E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

20000	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f439vgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 Embedded Flash memory

The devices embed a Flash memory of up to 2 Mbytes available for storing programs and data.

3.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.6 Embedded SRAM

All devices embed:

- Up to 256Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory) data RAM
 - RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
- 4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

3.7 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 180 MHz while the maximum frequency of the high-speed APB domains is 90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.

The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio class performance. In this case, the I^2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

3.15 Boot modes

At startup, boot pins are used to select one out of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial interface. Refer to application note AN2606 for details.

3.16 Power supply schemes

- V_{DD} = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Note: V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option.

3.17 **Power supply supervisor**

3.17.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is

DocID024244 Rev 10

reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.17.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.

An external power supply supervisor should monitor V_{DD} and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON should be connected to this external power supply supervisor. Refer to *Figure 6: Power supply supervisor interconnection with internal reset OFF*.

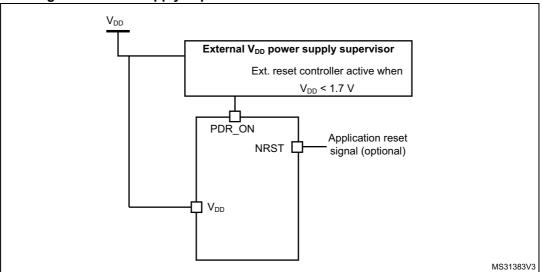


Figure 6. Power supply supervisor interconnection with internal reset OFF

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V (see *Figure 7*).

A comprehensive set of power-saving mode allows to design low-power applications.

When the internal reset is OFF, the following integrated features are no more supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD}.

All packages, except for the LQFP100, allow to disable the internal reset through the PDR_ON signal.

			Pin nu	ımbei	r								
LQFP100	LQFP144	UFBGA169	UFBGA176	LQFP176	WLCSP143	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
49	71	N9	M10	81	N2	92	L11	V _{CAP_1}	S	-	-	-	-
-	I	-	-	-	H2	93	K9	V _{SS}	S	-	1	-	-
50	72	F8	N10	82	J6	94	L10	V _{DD}	S	-	I	-	-
-	I	-	-	-	-	95	M14	PJ5	I/O	-	I	LCD_R6, EVENTOUT	-
-	-	N10	M11	83	-	96	P13	PH6	I/O	FT	-	I2C2_SMBA, SPI5_SCK, TIM12_CH1, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8, EVENTOUT	-
-	-	M10	N12	84	-	97	N13	PH7	I/O	FT	-	I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9, EVENTOUT	-
-	-	L10	M12	85	-	98	P14	PH8	I/O	FT	-	I2C3_SDA, FMC_D16, DCMI_HSYNC, LCD_R2, EVENTOUT	-
-	-	K10	M13	86	-	99	N14	PH9	I/O	FT	-	I2C3_SMBA, TIM12_CH2, FMC_D17, DCMI_D0, LCD_R3, EVENTOUT	-
-	-	N11	L13	87	-	100	P15	PH10	I/O	FT	-	TIM5_CH1, FMC_D18, DCMI_D1, LCD_R4, EVENTOUT	-
-	-	M11	L12	88	-	101	N15	PH11	I/O	FT	-	TIM5_CH2, FMC_D19, DCMI_D2, LCD_R5, EVENTOUT	-
-	-	L11	K12	89	-	102	M15	PH12	I/O	FT	-	TIM5_CH3, FMC_D20, DCMI_D3, LCD_R6, EVENTOUT	-
-	I	E7	H12	90	-	-	K10	V _{SS}	s	-	-	-	-
-	-	H8	J12	91	-	103	K11	V _{DD}	S	-	-	-	-

Table 10.	STM32F437xx and	STM32F439xx pin	and ball definitions	(continued)

