

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	201-UFBGA
Supplier Device Package	176+25UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f439iih6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling.

In Stop modes

The MR can be configured in two ways during stop mode: MR operates in normal mode (default mode of MR in stop mode) MR operates in under-drive mode (reduced leakage mode).

LPR is used in the Stop modes:

The LP regulator mode is configured by software when entering Stop mode.

Like the MR mode, the LPR can be configured in two ways during stop mode:

- LPR operates in normal mode (default mode when LPR is ON)
- LPR operates in under-drive mode (reduced leakage mode).
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.

Two external ceramic capacitors should be connected on V_{CAP_1} and V_{CAP_2} pin. Refer to *Figure 22: Power supply scheme* and *Table 19: VCAP1/VCAP2 operating conditions*.

All packages have the regulator ON feature.

Voltage regulator configuration	Run mode	Sleep mode	Stop mode	Standby mode
Normal mode	MR	MR	MR or LPR	-
Over-drive mode ⁽²⁾	MR	MR	-	-
Under-drive mode	-	-	MR or LPR	-
Power-down mode	-	-	-	Yes

Table 3. Voltage regulator configuration mode versus device operating mode⁽¹⁾

1. - means that the corresponding configuration is not available.

2. The over-drive mode is not available when V_{DD} = 1.7 to 2.1 V.

3.18.2 Regulator OFF

This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V₁₂ voltage source through V_{CAP 1} and V_{CAP 2} pins.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. Refer to *Table 17: General operating conditions*. The two 2.2 μ F ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Figure 22: Power supply scheme*.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

3.30 Secure digital input/output interface (SDIO)

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

3.31 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.

The devices include the following features:

- Supports 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F4xx reference manual for details)
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes.
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

3.32 Controller area network (bxCAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive

DocID024244 Rev 10

			Pin nu	ımbei	r								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
4	4	D1	B2	4	D9	4	B1	PE5	I/O	FT	-	TRACED2, TIM9_CH1, SPI4_MISO, SAI1_SCK_A, FMC_A21, DCMI_D6, LCD_G0, EVENTOUT	-
5	5	D2	B3	5	E8	5	B2	PE6	I/O	FT	_	TRACED3, TIM9_CH2, SPI4_MOSI, SAI1_SD_A, FMC_A22, DCMI_D7, LCD_G1, EVENTOUT	-
-	-	-	-	-	-	I	G6	V _{SS}	S	-	-	-	-
-	-	-	-	-	-	-	F5	V _{DD}	S	-	-	-	-
6	6	E5	C1	6	C11	6	C1	V _{BAT}	S	-	-	-	-
-	-	NC (2)	D2	7	-	7	C2	PI8	I/O	FT	(3) (4)	EVENTOUT	TAMP_2
7	7	E4	D1	8	D10	8	D1	PC13	I/O	FT	(3) (4)	EVENTOUT	TAMP_1
8	8	E1	E1	9	D11	9	E1	PC14- OSC32_IN (PC14)	I/O	FT	(3) (4)	EVENTOUT	OSC32_IN
9	9	F1	F1	10	E11	10	F1	PC15- OSC32_OUT (PC15)	I/O	FT	(3) (4)	EVENTOUT	OSC32_ OUT ⁽⁵⁾
-	-	-	-	-	-	-	G5	V _{DD}	S	-	-	-	-
-	-	E2	D3	11	-	11	E4	PI9	I/O	FT	-	CAN1_RX, FMC_D30, LCD_VSYNC, EVENTOUT	-
-	-	E3	E3	12	-	12	D5	PI10	I/O	FT	-	ETH_MII_RX_ER, FMC_D31, LCD_HSYNC, EVENTOUT	-
-	-	NC (2)	E4	13	-	13	F3	PI11	I/O	FT	-	OTG_HS_ULPI_DIR, EVENTOUT	-
-	-	F6	F2	14	E7	14	F2	V _{SS}	s	-	-	-	-
-	-	F4	F3	15	E10	15	F4	V _{DD}	S	-	-	-	-

