

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f439igt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.22	Timers and watchdogs	33
	3.22.1 Advanced-control timers (TIM1, TIM8)	35
	3.22.2 General-purpose timers (TIMx)	35
	3.22.3 Basic timers TIM6 and TIM7	35
	3.22.4 Independent watchdog	36
	3.22.5 Window watchdog	36
	3.22.6 SysTick timer	36
3.23	Inter-integrated circuit interface (I ² C)	36
3.24	Universal synchronous/asynchronous receiver transmitters (USART)	36
3.25	Serial peripheral interface (SPI)	37
3.26	Inter-integrated sound (I ² S)	38
3.27	Serial Audio interface (SAI1)	38
3.28	Audio PLL (PLLI2S)	38
3.29	Audio and LCD PLL(PLLSAI)	38
3.30	Secure digital input/output interface (SDIO)	39
3.31	Ethernet MAC interface with dedicated DMA and IEEE 1588 support .	39
3.32	Controller area network (bxCAN)	39
3.33	Universal serial bus on-the-go full-speed (OTG_FS)	40
3.34	Universal serial bus on-the-go high-speed (OTG_HS)	40
3.35	Digital camera interface (DCMI)	41
3.36	Cryptographic acceleration	41
3.37	Random number generator (RNG)	41
3.38	General-purpose input/outputs (GPIOs)	41
3.39	Analog-to-digital converters (ADCs)	42
3.40		42
3.41	Digital-to-analog converter (DAC)	42
3.42	Serial wire JTAG debug port (SWJ-DP)	43
3.43	Embedded Trace Macrocell™	43
Pinou	uts and pin description	44
Mem	ory mapping	85
Elect	rical characteristics	90
6.1	Parameter conditions	90
		_

DocID024244 Rev 10

4

5

6

List of figures

Figure 1.	Compatible board design STM32F10xx/STM32F2xx/STM32F4xx	
	for LQFP100 package.	17
Figure 2.	Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx	
	for LQFP144 package.	18
Figure 3.	Compatible board design between STM32F2xx and STM32F4xx	
	for LQFP176 and UFBGA176 packages	18
Figure 4.	STM32F437xx and STM32F439xx block diagram	19
Figure 5.	STM32F437xx and STM32F439xx Multi-AHB matrix	22
Figure 6.	Power supply supervisor interconnection with internal reset OFF	26
Figure 7.	PDR_ON control with internal reset OFF	27
Figure 8.	Regulator OFF	29
Figure 9.	Startup in regulator OFF: slow V _{DD} slope	
0	- power-down reset risen after V_{CAP} $_{2}$ stabilization	30
Figure 10.	Startup in regulator OFF mode: fast V_{DD} slope	
0	- power-down reset risen before V_{CAP} $_{1}/V_{CAP}$ $_{2}$ stabilization	30
Figure 11	STM32F43x QEP100 pinout	44
Figure 12	STM32F43x WI CSP143 ballout	45
Figure 13	STM32F43x I OEP144 ninout	46
Figure 14	STM32F43x LOEP176 ninout	47
Figure 15	STM32F43x L OEP208 ninout	
Figure 16	STM32E43x LIERCA160 ballout	0 ب
Figure 17	STM32E43x UEBCA176 ballout	4 9 50
Figure 17.	STM32F43X 0FDGA170 ballout	
Figure 10.		
Figure 19.		
Figure 20.		90
Figure 21.		
Figure 22.	Power supply scheme	91
Figure 23.		92
Figure 24.	External capacitor C _{EXT}	96
Figure 25.	Typical V _{BAT} current consumption (LSE and RTC ON/backup RAM OFF)	106
Figure 26.	Typical V _{BAT} current consumption (LSE and RTC ON/backup RAM ON)	106
Figure 27.	High-speed external clock source AC timing diagram	119
Figure 28.	Low-speed external clock source AC timing diagram	120
Figure 29.	Typical application with an 8 MHz crystal	121
Figure 30.	Typical application with a 32.768 kHz crystal	122
Figure 31.	ACCHSI accuracy versus temperature	123
Figure 32.	ACC _{I SI} versus temperature	124
Figure 33.	PLL output clock waveforms in center spread mode	128
Figure 34.	PLL output clock waveforms in down spread mode	128
Figure 35.	FT I/O input characteristics	137
Figure 36.	I/O AC characteristics definition	140
Figure 37.	Recommended NRST pin protection	141
Figure 38	SPI timing diagram - slave mode and CPHA = 0	145
Figure 39	SPI timing diagram - slave mode and CPHA = 1	145
Figure 40	SPI timing diagram - master mode	146
Figure 41	l ² S slave timing diagram (Philips protocol) ⁽¹⁾	148
Figure 12	l^2 S master timing diagram (Philins protocol) ⁽¹⁾	1/12
Figure 12	SAI master timing waveforms	150
i iguie 1 0.		100

