

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atuc64d4-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. Signal Descriptions

The following table gives details on signal name classified by peripheral.

Signal Name	Function	Туре	Active Level	Comments
	aWire	- AW	I	
DATA	aWire data	I/O		
DATAOUT	aWire data output for 2-pin mode	I/O		
	External Interrupt	Controller - EIC	;	·
NMI	Non-Maskable Interrupt	Input		
EXTINT8 - EXTINT1	External interrupt	Input		
	JTAG modu	ile - JTAG		
ТСК	Test Clock	Input		
TDI	Test Data In	Input		
TDO	Test Data Out	Output		
TMS	Test Mode Select	Input		
	Power Man	ager - PM		
RESET_N	Reset	Input	Low	
	Basic Pulse Width Modula	ation Controller	- PWMA	
PWMA6 - PWMA0	PWMA channel waveforms	Output		
	System Control I	nterface - SCIF		
GCLK2 - GCLK0	Generic clock	Output		
XINO	Oscillator 0 XIN Pin	Analog		
XOUT0	Oscillator 0 XOUT Pin	Analog		
XIN32	32K Oscillator XIN Pin	Analog		
XOUT32	32K Oscillator XOUT Pin	Analog		
	Serial Peripheral	Interface - SPI		
MISO	Master In Slave Out	I/O		
MOSI	Master Out Slave In	I/O		
NPCS3 - NPCS0	SPI Peripheral Chip Select	I/O	Low	
SCK	Clock	I/O		
	Timer/Cou	nter - TC		
A0	Channel 0 Line A	I/O		
A1	Channel 1 Line A	I/O		

Table 4-1.Signal Descriptions List

Flash General Purpose Fuse Register Low 8.8.7

_

FGPFRLO Name: Access Type: Read-only 0x18

Offset:

Reset Value:

31	30	29	28	27	26	25	24
GPF31	GPF30	GPF29	GPF28	GPF27	GPF26	GPF25	GPF24
23	22	21	20	19	18	17	16
GPF23	GPF22	GPF21	GPF20	GPF19	GPF18	GPF17	GPF16
15	14	13	12	11	10	9	8
GPF15	GPF14	GPF13	GPF12	GPF11	GPF10	GPF09	GPF08
7	6	5	4	3	2	1	0
GPF07	GPF06	GPF05	GPF04	GPF03	GPF02	GPF01	GPF00

• GPFxx: General Purpose Fuse xx

0: The fuse has a written/programmed state.

1: The fuse has an erased state.

10.6.4Memory Address RegisterName:MAR

Access Type:	Read/Write
Offset:	0x000 + n*0x040
Reset Value:	0x00000000

31	30	29	28	27	26	25	24
			MADDF	R[31:24]			
23	22	21	20	19	18	17	16
	MADDR[23:16]						
15	14	13	12	11	10	9	8
MADDR[15:8]							
7	6	5	4	3	2	1	0
	MADDR[7:0]						

MADDR: Memory Address

Address of memory buffer. MADDR should be programmed to point to the start of the memory buffer when configuring the PDCA. During transfer, MADDR will point to the next memory location to be read/written.

- Peripheral Bus clock (PB clock). This is the clock of the peripheral bus the AST is connected to.
- Generic clock (GCLK). One of the generic clocks is connected to the AST. This clock must be enabled before use, and remains enabled in sleep modes when the PB clock is active.

14.4.3 Interrupts

The AST interrupt request lines are connected to the interrupt controller. Using the AST interrupts requires the interrupt controller to be programmed first.

14.4.4 Debug Operation

The AST prescaler and counter is frozen during debug operation, unless the Run In Debug bit in the Development Control Register is set and the bit corresponding to the AST is set in the Peripheral Debug Register (PDBG). Please refer to the On-Chip Debug chapter in the AVR32UC Technical Reference Manual, and the OCD Module Configuration section, for details.

If the AST is configured in a way that requires it to be periodically serviced by the CPU through interrupts or similar, improper operation or data loss may result during debugging.

14.5 Functional Description

14.5.1 Initialization

Before enabling the AST, the internal AST clock CLK_AST_PRSC must be enabled, following the procedure specified in Section 14.5.1.1. The Clock Source Select field in the Clock register (CLOCK.CSSEL) selects the source for this clock. The Clock Enable bit in the Clock register (CLOCK.CEN) enables the CLK_AST_PRSC.