7	
Q	
Ñ	
4	
0	

DocID024244 Rev 10

57

											lanotion) (*******			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	l2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ЕТН	FMC/SDIO /OTG2_FS	DCMI	LCD
	PB11	-	TIM2_ CH4	-	-	I2C2_ SDA	-	-	USART3_ RX	-	-	OTG_HS_ ULPI_D4	ETH_MII_ TX_EN/ ETH_RMII _TX_EN	-	-	LCD_G5
	PB12	-	TIM1_ BKIN	-	-	I2C2_ SMBA	SPI2_ NSS/I2 S2_WS	-	USART3_ CK	-	CAN2_RX	OTG_HS_ ULPI_D5	ETH_MII_ TXD0/ETH _RMII_ TXD0	OTG_HS_ ID	-	-
Port B	PB13	-	TIM1_ CH1N	-	-	-	SPI2_ SCK/I2 S2_CK	-	USART3_ CTS	-	CAN2_TX	OTG_HS_ ULPI_D6	ETH_MII_ TXD1/ETH _RMII_TX _D1	-	-	-
	PB14	-	TIM1_ CH2N	-	TIM8_ CH2N	-	SPI2_ MISO	I2S2ext_ SD	USART3_ RTS	-	TIM12_CH1	-	-	OTG_HS_ DM	-	-
	PB15	RTC_ REFIN	TIM1_ CH3N	-	TIM8_ CH3N	-	SPI2_ MOSI/I2 S2_SD	-	-	-	TIM12_CH2	-	-	OTG_HS_ DP	-	-
	PC0	-	-	-	-	-	-	-	-	-	-	OTG_HS_ ULPI_STP	-	FMC_SDN WE	-	-
	PC1	-	-	-	-	-	-	-	-	-	-	-	ETH_MDC	-	-	-
	PC2	-	-	-	-	-	SPI2_ MISO	I2S2ext_ SD	-	-	-	OTG_HS_ ULPI_DIR	ETH_MII_ TXD2	FMC_ SDNE0	-	-
	PC3	-	-	-	-	-	SPI2_ MOSI/I2 S2_SD	-	-	-	-	OTG_HS_ ULPI_NXT	ETH_MII_ TX_CLK	FMC_ SDCKE0	-	-
Port C	PC4	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_ RXD0/ETH _RMII_ RXD0	-	-	-
	PC5	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_ RXD1/ETH _RMII_ RXD1	-	-	-
	PC6	-	-	TIM3_ CH1	TIM8_ CH1	-	I2S2_ MCK	-	-	USART6_ TX	-	-	-	SDIO_D6	DCMI_ D0	LCD_ HSYNC
	PC7	-	-	TIM3_ CH2	TIM8_ CH2	-	-	I2S3_ MCK	-	USART6_ RX	-	-	-	SDIO_D7	DCMI_ D1	LCD_G6

Table 12. STM32F437xx and STM32F439xx alternate function mapping (continued)

AF15

SYS

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT EVEN TOUT EVEN TOUT EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

EVEN TOUT

77/240

Table 12. STM32F437xx and STM32F439xx alternate function mapping (continued)