1 Introduction

This datasheet provides the description of the STM32F437xx and STM32F439xx line of microcontrollers. For more details on the whole STMicroelectronics STM32 family, please refer to *Section 2.1: Full compatibility throughout the family*.

The STM32F437xx and STM32F439xx datasheet should be read in conjunction with the STM32F4xx reference manual.

For information on the Cortex[®]-M4 core, please refer to the Cortex[®]-M4 programming manual (PM0214), available from *www.st.com*.

2.1 Full compatibility throughout the family

The STM32F437xx and STM32F439xx devices are part of the STM32F4 family. They are fully pin-to-pin, software and feature compatible with the STM32F2xx devices, allowing the user to try different memory densities, peripherals, and performances (FPU, higher frequency) for a greater degree of freedom during the development cycle.

The STM32F437xx and STM32F439xx devices maintain a close compatibility with the whole STM32F10xx family. All functional pins are pin-to-pin compatible. The STM32F437xx and STM32F439xx, however, are not drop-in replacements for the STM32F10xx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xx to the STM32F43x family remains simple as only a few pins are impacted.

Figure 1, *Figure 2*, and *Figure 3*, give compatible board designs between the STM32F4xx, STM32F2xx, and STM32F10xx families.

Figure 1. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package

3.4 Embedded Flash memory

The devices embed a Flash memory of up to 2 Mbytes available for storing programs and data.

3.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.6 Embedded SRAM

All devices embed:

- Up to 256Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory) data RAM
 - RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
- 4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

3.7 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate at up to 5.62 bit/s.

USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping
USART1	х	х	x	х	х	х	5.62	11.25	APB2 (max. 90 MHz)
USART2	х	х	x	х	х	Х	2.81	5.62	APB1 (max. 45 MHz)
USART3	х	х	x	х	х	Х	2.81	5.62	APB1 (max. 45 MHz)
UART4	х	-	x	-	х	-	2.81	5.62	APB1 (max. 45 MHz)
UART5	х	-	x	-	х	-	2.81	5.62	APB1 (max. 45 MHz)
USART6	х	х	х	х	х	х	5.62	11.25	APB2 (max. 90 MHz)
UART7	х	-	х	-	х	-	2.81	5.62	APB1 (max. 45 MHz)
UART8	х	-	x	_	х	-	2.81	5.62	APB1 (max. 45 MHz)

Table 8.	USART	feature	com	parison ⁽¹)
----------	-------	---------	-----	-----------------------	---

1. X = feature supported.

3.25 Serial peripheral interface (SPI)

The devices feature up to six SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 45 Mbits/s, SPI2 and SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

DocID024244 Rev 10

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

3.42 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.43 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F43x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