Pinouts and pin description

Table 11. FMC pin definition (continued)													
Pin name	CF	NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND16	SDRAM								
PE11	D8	D8	DA8	D8	D8								
PE12	D9	D9	DA9	D9	D9								
PE13	D10	D10	DA10	D10	D10								
PE14	D11	D11	DA11	D11	D11								
PE15	D12	D12	DA12	D12	D12								
PD8	D13	D13	DA13	D13	D13								
PD9	D14	D14	DA14	D14	D14								
PD10	D15	D15	DA15	D15	D15								
PH8		D16			D16								
PH9		D17			D17								
PH10		D18			D18								
PH11		D19			D19								
PH12		D20			D20								
PH13		D21			D21								
PH14		D22			D22								
PH15		D23			D23								
PI0		D24			D24								
PI1		D25			D25								
Pl2		D26			D26								
PI3		D27			D27								
PI6		D28			D28								
PI7		D29			D29								
PI9		D30			D30								
PI10		D31			D31								
PD7		NE1	NE1	NCE2									
PG9		NE2	NE2	NCE3									
PG10	NCE4_1	NE3	NE3										
PG11	NCE4_2												
PG12		NE4	NE4										
PD3		CLK	CLK										
PD4	NOE	NOE	NOE	NOE									
PD5	NWE	NWE	NWE	NWE									
PD6	NWAIT	NWAIT	NWAIT	NWAIT									
PB7		NL(NADV)	NL(NADV)										

Table 11. FMC pin definition (continued)

Pin name	CF	NOR/PSRAM/	NOR/PSRAM	NAND16	SDRAM
		SRAM	Mux		
PF6	NIORD				
PF7	NREG				
PF8	NIOWR				
PF9	CD				
PF10	INTR				
PG6				INT2	
PG7				INT3	
PE0		NBL0	NBL0		NBL0
PE1		NBL1	NBL1		NBL1
PI4		NBL2			NBL2
PI5		NBL3			NBL3
PG8					SDCLK
PC0					SDNWE
PF11					SDNRAS
PG15					SDNCAS
PH2					SDCKE0
PH3					SDNE0
PH6					SDNE1
PH7					SDCKE1
PH5					SDNWE
PC2					SDNE0
PC3					SDCKE0
PB5					SDCKE1
PB6					SDNE1

Table 11. FMC pin definition (continued)

77/240

Table 12. STM32F437xx and STM32F439xx alternate function mapping (continued)

77/240			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
0	P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	I2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ЕТН	FMC/SDIO /OTG2_FS	DCMI	LCD	SYS
		PC8	-	-	TIM3_ CH3	TIM8_ CH3	-	-	-	-	USART6_ CK	-	-	-	SDIO_D0	DCMI_ D2	-	EVEN TOUT
		PC9	MCO2	-	TIM3_ CH4	TIM8_ CH4	I2C3_ SDA	I2S_ CKIN	-	-	-	-	-	-	SDIO_D1	DCMI_ D3	-	EVEN TOUT
		PC10	-	-	-	-	-	-	SPI3_ SCK/I2S 3_CK	USART3_ TX	UART4_TX	-	-	-	SDIO_D2	DCMI_ D8	LCD_R2	EVEN TOUT
	Port	PC11	-	-	-	-	-	I2S3ext _SD	SPI3_ MISO	USART3_ RX	UART4_RX	-	-	-	SDIO_D3	DCMI_ D4	-	EVEN TOUT
D	Port C	PC12	-	-	-	-	-	-	SPI3_ MOSI/I2 S3_SD	USART3_ CK	UART5_TX	-	-	-	SDIO_CK	DCMI_ D9	-	EVEN TOUT
ocID0		PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
2424		PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
DocID024244 Rev 10		PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
10		PD0	-	-	-	-	-	-	-	-	-	CAN1_RX	-	-	FMC_D2	-	-	EVEN TOUT
		PD1	-	-	-	-	-	-	-	-	-	CAN1_TX	-	-	FMC_D3	-	-	EVEN TOUT
		PD2	-	-	TIM3_ ETR	-	-	-	-	-	UART5_RX	-	-	-	SDIO_ CMD	DCMI_ D11	-	EVEN TOUT
	Port D	PD3	-	-	-	-	-	SPI2_S CK/I 2S2_CK	-	USART2_ CTS	-	-	-	-	FMC_CLK	DCMI_ D5	LCD_G7	EVEN TOUT
		PD4	-	-	-	-	-	-	-	USART2_ RTS	-	-	-	-	FMC_NOE	-	-	EVEN TOUT
		PD5	-	-	-	-	-	-	-	USART2_ TX	-	-	-	-	FMC_NWE	-	-	EVEN TOUT
		PD6	-	-	-	-	-	SPI3_ MOSI/I2 S3_SD	SAI1_ SD_A	USART2_ RX	-	-	-	-	FMC_ NWAIT	DCMI_ D10	LCD_B2	EVEN TOUT