When CLK_AST_PRSC is enabled, the AST can be enabled by writing a one to the Enable bit in the Control Register (CR.EN).

14.5.1.1 Enabling and disabling the AST clock

The Clock Source Selection field (CLOCK.CSSEL) and the Clock Enable bit (CLOCK.CEN) cannot be changed simultaneously. Special procedures must be followed for enabling and disabling the CLK_AST_PRSC and for changing the source for this clock.

To enable CLK_AST_PRSC:

- · Write the selected value to CLOCK.CSSEL
- Wait until SR.CLKBUSY reads as zero
- Write a one to CLOCK.CEN, without changing CLOCK.CSSEL
- · Wait until SR.CLKBUSY reads as zero

To disable the clock:

- Write a zero to CLOCK.CEN to disable the clock, without changing CLOCK.CSSEL
- Wait until SR.CLKBUSY reads as zero

14.5.1.2 Changing the source clock

The CLK_AST_PRSC must be disabled before switching to another source clock. The Clock Busy bit in the Status Register (SR.CLKBUSY) indicates whether the clock is busy or not. This bit is set when the CEN bit in the CLOCK register is changed, and cleared when the CLOCK register can be changed.

16.4 I/O Lines Description

Table 16-1. I/O Lines Des

Pin Name	Pin Description	Туре
NMI	Non-Maskable Interrupt	Input
EXTINTn	External Interrupt	Input

16.5 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described below.

16.5.1 I/O Lines

The external interrupt pins (EXTINTn and NMI) may be multiplexed with I/O Controller lines. The programmer must first program the I/O Controller to assign the desired EIC pins to their peripheral function. If I/O lines of the EIC are not used by the application, they can be used for other purposes by the I/O Controller.

It is only required to enable the EIC inputs actually in use. If an application requires two external interrupts, then only two I/O lines will be assigned to EIC inputs.

16.5.2 Power Management

All interrupts are available in all sleep modes as long as the EIC module is powered. However, in sleep modes where CLK_SYNC is stopped, the interrupt must be configured to asynchronous mode.

16.5.3 Clocks

The clock for the EIC bus interface (CLK_EIC) is generated by the Power Manager. This clock is enabled at reset, and can be disabled in the Power Manager.

The filter and synchronous edge/level detector runs on a clock which is stopped in any of the sleep modes where the system RC oscillator (RCSYS) is not running. This clock is referred to as CLK_SYNC.

16.5.4 Interrupts

The external interrupt request lines are connected to the interrupt controller. Using the external interrupts requires the interrupt controller to be programmed first.

Using the Non-Maskable Interrupt does not require the interrupt controller to be programmed.

16.5.5 Debug Operation

When an external debugger forces the CPU into debug mode, the EIC continues normal operation. If the EIC is configured in a way that requires it to be periodically serviced by the CPU through interrupts or similar, improper operation or data loss may result during debugging.

16.6 Functional Description

16.6.1 External Interrupts

The external interrupts are not enabled by default, allowing the proper interrupt vectors to be set up by the CPU before the interrupts are enabled.

When CLK_SYNC is stopped only asynchronous interrupts remain active, and any short spike on this interrupt will wake up the device. EIC_WAKE will restart CLK_SYNC and ISR will be updated on the first rising edge of CLK_SYNC.

16.6.5 Wakeup

The external interrupts can be used to wake up the part from sleep modes. The wakeup can be interpreted in two ways. If the corresponding bit in IMR is one, then the execution starts at the interrupt handler for this interrupt. If the bit in IMR is zero, then the execution starts from the next instruction after the sleep instruction.

16.7.13 Disable Register

Name:	DIS
Access Type:	Write-only
Offset:	0x034
Reset Value:	0x00000000

31	30	29	28	27	26	25	24
-	INT30	INT29	INT28	INT27	INT26	INT25	INT24
23	22	21	20	19	18	17	16
INT23	INT22	INT21	INT20	INT19	INT18	INT17	INT16
15	14	13	12	11	10	9	8
INT15	INT14	INT13	INT12	INT11	INT10	INT9	INT8
7	6	5	4	3	2	1	0
INT7	INT6	INT5	INT4	INT3	INT2	INT1	NMI

• INTn: External Interrupt n

Writing a zero to this bit has no effect.