Pinouts and pin description

Pin name	CF	NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND16	SDRAM
PE11	D8	D8	DA8	D8	D8
PE12	D9	D9	DA9	D9	D9
PE13	D10	D10	DA10	D10	D10
PE14	D11	D11	DA11	D11	D11
PE15	D12	D12	DA12	D12	D12
PD8	D13	D13	DA13	D13	D13
PD9	D14	D14	DA14	D14	D14
PD10	D15	D15	DA15	D15	D15
PH8		D16			D16
PH9		D17			D17
PH10		D18			D18
PH11		D19			D19
PH12		D20			D20
PH13		D21			D21
PH14		D22			D22
PH15		D23			D23
PI0		D24			D24
PI1		D25			D25
PI2		D26			D26
PI3		D27			D27
PI6		D28			D28
PI7		D29			D29
PI9		D30			D30
PI10		D31			D31
PD7		NE1	NE1	NCE2	
PG9		NE2	NE2	NCE3	
PG10	NCE4_1	NE3	NE3		
PG11	NCE4_2				
PG12		NE4	NE4		
PD3		CLK	CLK		
PD4	NOE	NOE	NOE	NOE	
PD5	NWE	NWE	NWE	NWE	
PD6	NWAIT	NWAIT	NWAIT	NWAIT	
PB7		NL(NADV)	NL(NADV)		

Table 11. FMC pin definition (continued)

7	
Q	
Ñ	
4	
0	

DocID024244 Rev 10

57

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14
P	Port	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	I2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ЕТН	FMC/SDIO /OTG2_FS	DCMI	LCD
	PB11	-	TIM2_ CH4	-	-	I2C2_ SDA	-	-	USART3_ RX	-	-	OTG_HS_ ULPI_D4	ETH_MII_ TX_EN/ ETH_RMII _TX_EN	-	-	LCD_G5
	PB12	-	TIM1_ BKIN	-	-	I2C2_ SMBA	SPI2_ NSS/I2 S2_WS	-	USART3_ CK	-	CAN2_RX	OTG_HS_ ULPI_D5	ETH_MII_ TXD0/ETH _RMII_ TXD0	OTG_HS_ ID	-	-
Port B	PB13	-	TIM1_ CH1N	-	-	-	SPI2_ SCK/I2 S2_CK	-	USART3_ CTS	-	CAN2_TX	OTG_HS_ ULPI_D6	ETH_MII_ TXD1/ETH _RMII_TX D1	-	-	-
	PB14	-	TIM1_ CH2N	-	TIM8_ CH2N	-	SPI2_ MISO	I2S2ext_ SD	USART3_ RTS	-	TIM12_CH1	-	-	OTG_HS_ DM	-	-
	PB15	RTC_ REFIN	TIM1_ CH3N	-	TIM8_ CH3N	-	SPI2_ MOSI/I2 S2_SD	-	-	-	TIM12_CH2	-	-	OTG_HS_ DP	-	-
	PC0	-	-	-	-	-	-	-	-	-	-	OTG_HS_ ULPI_STP	-	FMC_SDN WE	-	-
	PC1	-	-	-	-	-	-	-	-	-	-	-	ETH_MDC	-	-	-
	PC2	-	-	-	-	-	SPI2_ MISO	I2S2ext_ SD	-	-	-	OTG_HS_ ULPI_DIR	ETH_MII_ TXD2	FMC_ SDNE0	-	-
	PC3	-	-	-	-	-	SPI2_ MOSI/I2 S2_SD	-	-	-	-	OTG_HS_ ULPI_NXT	ETH_MII_ TX_CLK	FMC_ SDCKE0	-	-
Port C	PC4	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_ RXD0/ETH _RMII_ RXD0	-	-	-
	PC5	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_ RXD1/ETH _RMII_ RXD1	-	-	-
	PC6	-	-	TIM3_ CH1	TIM8_ CH1	-	I2S2_ MCK	-	-	USART6_ TX	-	-	-	SDIO_D6	DCMI_ D0	LCD_ HSYNC
	PC7	-	-	TIM3_ CH2	TIM8_ CH2	-	-	I2S3_ MCK	-	USART6_ RX	-	-	-	SDIO_D7	DCMI_ D1	LCD_G6

Table 12. STM32F437xx and STM32F439xx alternate function mapping (continued)

AF15

SYS

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT EVEN TOUT EVEN TOUT EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

6.3.7 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 23: Current consumption measurement scheme*.