Pinouts and pin description

STM32F437xx and STM32F439xx

DocID024244 Rev 10

80/240

Table 12. STM32F437xx and STM32F439xx alternate function mapping (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	l2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ЕТН	FMC/SDIO /OTG2_FS	DCMI	LCD	sys
	PF8	-	-	-	-	-	SPI5_ MISO	SAI1_ SCK_B	-	-	TIM13_CH1	-	-	FMC_ NIOWR	-	-	EVEN TOUT
	PF9	-	-	-	-	-	SPI5_ MOSI	SAI1_ FS_B	-	-	TIM14_CH1	-	-	FMC_CD	-	-	EVEN TOUT
	PF10	-	-	-	-	-	-	-	-	-	-	-	-	FMC_INTR	DCMI_ D11	LCD_DE	EVEN TOU
Port F	PF11	-	-	-	-	-	SPI5_ MOSI	-	-	-	-	-	-	FMC_ SDNRAS	DCMI_ D12	-	EVEN TOU
PORF	PF12	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A6	-	-	EVEI TOU
	PF13	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A7	-	-	EVEI TOU
	PF14	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A8	-	-	EVE TOU
	PF15	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A9	-	-	EVE TOU
	PG0	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A10	-	-	EVEI TOU
	PG1	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A11	-	-	EVE TOU
	PG2	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A12	-	-	EVE TOU
	PG3	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A13	-	-	EVE TOU
Port G	PG4	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A14/ FMC_BA0	-	-	EVE TOU
	PG5	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A15/ FMC_BA1	-	-	EVEI TOU
	PG6	-	-	-	-	-	-	-	-	-	-	-	-	FMC_INT2	DCMI_ D12	LCD_R7	EVE TOU
	PG7	-	-	-	-	-	-	-	-	USART6_ CK	-	-	-	FMC_INT3	DCMI_ D13	LCD_ CLK	EVE TOU
	PG8	-	-	-	-	-	SPI6_ NSS	-	-	USART6_ RTS	-	-	ETH_PPS _OUT	FMC_SDC LK	-	-	EVE TOU

5 Memory mapping

The memory map is shown in *Figure 19*.