77/240			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
0	P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/ 10/11	I2C1/ 2/3	SPI1/2/ 3/4/5/6	SPI2/3/ SAI1	SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	CAN1/2/ TIM12/13/14 /LCD	OTG2_HS /OTG1_ FS	ЕТН	FMC/SDIO /OTG2_FS	DCMI	LCD	SYS
		PC8	-	-	TIM3_ CH3	TIM8_ CH3	-	-	-	-	USART6_ CK	-	-	-	SDIO_D0	DCMI_ D2	-	EVEN TOUT
		PC9	MCO2	-	TIM3_ CH4	TIM8_ CH4	I2C3_ SDA	I2S_ CKIN	-	-	-	-	-	-	SDIO_D1	DCMI_ D3	-	EVEN TOUT
		PC10	-	-	-	-	-	-	SPI3_ SCK/I2S 3_CK	USART3_ TX	UART4_TX	-	-	-	SDIO_D2	DCMI_ D8	LCD_R2	EVEN TOUT
	Port	PC11	-	-	-	-	-	I2S3ext _SD	SPI3_ MISO	USART3_ RX	UART4_RX	-	-	-	SDIO_D3	DCMI_ D4	-	EVEN TOUT
DocID024244 Rev 10	Port C	PC12	-	-	-	-	-	-	SPI3_ MOSI/I2 S3_SD	USART3_ CK	UART5_TX	-	-	-	SDIO_CK	DCMI_ D9	-	EVEN TOUT
		PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
		PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
		PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
		PD0	-	-	-	-	-	-	-	-	-	CAN1_RX	-	-	FMC_D2	-	-	EVEN TOUT
		PD1	-	-	-	-	-	-	-	-	-	CAN1_TX	-	-	FMC_D3	-	-	EVEN TOUT
		PD2	-	-	TIM3_ ETR	-	-	-	-	-	UART5_RX	-	-	-	SDIO_ CMD	DCMI_ D11	-	EVEN TOUT
	Port D	PD3	-	-	-	-	-	SPI2_S CK/I 2S2_CK	-	USART2_ CTS	-	-	-	-	FMC_CLK	DCMI_ D5	LCD_G7	EVEN TOUT
		PD4	-	-	-	-	-	-	-	USART2_ RTS	-	-	-	-	FMC_NOE	-	-	EVEN TOUT
		PD5	-	-	-	-	-	-	-	USART2_ TX	-	-	-	-	FMC_NWE	-	-	EVEN TOUT
		PD6	-	-	-	-	-	SPI3_ MOSI/I2 S3_SD	SAI1_ SD_A	USART2_ RX	-	-	-	-	FMC_ NWAIT	DCMI_ D10	LCD_B2	EVEN TOUT

Pinouts and pin description

STM32F437xx and STM32F439xx

Operating conditions 6.3

6.3.1 **General operating conditions**

Table 17	. General operating conditions	

Symbol	Parameter	Conditions ⁽¹⁾		Min	Тур	Max	Unit
		Power Scale 3 (VOS[1:0] bits PWR_CR register = 0x01), Re ON, over-drive OFF		0	-	120	
	Internal AHB clock frequency	Power Scale 2 (VOS[1:0] bits	Over- drive OFF	0	-	144	
f _{HCLK}		in PWR_CR register = 0x10), Regulator ON	Over- drive ON	0	-	168	
		Power Scale 1 (VOS[1:0] bits in PWR_CR register= 0x11),	Over- drive OFF	0	-	168	MHz
		Regulator ON	Over- drive ON	0	-	180	
f	Internal ADD1 clock froquency	Over-drive OFF		0	-	42	
f _{PCLK1}	Internal APB1 clock frequency	Over-drive ON		0	-	45	
f	Internal ADP2 clock frequency	Over-drive OFF		0	-	84	
f _{PCLK2}	Internal APB2 clock frequency	Over-drive ON		0	-	90	
V_{DD}	Standard operating voltage			1.7 ⁽²⁾	-	3.6	
V _{DDA} (3)(4)	Analog operating voltage (ADC limited to 1.2 M samples)		1.7 ⁽²⁾	-	2.4		
(3)(4)	Analog operating voltage (ADC limited to 2.4 M samples)	Must be the same potential as	2.4	-	3.6	v	
V_{BAT}	Backup operating voltage			1.65	-	3.6	
		Power Scale 3 ((VOS[1:0] bits PWR_CR register = 0x01), 12 HCLK max frequency	1.08	1.14	1.20		
	Regulator ON: 1.2 V internal voltage on V _{CAP_1} /V _{CAP_2} pins	Power Scale 2 ((VOS[1:0] bits PWR_CR register = 0x10), 14 HCLK max frequency with ove OFF or 168 MHz with over-driv	1.20	1.26	1.32	V	
V ₁₂		Power Scale 1 ((VOS[1:0] bits PWR_CR register = 0x11), 16 HCLK max frequency with ove OFF or 180 MHz with over-driv	1.26	1.32	1.40		
	Regulator OFF: 1.2 V external	Max frequency 120 MHz		1.10	1.14	1.20	
	voltage must be supplied from external regulator on	Max frequency 144 MHz		1.20	1.26	1.32	
	$V_{CAP_1}/V_{CAP_2} pins^{(6)}$	Max frequency 168 MHz		1.26	1.32	1.38	1