All the run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted both to f_{HCLK} frequency and V_{DD} range (see *Table 18: Limitations depending on the operating power supply range*).
- Regulator ON
- The voltage scaling and over-drive mode are adjusted to f_{HCLK} frequency as follows:
 - Scale 3 for $f_{HCLK} \leq 120 \text{ MHz}$
 - Scale 2 for 120 MHz < f_{HCLK} ≤144 MHz
 - Scale 1 for 144 MHz < f_{HCLK} ≤180 MHz. The over-drive is only ON at 180 MHz.
- The system clock is HCLK, $f_{PCLK1} = f_{HCLK}/4$, and $f_{PCLK2} = f_{HCLK}/2$.
- External clock frequency is 4 MHz and PLL is ON when f_{HCLK} is higher than 25 MHz.
- The maximum values are obtained for V_{DD} = 3.6 V and a maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

				Typ				
	Symbol	Parameter	Conditions	1 y p	v	Unit		
				T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	
I _{DD_STOP_NM} (normal mode)	Supply current in Stop mode with voltage	Flash memory in Stop mode, all oscillators OFF, no independent watchdog	0.40	1.50	14.00	25.00		
	regulator in main regulator mode	Flash memory in Deep power down mode, all oscillators OFF, no independent watchdog	0.35	1.50	14.00	25.00		
	Supply current in Stop mode with voltage	Flash memory in Stop mode, all oscillators OFF, no independent watchdog	0.29	1.10	10.00	18.00		
		regulator in Low Power regulator mode	Flash memory in Deep power down mode, all oscillators OFF, no independent watchdog	0.23	1.10	10.00	18.00	mA
	I _{DD_STOP_UDM} (under-drive mode)	Supply current in Stop mode with voltage regulator in main regulator and under- drive mode	Flash memory in Deep power down mode, main regulator in under-drive mode, all oscillators OFF, no independent watchdog	0.19	0.50	6.00	9.00	
		Supply current in Stop mode with voltage regulator in Low Power regulator and under- drive mode	Flash memory in Deep power down mode, Low Power regulator in under-drive mode, all oscillators OFF, no independent watchdog	0.10	0.40	4.00	7.00	

Table 27.	Typical and	maximum	current	consum	otions i	in Sto	o mode

1. Data based on characterization, tested in production.

Figure 30. Typical application with a 32.768 kHz crystal

6.3.10 Internal clock source characteristics

The parameters given in *Table 41* and *Table 42* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
100	HSI user-trimming step (2)	-	-	-	1	%
		$T_A = -40$ to 105 °C ⁽³⁾	- 8	-	4.5	%
ACCHSI	Accuracy of the HSI oscillator	$T_A = -10 \text{ to } 85 \ ^{\circ}C^{(3)}$	- 4	-	4	%
		$T_A = 25 \ ^{\circ}C^{(4)}$	- 1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

Table 41. HSI oscillator characteristics ⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

4. Factory calibrated, parts not soldered.

Symbol	Parameter	Conditions	S	Min	Тур	Мах	Unit
			RMS	-	25	-	
Jitter ⁽³⁾	Cycle-to-cycle jitter	System clock	peak to peak	-	±150	-	
		120 MHz	RMS	-	15	-	ps
	Period Jitter		peak to peak	-	<u>+200</u>	-	
	Main clock output (MCO) for RMII Ethernet	Cycle to cycle at 5 on 1000 samples	-	32	-		
	Main clock output (MCO) for MII Ethernet	Cycle to cycle at 2 on 1000 samples	-	40	-		
	Bit Time CAN jitter	Cycle to cycle at 1 on 1000 samples	-	330	-		
I _{DD(PLL)} ⁽⁴⁾	PLL power consumption on VDD	VCO freq = 100 M VCO freq = 432 M	1Hz 1Hz	0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLL)} ⁽⁴⁾	PLL power consumption on VDDA	Cycle to cycle at 50 MHz on 1000 samples Cycle to cycle at 25 MHz on 1000 samples Cycle to cycle at 1 MHz on 1000 samples VCO freq = 100 MHz VCO freq = 100 MHz VCO freq = 100 MHz VCO freq = 432 MHz		0.30 0.55	-	0.40 0.85	mA

Table 43. Main PLL characteristics (continued)

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design.