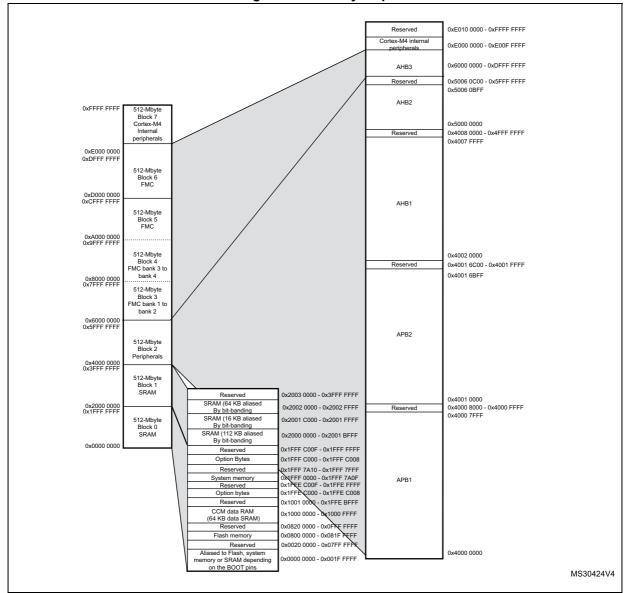


Figure 19. Memory map

DocID024244 Rev 10

Bus	Boundary address	Peripheral
	0x4000 8000- 0x4000 FFFF	Reserved
	0x4000 7C00 - 0x4000 7FFF	UART8
	0x4000 7800 - 0x4000 7BFF	UART7
	0x4000 7400 - 0x4000 77FF	DAC
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6C00 - 0x4000 6FFF	Reserved
	0x4000 6800 - 0x4000 6BFF	CAN2
	0x4000 6400 - 0x4000 67FF	CAN1
	0x4000 6000 - 0x4000 63FF	Reserved
	0x4000 5C00 - 0x4000 5FFF	I2C3
	0x4000 5800 - 0x4000 5BFF	I2C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 5000 - 0x4000 53FF	UART5
	0x4000 4C00 - 0x4000 4FFF	UART4
	0x4000 4800 - 0x4000 4BFF	USART3
	0x4000 4400 - 0x4000 47FF	USART2
APB1	0x4000 4000 - 0x4000 43FF	I2S3ext
AFDI	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	I2S2ext
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 2400 - 0x4000 27FF	Reserved
	0x4000 2000 - 0x4000 23FF	TIM14
	0x4000 1C00 - 0x4000 1FFF	TIM13
	0x4000 1800 - 0x4000 1BFF	TIM12
	0x4000 1400 - 0x4000 17FF	TIM7
	0x4000 1000 - 0x4000 13FF	TIM6
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

Table 13. STM32F437xx and STM32F439xx register boundary addresses (continued)

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit					
	Input voltage on RST and FT	2 V ≤V _{DD} ≤3.6 V	- 0.3	-	5.5						
	pins ⁽⁷⁾	V _{DD} ≤2 V	- 0.3	-	5.2						
V _{IN}	Input voltage on TTa pins		- 0.3	-	V _{DDA} + 0.3	V					
	Input voltage on BOOT0 pin		0	-	9						
		LQFP100	-	-	465						
		WLCSP143	-	-	641						
		LQFP144	-	-	500						
-	Power dissipation at $T_A = 85 \degree C$	UFBGA169	-	-	385	mW					
P_D	for suffix 6 or $T_A = 105 \text{ °C}$ for suffix 7 ⁽⁸⁾	LQFP176	-	-	526						
		UFBGA176	-	-	513	1					
		LQFP208	-	-	1053						
		TFBGA216	-	-							
	Ambient temperature for 6 suffix	Maximum power dissipation	- 40		85	°C					
т.	version	Low power dissipation ⁽⁹⁾	- 40		105						
ΤΑ	Ambient temperature for 7 suffix	Maximum power dissipation	- 40		105	°C					
	version	Low power dissipation ⁽⁹⁾	- 40		125	C					
ТJ	lunction tomporature range	6 suffix version	- 40		105	°C					
IJ	Junction temperature range	7 suffix version	- 40		125						

Table 17. General operating conditions (continued)

1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.

 V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF).

3. When the ADC is used, refer to *Table 74: ADC characteristics*.

4. If V_{REF+} pin is present, it must respect the following condition: $V_{DDA}-V_{REF+} < 1.2$ V.

5. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and power-down operation.

- 6. The over-drive mode is not supported when the internal regulator is OFF.
- 7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled

8. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .

9. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax}.

				Тур ⁽¹⁾					
Symbol	Parameter	Conditions	т	A = 25 °(C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			V _{DD} = 1.7 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	v			
	Supply current in Standby mode	Backup SRAM ON, low-speed oscillator (LSE) and RTC ON	2.80	3.00	3.60	7.00	19.00	36.00	
I _{DD_STBY}		Backup SRAM OFF, low- speed oscillator (LSE) and RTC ON	2.30	2.60	3.10	6.00	16.00	31.00	μA
_		Backup SRAM ON, RTC and LSE OFF	2.30	2.50	2.90	6.00 ⁽³⁾	18.00 ⁽³⁾	35.00 ⁽³⁾	
		Backup SRAM OFF, RTC and LSE OFF	1.70	1.90	2.20	5.00 ⁽³⁾	15.00 ⁽³⁾	30.00 ⁽³⁾	

Table 28. Typical and maximum current consumptions in Standby mode

The typical current consumption values are given with PDR OFF (internal reset OFF). When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by additional 1.2 μA.