Symbol	Deremeter	Conditions	£ (MU-)	VDD:	=3.3 V	VDD	=1.7 V	Unit
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	
			180	61.5	1.4	-	-	
			168	59.4	1.3	59.4	1.0	
			150	53.9	1.3	53.9	1.0	
			144	49.0	1.3	49.0	1.0	
		All Peripherals enabled	120	38.0	1.2	38.0	0.9	
	Supply current in Sleep mode from V ₁₂ and V _{DD} supply	enableu	90	29.3	1.4	29.3	1.1	
			60	20.2	1.2	20.2	0.9	- mA
			30	11.9	1.2	11.9	0.9	
1 /1			25	10.4	1.2	10.4	0.9	
I _{DD12} /I _{DD}			180	14.9	1.4	-	-	
			168	14.0	1.3	14.0	1.0	
			150	12.6	1.3	12.6	1.0	
			144	11.5	1.3	11.5	1.0	
		All Peripherals disabled	120	8.7	1.2	8.7	0.9	
		disabled	90	7.1	1.4	7.1	1.1	
			60	5.0	1.2	5.0	0.9	-
			30	3.1	1.2	3.1	0.9	
			25	2.8	1.2	2.8	0.9	

Table 33. Tyical current consumption in Sleep mode, regulator OFF ⁽¹⁾
--

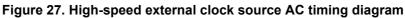
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.

	I _{DD} (Typ) ⁽¹⁾											
Б	eripheral		– Unit									
F	enpheral	Scale 1	Scale 2	Scale 3								
	OTG_FS	25.67	26.67	23.58								
AHB2	DCMI	3.72	3.40	3.00								
(up to	RNG	2.28	2.36	2.17	µA/MHz							
180 MHz)	Hash	4.39	4.03	3.58								
	Crypto	3.00	2.78	2.42								
AHB3 (up to 180 MHz)	FMC	21.39	19.79	17.50	µA/MHz							
В	us matrix ⁽²⁾	14.06	13.19	11.75	µA/MHz							

Table 35. Peripheral current consumption (continued)	Table 35	. Peripheral	current consum	notion	(continued)
--	----------	--------------	----------------	--------	-------------

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 56: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 28*.


The characteristics given in *Table 38* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾	-	32.768	1000	kHz	
V _{LSEH}	OSC32_IN input pin high level voltage	0.7V _{DD}	-	V _{DD}	V	
V _{LSEL}	OSC32_IN input pin low level voltage		V _{SS}	-	0.3V _{DD}	
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾	450	-	-	ns	
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾		-	5	-	pF
DuCy _(LSE)	Duty cycle		30	-	70	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 38.	Low-speed	external us	ser clock chara	acteristics
-----------	-----------	-------------	-----------------	-------------

1. Guaranteed by design.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 36* and *Table 58*, respectively.

Unless otherwise specified, the parameters given in *Table 58* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
			$C_L = 50 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	4	
			$C_L = 50 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	-	-	2	
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	8	MHz
00			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	4	
			C_L = 10 pF, $V_{DD} \ge 1.7 V$	-	-	3	
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 50 pF, V _{DD} = 1.7 V to 3.6 V	-	-	100	ns
			C _L = 50 pF, V _{DD} ≥ 2.7 V	-	-	25	
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DD} ≥ 1.8 V	-	-	12.5	MHz
			C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	10	
			C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	50	
01			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	20	
01			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	12.5	
	t _{f(IO)out} /		$C_L = 50 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	10	
		Output high to low level fall time and output low to high	C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	6	ns
	t _{r(IO)out}	level rise time	$C_L = 50 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	-	-	20	115
			C_L = 10 pF, $V_{DD} \ge 1.7 V$	-	-	10	
			C_L = 40 pF, $V_{DD} \ge 2.7$ V	-	-	50 ⁽⁴⁾	
			C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	100 ⁽⁴⁾	
	f _{max(IO)out}	Maximum frequency ⁽³⁾	$C_L = 40 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	-	-	25	MHz
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	50	
10			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	42.5	
			C _L = 40 pF, V _{DD} ≥2.7 V	-	-	6	
	t _{f(IO)out} /	Output high to low level fall time and output low to high	C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	4	ns
	t _{r(IO)out}	level rise time	C_L = 40 pF, $V_{DD} \ge 1.7 V$	-	-	10	
			C_L = 10 pF, $V_{DD} \ge 1.7 V$	-	-	6	