Writing a one to this bit will disable the corresponding external interrupt.

Please refer to the Module Configuration section for the number of external interrupts.

• NMI: Non-Maskable Interrupt

Writing a zero to this bit has no effect.

Writing a one to this bit will disable the Non-Maskable Interrupt.

17.6.9 Interrupt Clear Register

Name:	ICR
Access Type:	Write-only
Offset:	0x020
Reset Value:	0x00000000

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	-	-	-	-	RCLKRDY	DONE

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will clear the corresponding bit in ISR and the corresponding interrupt request.

19.7.1.3	General	Status Clear Register
Register Na	me:	USBSTACLR
Access Typ	e:	Write-Only
Offset:		0x0808
Reset Value	:	0x0000000

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	-	-	-	-	VBUSTIC	-

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will clear the corresponding bit in USBSTA. These bits always read as zero.

19.7.2.9	Devic	e Frame Number Register
Register N	ame:	UDFNUM
Access Ty	pe:	Read-Only
Offset:		0x0020

Reset Value: 0x0000000

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
FNCERR	-	FNUM[10:5]					
7	6	5	4	3	2	1	0
FNUM[4:0]				-	-	-	

• FNCERR: Frame Number CRC Error

This bit is cleared upon receiving a USB reset.

This bit is set when a corrupted frame number is received. This bit and the SOF interrupt bit are updated at the same time.

• FNUM: Frame Number

This field is cleared upon receiving a USB reset.

This field contains the 11-bit frame number information, as provided from the last SOF packet. FNUM is updated even if a corrupted SOF is received.

21.8.1Control RegisterName:CRAccess Type:Write-onlyOffset:0x00

Reset Value: 0x0000000

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	LASTXFER
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	FLUSHFIFO
7	6	5	4	3	2	1	0
SWRST	-	-	-	-	-	SPIDIS	SPIEN

LASTXFER: Last Transfer

1: The current NPCS will be deasserted after the character written in TD has been transferred. When CSRn.CSAAT is one, this allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD transfer has completed.

0: Writing a zero to this bit has no effect.

• FLUSHFIFO: Flush Fifo Command

1: If The FIFO Mode is enabled (MR.FIFOEN written to one) and if an overrun error has been detected, this command allows to empty the FIFO.

0: Writing a zero to this bit has no effect.

• SWRST: SPI Software Reset

1: Writing a one to this bit will reset the SPI. A software-triggered hardware reset of the SPI interface is performed. The SPI is in slave mode after software reset. Peripheral DMA Controller channels are not affected by software reset. 0: Writing a zero to this bit has no effect.

• SPIDIS: SPI Disable

1: Writing a one to this bit will disable the SPI. As soon as SPIDIS is written to one, the SPI finishes its transfer, all pins are set in input mode and no data is received or transmitted. If a transfer is in progress, the transfer is finished before the SPI is disabled. If both SPIEN and SPIDIS are equal to one when the CR register is written, the SPI is disabled. 0: Writing a zero to this bit has no effect.

• SPIEN: SPI Enable

- 1: Writing a one to this bit will enable the SPI to transfer and receive data.
- 0: Writing a zero to this bit has no effect.

22.3 Block Diagram

22.4 I/O Lines Description

|--|

Pin Name	Pin Description	Туре
IMCK	Master Clock	Output
ISCK	Serial Clock	Input/Output
IWS	I ² S Word Select	Input/Output
ISDI	Serial Data Input	Input
ISDO	Serial Data Output	Output

22.5 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described below.

22.5.1 I/O lines

The IISC pins may be multiplexed with I/O Controller lines. The user must first program the I/O Controller to assign the desired IISC pins to their peripheral function. If the IISC I/O lines are not used by the application, they can be used for other purposes by the I/O Controller. It is required to enable only the IISC inputs and outputs actually in use.

22.5.2 Power Management

If the CPU enters a sleep mode that disables clocks used by the IISC, the IISC will stop functioning and resume operation after the system wakes up from sleep mode.

CPBS: RB Compare Status

- 1: This bit is set when an RB Compare has occurred and CMRn.WAVE is one.
- 0: This bit is cleared when the SR register is read.