2. Based on characterization, not tested in production unless otherwise specified.

3. Based on characterization, tested in production.

Table 29. Typical and maximum current consumptions in $\ensuremath{\mathsf{V}_{\mathsf{BAT}}}$ mode

			Тур			Max ⁽²⁾		Unit
Symbol	Parameter	V _{BAT} = V _{BAT} = V _{BAT}	С	T _A = 85 °C T _A = 105 °C				
			V _{BAT} = 1.7 V		V _{BAT} = 3.3 V	V _{BAT} =	= 3.6 V	
I _{DD_VBAT}	Backup domain supply current	Backup SRAM ON, low-speed oscillator (LSE) and RTC ON	1.28	1.40	1.62	6	11	
		Backup SRAM OFF, low-speed oscillator (LSE) and RTC ON	0.66	0.76	0.97	3	5	μA
		Backup SRAM ON, RIC and	0.70	0.72	0.74	5	10	μΛ
		Backup SRAM OFF, RTC and LSE OFF	0.10	0.10	0.10	2	4	

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a $\rm C_L$ of 6 pF for typical values.

2. Guaranteed by characterization results.

Symbol	Deremeter	Conditions	6 (MII-)	VDD=3.3 V		VDD=1.7 V		Unit
Cymbol	Parameter	Conditions	f _{HCLK} (MHz)	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	
			180	61.5	1.4	-	-	
			168	59.4	1.3	59.4	1.0	
			150	53.9	1.3	53.9	1.0	
			144	49.0	1.3	49.0	1.0	
		All Peripherals enabled	120	38.0	1.2	38.0	0.9	
	Supply current in Sleep mode from V_{12} and V_{DD} supply		90	29.3	1.4	29.3	1.1	
			60	20.2	1.2	20.2	0.9	
			30	11.9	1.2	11.9	0.9	
1 /1			25	10.4	1.2	10.4	0.9	
I _{DD12} /I _{DD}		All Peripherals disabled	180	14.9	1.4	-	-	mA
			168	14.0	1.3	14.0	1.0	-
			150	12.6	1.3	12.6	1.0	
			144	11.5	1.3	11.5	1.0	-
			120	8.7	1.2	8.7	0.9	
		aloubiou	90	7.1	1.4	7.1	1.1	
			60	5.0	1.2	5.0	0.9	
			30	3.1	1.2	3.1	0.9	
			25	2.8	1.2	2.8	0.9	

Table 33. Tyical current consumption in Sleep mode, regulator OFF ⁽¹⁾
--

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.

Symbol	Parameter	Conditions	Value	Unit
Symbol	Farameter	Conditions	Min ⁽¹⁾	Onit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
t _{RET}		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
	ET Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

 Table 50. Flash memory endurance and data retention

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

6.3.14 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 51*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 168 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, \text{LQFP176}, \text{T}_{\text{A}} = +25 \text{ °C}, \text{f}_{\text{HCLK}} = 168 \text{ MHz}, \text{ conforms to} \text{IEC 61000-4-2}$	4A

Table 51. EMS characteristics

When the application is exposed to a noisy environment, it is recommended to avoid pin exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1, PA2, PH2, PH3, PH4, PH5, PA3, PA4, PA5, PA6, PA7, PC4, and PC5.