Table 58. I/O AC characteristics⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit				
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns				

Table 61	. I2C	analog	filter	characte	eristics ⁽¹⁾
----------	-------	--------	--------	----------	-------------------------

- 1. Guaranteed by design.
- 2. Spikes with widths below $t_{AF(min)}$ are filtered.
- 3. Spikes with widths above $t_{AF(max)}$ are not filtered

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 62* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

r								
Symbol	Parameter	Condition	Min	Тур	Max	Unit		
f _{SCK} 1/t _{c(SCK)}		Master mode, SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V				45		
		Slave mode,	Receiver	-	-	45		
	SPI clock frequency	SPI1/4/5/6, 2.7 V≤V _{DD} ≤3.6 V	Transmitter/ full-duplex			38 ⁽²⁾	MHz	
		Master mode, SPI1/2/3/4/5/6, 1.7 V≤V _{DD} ≤3.6 V				22.5		
		Slave mode, SPI1/2/3/4/5/6, 1.7 V≤V _{DD} ≤3.6 V			-	-	22.5	
Duty(SCK)	Duty cycle of SPI clock frequency	Slave mode		30	50	70	%	

Table 62. SPI dynamic characteristics⁽¹⁾

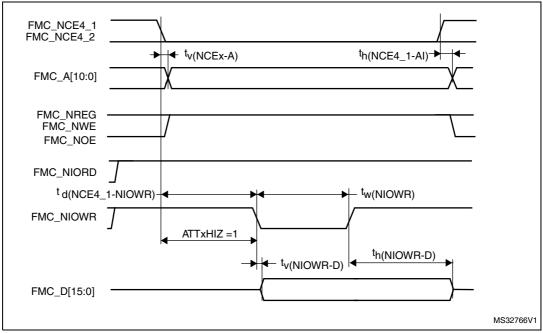


Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access

Table 98. Switching characteristics for PC Card/CF read and write cycles in attribute/common space $^{(1)(2)}$

Symbol	Parameter	Min	Мах	Unit
t _{v(NCEx-A)}	FMC_Ncex low to FMC_Ay valid	-	0	ns
t _{h(NCEx_AI)}	FMC_NCEx high to FMC_Ax invalid	0	-	ns
t _{d(NREG-NCEx)}	FMC_NCEx low to FMC_NREG valid	-	1	ns
t _{h(NCEx-NREG)}	FMC_NCEx high to FMC_NREG invalid	T _{HCLK} – 2	-	ns
t _{d(NCEx-NWE)}	FMC_NCEx low to FMC_NWE low	-	5T _{HCLK}	ns
t _{w(NWE)}	FMC_NWE low width	8T _{HCLK} – 0.5	8T _{HCLK} +0.5	ns
t _{d(NWE_NCEx)}	FMC_NWE high to FMC_NCEx high	5T _{HCLK} +1	-	ns
t _{V(NWE-D)}	FMC_NWE low to FMC_D[15:0] valid	-	0	ns
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15:0] invalid	9T _{HCLK} – 0.5	-	ns
t _{d(D-NWE)}	FMC_D[15:0] valid before FMC_NWE high	13T _{HCLK} – 3		ns
t _{d(NCEx-NOE)}	FMC_NCEx low to FMC_NOE low	-	5T _{HCLK}	ns
t _{w(NOE)}	FMC_NOE low width	8 T _{HCLK} – 0.5	8 T _{HCLK} +0.5	ns
t _{d(NOE_NCEx)}	FMC_NOE high to FMC_NCEx high	5T _{HCLK} – 1	-	ns
t _{su (D-NOE)}	FMC_D[15:0] valid data before FMC_NOE high	T _{HCLK}	-	ns
t _{h(NOE-D)}	FMC_NOE high to FMC_D[15:0] invalid	0	-	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results.