3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.

4. Guaranteed by characterization results.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{PLLI2S_IN}	PLLI2S input clock ⁽¹⁾			0.95 ⁽²⁾	1	2.10	MHz
f _{PLLI2S_OUT}	PLLI2S multiplier output clock			-	-	216	MHz
f _{VCO_OUT}	PLLI2S VCO output			100	-	432	MHz
t _{LOCK}	PLL 12S lock time	VCO freq = 100 MHz	2	75	-	200	
		VCO freq = 432 MHz		100	-	300	μs
Jitter ⁽³⁾		Cycle to cycle at	RMS	-	90	-	
	Master 12S clock jitter	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
		Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples		-	90	-	ps
	WS I2S clock jitter	Cycle to cycle at 48 KHz on 1000 samples		-	400	-	ps

Table 44. PLLI2S (audio PLL) characteristics

6.3.16 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of – 5 μ A/+0 μ A range), or other functional failure (for example reset, oscillator frequency deviation).

Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in Table 55.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0 pin	- 0	NA	
	Injected current on NRST pin	- 0	NA	
I _{INJ}	Injected current on PA0, PA1, PA2, PA3, PA6, PA7, PB0, PC0, PC1, PC2, PC3, PC4, PC5, PH1, PH2, PH3, PH4, PH5	- 0	NA	mA
	Injected current on TTa pins: PA4 and PA5	- 0	+5	
	Injected current on any other FT pin	- 5	NA	

Table 55. I/O current injection susceptibility⁽¹⁾

1. NA = not applicable.

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

STM32F

6.3.18 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 56: I/O static characteristics*).

Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse		-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

Table 59. NRST pin characteristics

1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

2. Guaranteed by design.

1. The reset network protects the device against parasitic resets.

- 2. The external capacitor must be placed as close as possible to the device.
- 3. The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in *Table 59*. Otherwise the reset is not taken into account by the device.

ai14132c

Figure 43. SAI master timing waveforms

Figure 49. Ethernet MII timing diagram

Table 73. D	vnamics cl	haracteristics:	Ethernet	MAC	signals	for I	MII ⁽¹⁾
	,						

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time		9	-	-	
t _{ih(RXD)}	Receive data hold time		10	-	-	
t _{su(DV)}	Data valid setup time		9	-	-	
t _{ih(DV)}	Data valid hold time	$1.71 v < v_{DD} < 3.0 v$	8	-	-	
t _{su(ER)}	Error setup time		6	-	-	
t _{ih(ER)}	Error hold time		8	-	-	115
t	Transmit onable valid delay time	2.7 V < V _{DD} < 3.6 V	8	10	14	
^L d(TXEN)	Transmit enable valid delay time	1.71 V < V _{DD} < 3.6 V	8	10	16	
t _{d(TXD)}	Transmit data valid dolav timo	$2.7 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V}$	7.5	10	15	
		1.71 V < V _{DD} < 3.6 V	7.5	10	17	

1. Guaranteed by characterization results.

CAN (controller area network) interface

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).