As a consequence, it is recommended to add a serial resistor (1 k Ω) located as close as possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

DocID024244 Rev 10

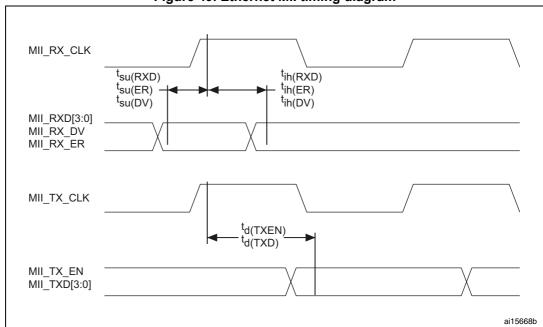
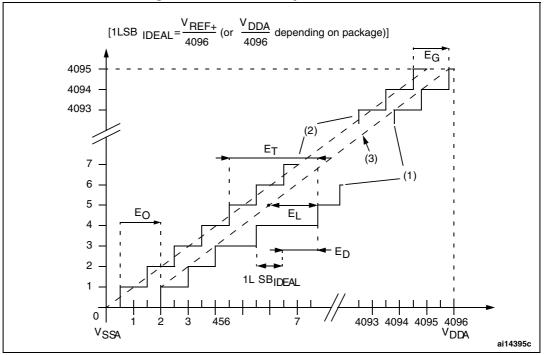


Figure 49. Ethernet MII timing diagram

Table 73. Dynamics characteristics: Ethernet MAC signals for MII ⁽¹⁾

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time		9	-	-	
t _{ih(RXD)}	Receive data hold time		10	-	-	
t _{su(DV)}	Data valid setup time	1.71 V < V _{DD} < 3.6 V	9	-	-	
t _{ih(DV)}	Data valid hold time		8	-	-	
t _{su(ER)}	Error setup time		6	-	-	ns
t _{ih(ER)}	Error hold time		8	-	-	115
+	Transmit anable valid delay time	2.7 V < V _{DD} < 3.6 V	.7 V < V _{DD} < 3.6 V 8	10	14	
^t d(TXEN)	Transmit enable valid delay time	1.71 V < V _{DD} < 3.6 V	8	10	16	
4	Transmit data valid delay time	2.7 V < V _{DD} < 3.6 V	7.5	10	15	
t _{d(TXD)}	Transmit data valid delay time	1.71 V < V _{DD} < 3.6 V	7.5	10	17	

1. Guaranteed by characterization results.


CAN (controller area network) interface

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.17 does not affect the ADC accuracy.

- 1. See also Table 76.
- 2. Example of an actual transfer curve.
- 3. Ideal transfer curve.
- 4. End point correlation line.
- E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

6.3.26 FMC characteristics

Unless otherwise specified, the parameters given in *Table 86* to *Table 101* for the FMC interface are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10 except at V_{DD} range 1.7 to 2.1V where OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Asynchronous waveforms and timings

Figure 55 through *Figure 58* represent asynchronous waveforms and *Table 86* through *Table 93* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0
- For SDRAM memories, V_{DD} ranges from 2.7 to 3.6 V and maximum frequency FMC_SDCLK = 90 MHz
- For Mobile LPSDR SDRAM memories, V_{DD} ranges from 1.7 to 1.95 V and maximum frequency FMC_SDCLK = 84 MHz

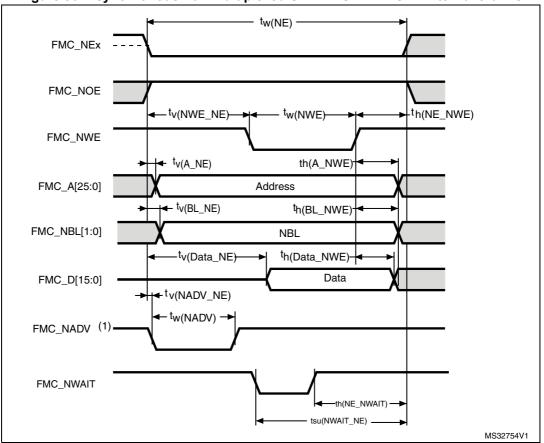


Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK}	3T _{HCLK} +1	ns
$t_{v(NWE_NE)}$	FMC_NEx low to FMC_NWE low	T _{HCLK} – 0.5	T _{HCLK} + 0.5	ns
t _{w(NWE)}	FMC_NWE low time	T _{HCLK}	T _{HCLK} + 0.5	ns
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK} +1.5	-	ns
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	ns
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK} +0.5	-	ns
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	1.5	ns
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} +0.5	-	ns
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid	-	T _{HCLK} + 2	ns
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	ns
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0.5	ns
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} + 0.5	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results.