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{su(SDCLKH _Data)}	Data input setup time	2	-	
t _{h(SDCLKH_Data)}	Data input hold time	0	-	
$t_{d(SDCLKL_Add)}$	Address valid time	-	1.5	
$t_{d(SDCLKL-SDNE)}$	Chip select valid time	-	0.5	ns
$t_{h(SDCLKL_SDNE)}$	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	0.5	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	0.5	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

Table 102. SDRAM read timings⁽¹⁾⁽²⁾

1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.

2. Guaranteed by characterization results.

Table 103. LPSDR SDRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit		
t _{W(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5			
t _{su(SDCLKH_Data)}	Data input setup time	2.5	-			
t _{h(SDCLKH_Data)}	Data input hold time	0	-			
t _{d(SDCLKL_Add)}	Address valid time	-	1			
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	1	ns		
t _{h(SDCLKL_SDNE)}	Chip select hold time	1	-	115		
t _{d(SDCLKL_SDNRAS}	SDNRAS valid time	-	1			
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	1	-			
td(SDCLKL_SDNCAS)	SDNCAS valid time	-	1]		
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	1	-			

1. CL = 10 pF.

2. Guaranteed by characterization results.

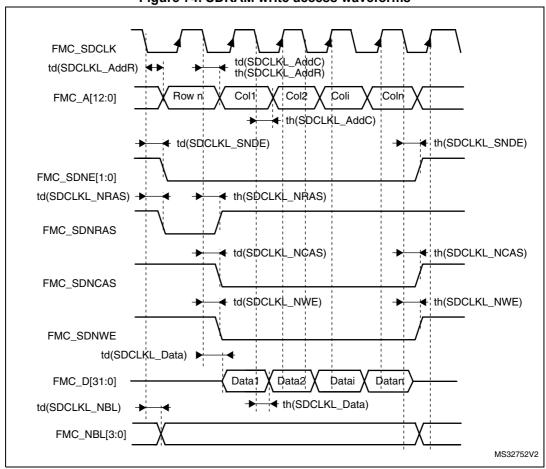
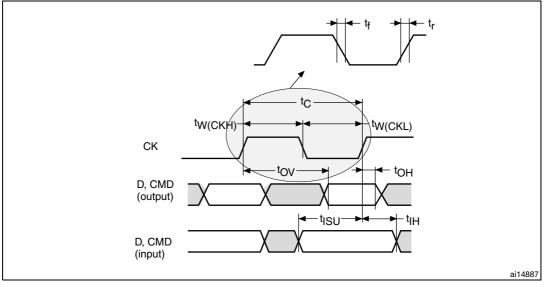
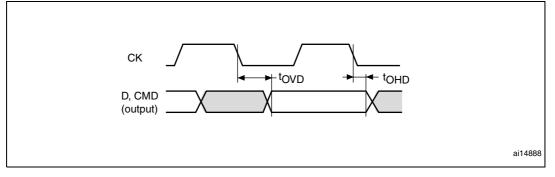


Figure 74. SDRAM write access waveforms



6.3.29 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 108* for the SDIO/MMC interface are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:


- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Figure 78. SDIO high-speed mode

Figure 79. SD default mode

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 package information

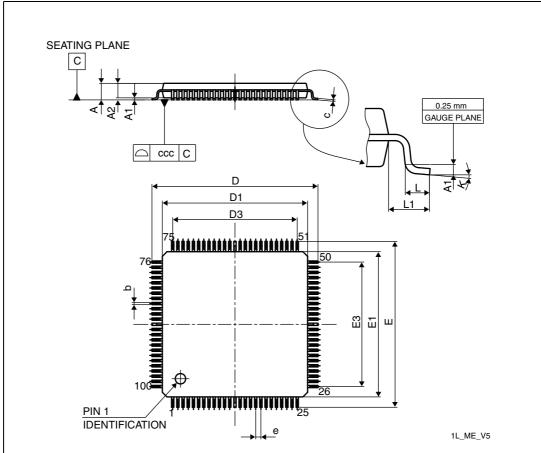


Figure 80. LQFP100 -100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Device marking for LQFP176

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depends assembly location, are not indicated below.

