figure 38: SPI timing diagram - slave mode and CPHA = 0.</i> Updated <i>Section : Ethernet characteristics, Table 44: PLLI2S</i> (<i>audio</i> <i>PLL) characteristics</i> and <i>Table 45: PLLISAI</i> (<i>audio and LCD-TFT PLL</i>) <i>characteristics.</i> Removed note 1 in <i>Table 75: ADC static accuracy at fADC = 18 MHz,</i> <i>Table 76: ADC static accuracy at fADC = 30 MHz</i> and <i>Table 77: ADC</i> <i>static accuracy at fADC = 36 MHz.</i> Updated t _d (SDCLKL_Data) and t _h (SDCLKL_Data) in <i>Table 104: SDRAM</i> <i>write timings.</i> Updated note below marking schematics. Added Figure 96: UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra <i>fine pitch ball grid array recommended footprint</i> and <i>Table 117:</i> UFBGA169 recommended PCB design rules (0.5 mm pitch, gent). Added Figure 99: UFBGA176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package recommended footprint and Table 119: UFBGA176+25 recommended PCB design rules (0.65 mm pitch, BGA).					
30-Nov-2015	8	Updated $ V_{SSX} - V_{SS} $ in Table 14: Voltage characteristics to add V_{REF} . Updated $t_{d(TXEN)}$ and $t_{d(TXD)}$ minimum value in Table 72: Dynamics characteristics: Ethernet MAC signals for RMII and Table 73: Dynamics characteristics: Ethernet MAC signals for MII. Added V_{REF} in Table 74: ADC characteristics. Added A1 minimum and maximum values in Table 111: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package mechanical data. Updated Figure 86: LQFP144-144-pin, 20 x 20 mm low-profile quad flat package outline.Updated Figure 98: UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball grid array package outline and Table 118: UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package mechanical data. Updated Figure 101: TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array package outline and Table 120: TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array package mechanical data.					

Table 124	. Document	revision	history	(continued)
-----------	------------	----------	---------	-------------

