

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	168
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-LQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f439bit6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate at up to 5.62 bit/s.

USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping			
USART1	х	х	х	х	х	х	5.62	11.25	APB2 (max. 90 MHz)			
USART2	х	х	x	х	х	х	2.81	5.62	APB1 (max. 45 MHz)			
USART3	х	х	x	х	x	х	2.81	5.62	APB1 (max. 45 MHz)			
UART4	х	-	x	-	х	-	2.81	5.62	APB1 (max. 45 MHz)			
UART5	х	-	x	-	x	-	2.81	5.62	APB1 (max. 45 MHz)			
USART6	х	Х	x	х	х	х	5.62	11.25	APB2 (max. 90 MHz)			
UART7	х	-	х	-	х	-	2.81	5.62	APB1 (max. 45 MHz)			
UART8	х	-	х	-	х	-	2.81	5.62	APB1 (max. 45 MHz)			

Table 8.	USART	feature	com	parison ⁽¹	1)
----------	-------	---------	-----	-----------------------	----

1. X = feature supported.

3.25 Serial peripheral interface (SPI)

The devices feature up to six SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 45 Mbits/s, SPI2 and SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

DocID024244 Rev 10

3.35 Digital camera interface (DCMI)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image

3.36 Cryptographic acceleration

The devices embed a cryptographic accelerator. This cryptographic accelerator provides a set of hardware acceleration for the advanced cryptographic algorithms usually needed to provide confidentiality, authentication, data integrity and non repudiation when exchanging messages with a peer.

• These algorithms consists of:

Encryption/Decryption

- DES/TDES (data encryption standard/triple data encryption standard): ECB (electronic codebook) and CBC (cipher block chaining) chaining algorithms, 64-, 128- or 192-bit key
- AES (advanced encryption standard): ECB, CBC, GCM, CCM, and CTR (counter mode) chaining algorithms, 128, 192 or 256-bit key

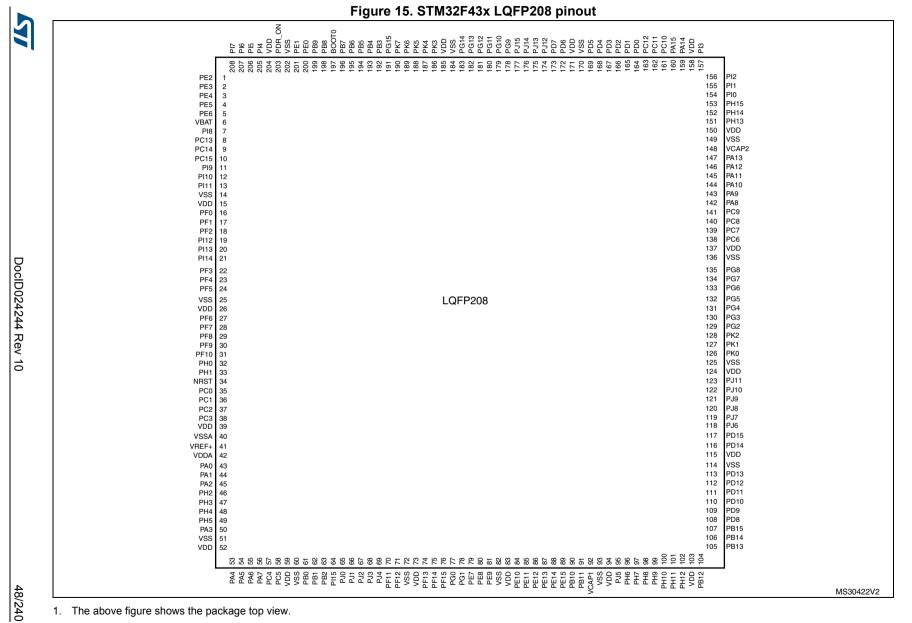
Universal hash

- SHA-1 and SHA-2 (secure hash algorithms)
- MD5
- HMAC

The cryptographic accelerator supports DMA request generation.

3.37 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.