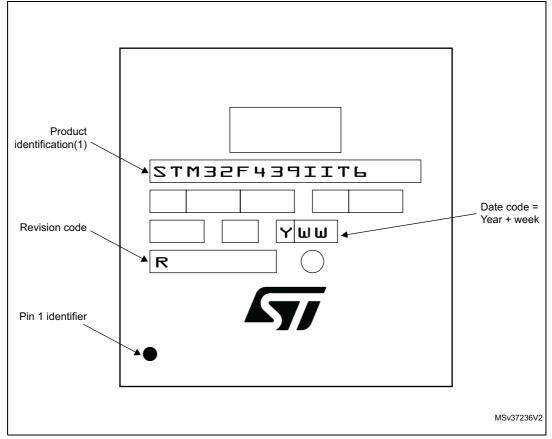


Figure 91. LQFP176 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.7 UFBGA176+25 package information

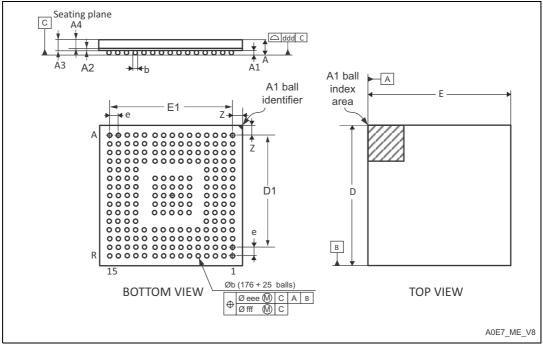
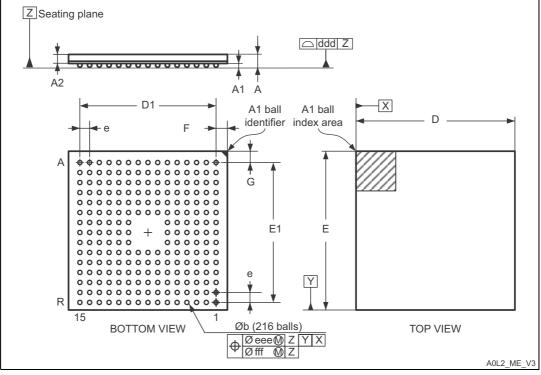


Figure 98. UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch ball grid array package outline

1. Drawing is not to scale.


Table 118. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package mechanical data

Gumbal	millimeters			inches ⁽¹⁾			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	-	-	0.600	-	-	0.0236	
A1	-	-	0.110	-	-	0.0043	
A2	-	0.130	-	-	0.0051	-	
A3	-	0.450	-	-	0.0177	-	
A4	-	0.320	-	-	0.0126	-	
b	0.240	0.290	0.340	0.0094	0.0114	0.0134	
D	9.850	10.000	10.150	0.3878	0.3937	0.3996	
D1	-	9.100	-	-	0.3583	-	
E	9.850	10.000	10.150	0.3878	0.3937	0.3996	
E1	-	9.100	-	-	0.3583	-	
е	-	0.650	-	-	0.0256	-	
Z	-	0.450	-	-	0.0177	-	
ddd	-	-	0.080	-	-	0.0031	

7.8 **TFBGA216** package information

Figure 101. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 120. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid arraypackage mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
A	-	-	1.100	-	-	0.0433
A1	0.150	-	-	0.0059	-	-
A2	-	0.760	-	-	0.0299	-
b	0.350	0.400	0.450	0.0138	0.0157	0.0177
D	12.850	13.000	13.150	0.5118	0.5118	0.5177
D1	-	11.200	-	-	0.4409	-
E	12.850	13.000	13.150	0.5118	0.5118	0.5177
E1	-	11.200	-	-	0.4409	-
е	-	0.800	-	-	0.0315	-
F	-	0.900	-	-	0.0354	-
ddd	-	-	0.100	-	-	0.0039