6.3.21 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 74* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions Min		Тур	Мах	Unit
V _{DDA}	Power supply	V V <12V	1.7 ⁽¹⁾	-	3.6	
V _{REF+}	Positive reference voltage	VDDA -VREF+ < 1.2 V	1.7 ⁽¹⁾	-	V _{DDA}	V
V _{REF-}	Negative reference voltage	-	-	0	-	
f		$V_{DDA} = 1.7^{(1)}$ to 2.4 V	0.6	15	18	MHz
'ADC		V _{DDA} = 2.4 to 3.6 V	0.6	30	36	MHz
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 30 MHz, 12-bit resolution	-	-	1764	kHz
			-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾		0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	v
R _{AIN} ⁽²⁾	External input impedance See Equation 1 for details		-	-	50	kΩ
R _{ADC} ⁽²⁾⁽⁴⁾	Sampling switch resistance		-	-	6	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor		-	4	7	pF
t. (2)	Injection trigger conversion	f _{ADC} = 30 MHz	-	-	0.100	μs
"Iat"	latency		-	-	3 ⁽⁵⁾	1/f _{ADC}
t. (2)	Regular trigger conversion	f _{ADC} = 30 MHz	-	-	0.067	μs
Jatr	latency		-	-	2 ⁽⁵⁾	1/f _{ADC}
to ⁽²⁾	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
15			3	-	480	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time		-	2	3	μs
		f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	μs
t _{CONV} ⁽²⁾		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	μs
		9 to 492 (t _S for sampling +n-bit resolution for successive approximation)				

Table	74.	ADC	characteristics
10010		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Table 118. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,ultra fine pitch ball grid array package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 99. UFBGA176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package recommended footprint

Table 119. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) Image: Commended PCB design rules (0.65 mm pitch BGA) Image: Commended PCB design rules (0.65 mm pitch BGA)

Dimension	Recommended values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

Date	Revision	Changes
28-Sep-2015	7	Updated notes related to the minimum and maximum values guaranteed by design, characterization or test in production. Updated I _{DD_STOP_UDM} in Table 27: Typical and maximum current consumptions in Stop mode. Removed note related to tests in production in Table 24: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM and Table 26: Typical and maximum current consumption in Sleep mode. Updated Table 41: HSI oscillator characteristics. Figure 31 renamed ACCHSI accuracy versus temperature and updated. Updated Figure 38: SPI timing diagram - slave mode and CPHA = 0. Updated Section : Ethernet characteristics. Updated Table 43: Main PLL characteristics. Updated Table 43: Main PLL characteristics, Table 44: PLLI2S (audio PLL) characteristics and Table 45: PLLISAI (audio and LCD-TFT PLL) characteristics. Removed note 1 in Table 75: ADC static accuracy at fADC = 18 MHz, Table 76: ADC static accuracy at fADC = 30 MHz and Table 77: ADC static accuracy at fADC = 36 MHz. Updated t _d (SDCLKL_Data) and t _h (SDCLKL_Data) in Table 104: SDRAM write timings. Updated note below marking schematics. Added Figure 96: UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array recommended footprint and Table 117: UFBGA169 recommended PCB design rules (0.5 mm pitch, gent). Added Figure 99: UFBGA176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package recommended footprint and Table 119: UFBGA176+25 recommended PCB design rules (0.65 mm pitch, BGA).
30-Nov-2015	8	Updated $ V_{SSX} - V_{SS} $ in <i>Table 14: Voltage characteristics</i> to add V_{REF-} . Updated $t_{d(TXEN)}$ and $t_{d(TXD)}$ minimum value in <i>Table 72: Dynamics characteristics: Ethernet MAC signals for RMII</i> and <i>Table 73: Dynamics characteristics: Ethernet MAC signals for RMII</i> and <i>Table 73: Dynamics characteristics: Ethernet MAC signals for MII</i> . Added V_{REF-} in <i>Table 74: ADC characteristics</i> . Added A1 minimum and maximum values in <i>Table 111: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale package mechanical data</i> . Updated <i>Figure 86: LQFP144-144-pin, 20 x 20 mm low-profile quad flat package outline</i> .Updated <i>Figure 98: UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball grid array package outline</i> and <i>Table 118: UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package mechanical data</i> . Updated <i>Figure 101: TFBGA216 - 216 ball 13 x 13 mm 0.8 mm pitch thin fine pitch ball grid array package outline</i> and <i>Table 13 x 13 mm 0.8 mm pitch thin fine pitch ball grid array package mechanical data</i> .

Table 124.	Document	revision	history	(continued)
------------	----------	----------	---------	-------------