3.38 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

DocID024244 Rev 10

Pinouts and pin description

STM32F437xx and STM32F439xx

1. The above figure shows the package top view.

					2. 31103	2643			. 43988	allemale	function	mapping		ieu)			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	l2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ЕТН	FMC/SDIO /OTG2_FS	DCMI	LCD	
	PA13	JTMS- SWDI O	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Port A	PA14	JTCK- SWCL K	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	PA15	JTDI	TIM2_ CH1/TIM2 _ETR	-	-	-	SPI1_ NSS	SPI3_ NSS/ I2S3_WS	-	-	-	-	-	-	-	-	
	PB0	-	TIM1_ CH2N	TIM3_ CH3	TIM8_ CH2N	-	-	-	-	-	LCD_R3	OTG_HS_ ULPI_D1	ETH_MII_ RXD2	-	-	-	Ī
	PB1	-	TIM1_ CH3N	TIM3_ CH4	TIM8_ CH3N	-	-	-	-	-	LCD_R6	OTG_HS_ ULPI_D2	ETH_MII_ RXD3	-	-	-	
	PB2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	PB3	JTDO/ TRAC ESWO	TIM2_ CH2	-	-	-	SPI1_ SCK	SPI3_ SCK/ I2S3_CK	-	-	-	-	-	-	-	-	
	PB4	NJTR ST	-	TIM3_ CH1	-	-	SPI1_ MISO	SPI3_ MISO	I2S3ext_ SD	-	-	-	-	-	-	-	
Port B	PB5	-	-	TIM3_ CH2	-	I2C1_ SMBA	SPI1_ MOSI	SPI3_ MOSI/ I2S3_SD	-	-	CAN2_RX	OTG_HS_ ULPI_D7	ETH_PPS _OUT	FMC_ SDCKE1	DCMI_ D10	-	
	PB6	-	-	TIM4_ CH1	-	I2C1_ SCL	-	-	USART1_ TX	-	CAN2_TX	-	-	FMC_ SDNE1	DCMI_ D5	-	
	PB7	-	-	TIM4_ CH2	-	I2C1_ SDA	-	-	USART1_ RX	-	-	-	-	FMC_NL	DCMI_ VSYNC	-	
	PB8	-	-	TIM4_ CH3	TIM10_ CH1	I2C1_ SCL	-	-	-	-	CAN1_RX	-	ETH_MII_ TXD3	SDIO_D4	DCMI_ D6	LCD_B6	
	PB9	-	-	TIM4_ CH4	TIM11_ CH1	I2C1_ SDA	SPI2_ NSS/I2 S2_WS	-	-	-	CAN1_TX	-	-	SDIO_D5	DCMI_ D7	LCD_B7	
	PB10	-	TIM2_ CH3	-	-	I2C2_ SCL	SPI2_ SCK/I2 S2_CK	-	USART3_ TX	-	-	OTG_HS_ ULPI_D3	ETH_MII_ RX_ER	-	-	LCD_G4	

Table 12. STM32F437xx and STM32F439xx alternate function mapping (continued)