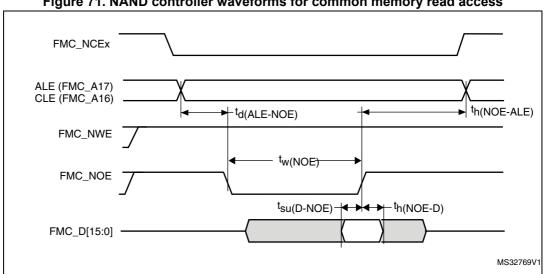


Figure 71. NAND controller waveforms for common memory read access

Figure 72. NAND controller waveforms for common memory write access

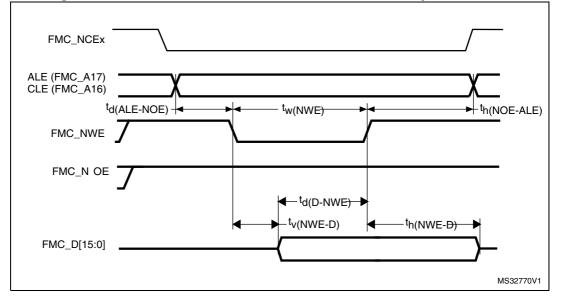


Table 100. Switching characteristics for NAND Flash read cycles⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(N0E)}	FMC_NOE low width	4T _{HCLK} – 0.5	4T _{HCLK} +0.5	ns
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	9	-	ns
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	0	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{HCLK} – 0.5	ns
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} – 2	-	ns

1. C_L = 30 pF.

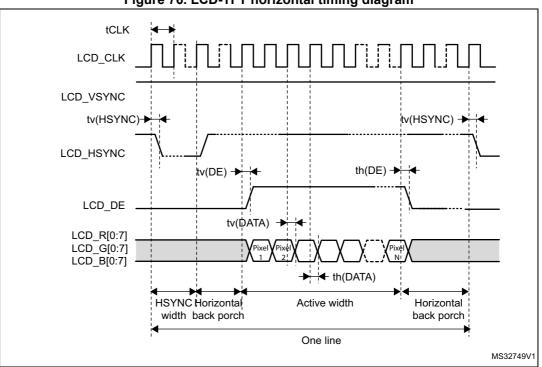
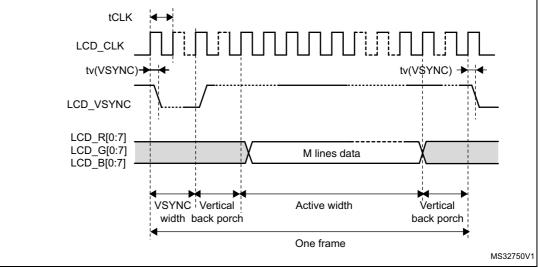
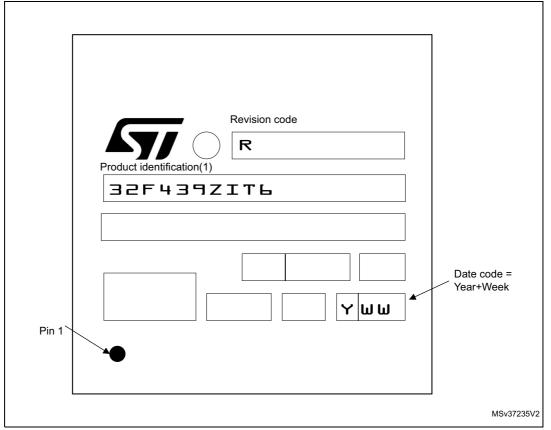



Figure 76. LCD-TFT horizontal timing diagram



Device marking for LQFP144

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depends assembly location, are not indicated below.

Figure 88. LQFP144 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