DocID024244 Rev 10

STM32F437xx and STM32F439xx

Pinouts and pin description

AF15

SYS

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN

TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN

TOUT

TOUT EVEN TOUT

EVEN TOUT

EVEN TOUT

DocID024244 Rev 10

79/240

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	I2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ETH	FMC/SDIO /OTG2_FS	DCMI	LCD	SYS
	PE7	-	TIM1_ ETR	-	-	-	-	-	-	UART7_Rx	-	-	-	FMC_D4	-	-	EVEN TOUT
	PE8	-	TIM1_ CH1N	-	-	-	-	-	-	UART7_Tx	-	-	-	FMC_D5	-	-	EVEN TOUT
	PE9	-	TIM1_ CH1	-	-	-	-	-	-	-	-	-	-	FMC_D6	-	-	EVEN TOUT
	PE10	-	TIM1_ CH2N	-	-	-	-	-	-	-	-	-	-	FMC_D7	-	-	EVEN TOUT
Port E	PE11	-	TIM1_ CH2	-	-	-	SPI4_ NSS	-	-	-	-	-	-	FMC_D8	-	LCD_G3	EVEN TOUT
	PE12	-	TIM1_ CH3N	-	-	-	SPI4_ SCK	-	-	-	-	-	-	FMC_D9	-	LCD_B4	EVEN TOUT
	PE13	-	TIM1_ CH3	-	-	-	SPI4_ MISO	-	-	-	-	-	-	FMC_D10	-	LCD_DE	EVEN TOUT
	PE14	-	TIM1_ CH4	-	-	-	SPI4_ MOSI	-	-	-	-	-	-	FMC_D11	-	LCD_ CLK	EVEN TOUT
	PE15	-	TIM1_ BKIN	-	-	-		-	-	-	-	-	-	FMC_D12	-	LCD_R7	EVEN TOUT
	PF0	-	-	-	-	I2C2_ SDA	-	-	-	-	-	-	-	FMC_A0	-	-	EVEN TOUT
	PF1	-				I2C2_ SCL	-	-	-	-	-	-	-	FMC_A1	-	-	EVEN TOUT
	PF2	-	-	-	-	I2C2_ SMBA	-	-	-	-	-	-	-	FMC_A2	-	-	EVEN TOUT
Port F	PF3	-	-	-	-		-	-	-	-	-	-	-	FMC_A3	-	-	EVEN TOUT
Port F	PF4	-	-	-	-		-	-	-	-	-	-	-	FMC_A4	-	-	EVEN TOUT
	PF5	-	-	-	-		-	-	-	-	-	-	-	FMC_A5	-	-	EVEN TOUT
	PF6	-	-	-	TIM10_ CH1	-	SPI5_ NSS	SAI1_ SD_B	-	UART7_Rx	-	-	-	FMC_ NIORD	-	-	EVEN TOUT
	PF7	-	-	-	TIM11_ CH1	-	SPI5_ SCK	SAI1_ MCLK_B	-	UART7_Tx	-	-	-	FMC_ NREG	-	-	EVEN TOUT

Table 12. STM32F437xx and STM32F439xx alternate function mapping (continued)

Bus	Boundary address	Peripheral
	0x4008 0000- 0x4FFF FFFF	Reserved
	0x4004 0000 - 0x4007 FFFF	USB OTG HS
	0x4002 BC00- 0x4003 FFFF	Reserved
	0x4002 B000 - 0x4002 BBFF	DMA2D
	0x4002 9400 - 0x4002 AFFF	Reserved
	0x4002 9000 - 0x4002 93FF	
	0x4002 8C00 - 0x4002 8FFF	
	0x4002 8800 - 0x4002 8BFF	ETHERNET MAC
	0x4002 8400 - 0x4002 87FF	
	0x4002 8000 - 0x4002 83FF	
	0x4002 6800 - 0x4002 7FFF	Reserved
	0x4002 6400 - 0x4002 67FF	DMA2
	0x4002 6000 - 0x4002 63FF	DMA1
	0X4002 5000 - 0X4002 5FFF	Reserved
	0x4002 4000 - 0x4002 4FFF	BKPSRAM
AHB1	0x4002 3C00 - 0x4002 3FFF	Flash interface register
АПВТ	0x4002 3800 - 0x4002 3BFF	RCC
	0X4002 3400 - 0X4002 37FF	Reserved
	0x4002 3000 - 0x4002 33FF	CRC
	0x4002 2C00 - 0x4002 2FFF	Reserved
	0x4002 2800 - 0x4002 2BFF	GPIOK
	0x4002 2400 - 0x4002 27FF	GPIOJ
	0x4002 2000 - 0x4002 23FF	GPIOI
	0x4002 1C00 - 0x4002 1FFF	GPIOH
	0x4002 1800 - 0x4002 1BFF	GPIOG
	0x4002 1400 - 0x4002 17FF	GPIOF
	0x4002 1000 - 0x4002 13FF	GPIOE
	0X4002 0C00 - 0x4002 0FFF	GPIOD
	0x4002 0800 - 0x4002 0BFF	GPIOC
	0x4002 0400 - 0x4002 07FF	GPIOB
	0x4002 0000 - 0x4002 03FF	GPIOA

Table 13. STM32F437xx and STM32F439xx register boundary addresses (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit						
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power- on (POR or wakeup from Standby)		-	160	200	mA						
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power- on (POR or wakeup from Standby)	V _{DD} = 1.7 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC						

 Table 22. reset and power control block characteristics (continued)

1. Guaranteed by design.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

6.3.6 Over-drive switching characteristics

When the over-drive mode switches from enabled to disabled or disabled to enabled, the system clock is stalled during the internal voltage set-up.

The over-drive switching characteristics are given in *Table 23*. They are sbject to general operating conditions for T_A .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		HSI	-	45	-	
Tod_swen	Over_drive switch enable time	HSE max for 4 MHz and min for 26 MHz	45	-	100	
		External HSE 50 MHz	-	40	-	110
		HSI	-	20	-	μs
Tod_swdis	Over_drive switch disable time	HSE max for 4 MHz and min for 26 MHz.	20	-	80	
		External HSE 50 MHz	-	15	-	

Table 23. Over-drive switching characteristics⁽¹⁾

1. Guaranteed by design.

Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	Unit
			168	65.5	
			150	55.5	
			144	53.5	
		All Deripherale enabled	120	39.0	
		All Peripherals enabled	90	31.6	
			60	21.7	- mA
	Supply current in Sleep mode from V _{DD} supply		30	9.8	
			25	8.8	
I _{DD}			168	15.7	
			150	13.7	
			144	12.7	
		All Deripherale dischlod	120	9.7	
		All Peripherals disabled	90	7.7	
			60	5.7	
			30	4.7	
			25	2.8	

Table 32. Typical curre	nt consumption in Slee	ep mode, regulator Ol	λ. V _{DD} =1.7 V ⁽¹⁾
Table of Typical curre	ni consumption in oice	spiniouc, regulator of	•, •DD=1./ •

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 56: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 35: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DD} is the MCU supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

6.3.8 Wakeup time from low-power modes

The wakeup times given in *Table 36* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} =3.3 V.

Symbol	Parameter	Conditions	Typ ⁽¹⁾	Max ⁽¹⁾	Unit
t _{WUSLEEP} ⁽²⁾	Wakeup from Sleep	-	6	-	CPU clock cycle
		Main regulator is ON	13.6	-	_
twustop ⁽²⁾	Wakeup from Stop mode	Main regulator is ON and Flash memory in Deep power down mode	93	111	
	with MR/LP regulator in normal mode	Low power regulator is ON	22	32	
		Low power regulator is ON and Flash memory in Deep power down mode	103	126	μs
	Wakeup from Stop mode	Main regulator in under-drive mode (Flash memory in Deep power-down mode)	105	128	
t _{WUSTOP} ⁽²⁾	with MR/LP regulator in Under-drive mode	Low power regulator in under-drive mode (Flash memory in Deep power-down mode)	125	155	
tWUSTDBY (2)(3)	Wakeup from Standby mode		318	412	

Table 36. Low-power mode wakeup timings

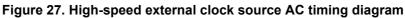
1. Guaranteed by characterization results.

2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first

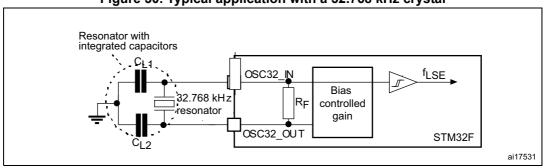
3. $t_{WUSTDBY}$ maximum value is given at -40 °C.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 56: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 28*.


The characteristics given in *Table 38* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V _{SS}	-	0.3V _{DD}	
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾		-	5	-	pF
DuCy _(LSE)	Duty cycle		30	-	70	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA


Table 38.	Low-speed	external us	ser clock chara	acteristics
-----------	-----------	-------------	-----------------	-------------

1. Guaranteed by design.

Figure 30. Typical application with a 32.768 kHz crystal

6.3.10 Internal clock source characteristics

The parameters given in *Table 41* and *Table 42* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

High-speed internal (HSI) RC oscillator

			-			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
	HSI user-trimming step (2)	-	-	-	1	%
	Accuracy of the HSI oscillator	$T_A = -40$ to 105 °C ⁽³⁾	- 8	-	4.5	%
ACC _{HSI}		$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	%
		$T_A = 25 \ ^{\circ}C^{(4)}$	- 1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4	μs
I _{DD(HSI)} ⁽²⁾		-	-	60	80	μA

Table 41. HSI oscillator characteristics ⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

4. Factory calibrated, parts not soldered.

Symbol	Parameter	Condition	5	Min	Тур	Мах	Unit
			RMS	-	25	-	
	Cycle-to-cycle jitter	System clock	peak to peak	-	±150	-	
		120 MHz	RMS	-	15	-	
Jitter ⁽³⁾	Period Jitter	i	peak to peak	-	<u>+200</u>	-	ps
	Main clock output (MCO) for RMII Ethernet	Cycle to cycle at 50 MHz on 1000 samples		-	32	-	
	Main clock output (MCO) for MII Ethernet	Cycle to cycle at 2 on 1000 samples	-	40	-		
	Bit Time CAN jitter	Cycle to cycle at 1 MHz on 1000 samples		-	330	-	
I _{DD(PLL)} ⁽⁴⁾	PLL power consumption on VDD	VCO freq = 100 MHz VCO freq = 432 MHz		0.15	_	0.40	mA
UD(PLL)				0.45		0.75	
I _{DDA(PLL)} ⁽⁴⁾	PLL power consumption on VDDA	VCO freq = 100 M VCO freq = 432 M		0.30 0.55	-	0.40 0.85	mA

Table 43. Main PLL characteristics (continued)

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design.

3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.

4. Guaranteed by characterization results.

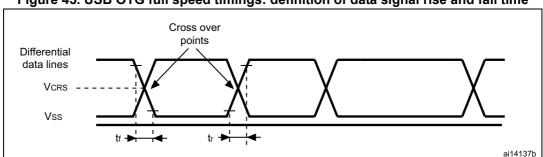
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{PLLI2S_IN}	PLLI2S input clock ⁽¹⁾			0.95 ⁽²⁾	1	2.10	MHz
f _{PLLI2S_OUT}	PLLI2S multiplier output clock			-	-	216	MHz
f _{VCO_OUT}	PLLI2S VCO output			100	-	432	MHz
1		VCO freq = 100 MHz	<u>z</u>	75	-	200	
t _{LOCK}	PLLI2S lock time	VCO freq = 432 MHz	<u>z</u>	100	-	300	μs
	Ma (1.100 do 1. 1. ""	Cycle to cycle at	RMS	-	90	-	
		48KHz period, to N=432, R=5 pea	peak to peak	-	±280	-	ps
Jitter ⁽³⁾	Master I2S clock jitter	Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples	of	-	90	-	ps
	WS I2S clock jitter	Cycle to cycle at 48 KHz on 1000 samples		-	400	-	ps

Table 44. PLLI2S (audio PLL) characteristics

6.3.13 Memory characteristics

Flash memory

The characteristics are given at TA = -40 to 105 °C unless otherwise specified.


The devices are shipped to customers with the Flash memory erased.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Write / Erase 8-bit mode, V_{DD} = 1.7 V	-	5	-	
I _{DD}	Supply current	Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V_{DD} = 3.3 V	-	12	-	

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs
		Program/erase parallelism (PSIZE) = x 8	-	400	800	
t _{ERASE16KB}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms
		Program/erase parallelism (PSIZE) = x 32	-	250	500	
		Program/erase parallelism (PSIZE) = x 8	-	1200	2400	
t _{ERASE64KB}	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms
		Program/erase parallelism (PSIZE) = x 32	-	550	1100	
	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 8	-	2	4	
t _{erase128kb}		Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6	s
		Program/erase parallelism (PSIZE) = x 32	-	1	2	
		Program/erase parallelism (PSIZE) = x 8	-	16	32	
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	11	22	s
		Program/erase parallelism (PSIZE) = x 32	-	8	16	

Table 48. Flash memory programming

Figure 45. USB OTG full speed timings: definition of data signal rise and fall time

Table 67. USB OTG full speed electrical characteristics⁽¹⁾

	Driver characteristics										
Symbol	Parameter	Conditions	Min	Max	Unit						
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns						
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns						
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%						
V _{CRS}	Output signal crossover voltage		1.3	2.0	V						
Z _{DRV}	Output driver impedance ⁽³⁾	Driving high or low	28	44	Ω						

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching impedance is included in the embedded driver.

USB high speed (HS) characteristics

Unless otherwise specified, the parameters given in *Table 70* for ULPI are derived from tests performed under the ambient temperature, f_{HCLK} frequency summarized in *Table 69* and V_{DD} supply voltage conditions summarized in *Table 68*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10, unless otherwise specified
- Capacitive load C = 30 pF, unless otherwise specified
- Measurement points are done at CMOS levels: 0.5V_{DD}.

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Symb	ol			Unit						
Input level	V _{DD}	USB OTG HS operating voltage	1.7	3.6	V					

Table 68. USB HS DC electrical characteristics

1. All the voltages are measured from the local ground potential.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit
ET	Total unadjusted error		±2	±5	
EO	Offset error	f _{ADC} = 30 MHz, R _{AIN} < 10 kΩ	±1.5	±2.5	
EG	Gain error	V _{DDA} = 2.4 to 3.6 V,	±1.5	±3	LSB
ED	Differential linearity error	V _{REF} = 1.7 to 3.6 V, V _{DDA} –V _{REF} < 1.2 V	±1	±2	
EL	Integral linearity error		±1.5	±3	

Table 76. ADC static accuracy at f_{ADC} = 30 MHz

1. Guaranteed by characterization results.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit						
ET	Total unadjusted error		±4	±7							
EO	Offset error	f _{ADC} =36 MHz, V _{DDA} = 2.4 to 3.6 V,	±2	±3							
EG	Gain error	V _{DDA} = 2.4 to 3.6 V, V _{REF} = 1.7 to 3.6 V	±3	±6	LSB						
ED	Differential linearity error	$V_{DDA} - V_{REF} < 1.2 V$	±2	±3							
EL	Integral linearity error		±3	±6							

Table 77. ADC static accuracy at f_{ADC} = 36 MHz

1. Guaranteed by characterization results.

Table 78. ADC dynamic accuracy at f_{ADC} = 18 MHz - limited test conditions⁽¹⁾

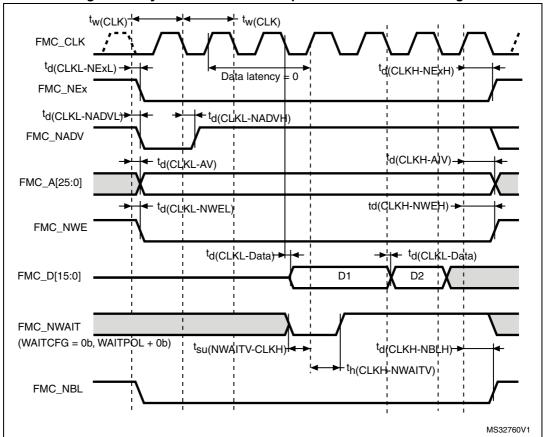
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =18 MHz V _{DDA} = V _{REF+} = 1.7 V Input Frequency = 20 KHz Temperature = 25 °C	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio		64	64.2	-	
SNR	Signal-to-noise ratio		64	65	-	dB
THD	Total harmonic distortion		- 67	- 72	-	

1. Guaranteed by characterization results.

Table 79. ADC dynamic accuracy at f_{ADC} = 36 MHz - limited test conditions⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =36 MHz	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio	$V_{DDA} = V_{REF+} = 3.3 V$	66	67	-	
SNR	Signal-to noise ratio	Input Frequency = 20 KHz Temperature = 25 °C	64	68	-	dB
THD	Total harmonic distortion		- 70	- 72	-	

1. Guaranteed by characterization results.



Symbol	Parameter	Min	Мах	Unit
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	0	-	ns
t _(NWAIT-CLKH)	FMC_NWAIT valid before FMC_CLK high	4		
t _{h(CLKH-} NWAIT)	FMC_NWAIT valid after FMC_CLK high	0		

	Table 96. Synchronous non-multip	lexed NOR/PSRAM read timings ⁽¹⁾⁽²⁾ (continued)
--	----------------------------------	--

1. C_L = 30 pF.

2. Guaranteed by characterization results.

Figure 62. Synchronous non-multiplexed PSRAM write timings

		0			
Symbol	Parameter	Min	Мах	Unit	
t _(CLK)	FMC_CLK period	2T _{HCLK} – 1	-	ns	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	0.5	ns	
t _(CLKH-NExH)	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	ns	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	ns	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	ns	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	ns	

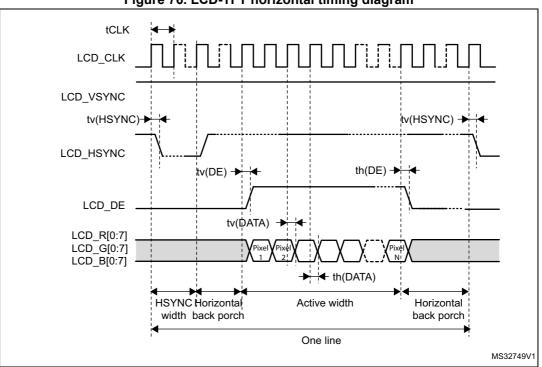
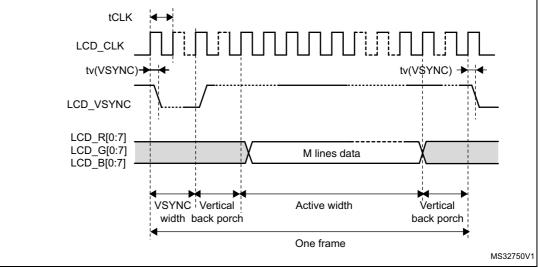
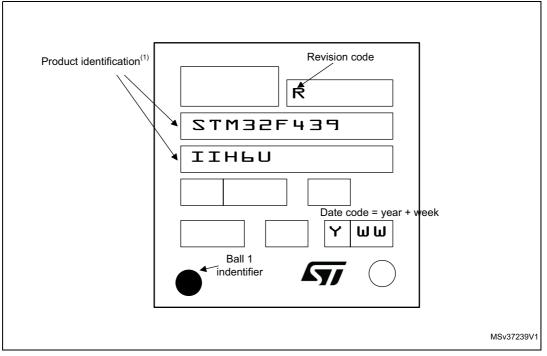



Figure 76. LCD-TFT horizontal timing diagram



Device marking for UFBGA176+25

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which depends assembly location, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

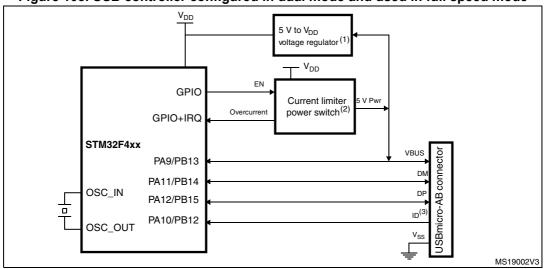


Figure 105. USB controller configured in dual mode and used in full speed mode

- 1. External voltage regulator only needed when building a $V_{\mbox{BUS}}$ powered device.
- The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.
- 3. The ID pin is required in dual role only.
- 4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