CPAS: RA Compare Status

- 1: This bit is set when an RA Compare has occurred and CMRn.WAVE is one.
- 0: This bit is cleared when the SR register is read.

LOVRS: Load Overrun Status

1: This bit is set when RA or RB have been loaded at least twice without any read of the corresponding register and CMRn.WAVE is zero.

0: This bit is cleared when the SR register is read.

COVFS: Counter Overflow Status

- 1: This bit is set when a counter overflow has occurred.
- 0: This bit is cleared when the SR register is read.

28.3 Block diagram

28.4 I/O Lines Description

Table 28-1. I/O Lines decription table

Name	Description	Туре
AD0-AD7	Analog input channels	Analog
ADVREF	Reference voltage	Analog
VDDANA	Analog power supply	Power
GNDANA	Analog ground	Power
ADTRG	External trigger	Digital

28.7.9 Timing Configuration Register

Name :	TIM
Access Type :	Read/Write

Access	Type :	Read/writ
Offect ·		0~20

UTTSET	0x20

Reset Value : 0x0000000

31	30	29	28	27	26	25	24	
-	-	-	-	-	-	-	-	
23	22	21	20	19	18	17	16	
-	-	-	-	SHTIM				
15	14	13	12	11	10	9	8	
-	-	-	-	-	-	-	-	
7	6	5	4	3	2	1	0	
-	-	-			STARTUP			

• SHTIM: Sample and hold time

Sample and hold time in number of GCLK clock cycles : SHTIM+1

STARTUP: Startup time

Number of GCLK clock cycles to wait for : (STARTUP+1)*8

AEN

29.7.1 Con	trol Register r	ı					
Name:	CRn						
Access Type:	Read/W	Vrite					
Offset:	0x00+n	*0x08					
Reset Value:	0x0000	0000					
31	30	29	28	27	26	25	24
FILTEN	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0

-

• FILTEN: Filter Enable

-

1: The output is glitch filtered

-

0: The output is not glitch filtered

• AEN: Enable IN Inputs

Input IN[n] is enabled when AEN[n] is one.

Input IN[n] is disabled when AEN[n] is zero, and will not affect the OUT value.

-

30.7.2 Status	Status Register					
Name:	SR					
Access Type:	Read-only					
Offset:	0x04					
Reset Value:	0x00000000					

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
00	20	04	00	10	10	47	40
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	TRMIS	-	-	OVERRUN	DREADYINT	READYINT
7	6	5	4	3	2	1	0
-	-	-	-	-	CENABLED	-	BUSY

• TRMIS: Transmit Mismatch

0: No transfers mismatches.

1: The transceiver was active when receiving.

This bit is set when the transceiver is active when receiving.

This bit is cleared when corresponding bit in SCR is written to one.

OVERRUN: Data Overrun

0: No data overwritten in RHR.

1: Data in RHR has been overwritten before it has been read.

This bit is set when data in RHR is overwritten before it has been read.

This bit is cleared when corresponding bit in SCR is written to one.

DREADYINT: Data Ready Interrupt

0: No new data in the RHR.

1: New data received and placed in the RHR.

This bit is set when new data is received and placed in the RHR.

This bit is cleared when corresponding bit in SCR is written to one.

READYINT: Ready Interrupt

0: The interface has not generated an ready interrupt.

1: The interface has had a transition from busy to not busy.

This bit is set when the interface has transition from busy to not busy.

This bit is cleared when corresponding bit in SCR is written to one.

• CENABLED: Clock Enabled

0: The aWire clock is not enabled.

1: The aWire clock is enabled.

30.7.3	Status Clear Register				
Name:		SCR			
Access ⁻	Туре:	Write-only			
Offset:		0x08			
Reset Va	alue:	0x00000000			

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	TRMIS	-	-	OVERRUN	DREADYINT	READYINT
7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will clear the corresponding bit in SR and the corresponding interrupt request.

Figure 31-4. AUX+JTAG Based Debugger

31.3.8.1 Trace Operation

Trace features are enabled by writing OCD registers by the debugger. The OCD extracts the trace information from the CPU, compresses this information and formats it into variable-length messages according to the Nexus standard. The messages are buffered in a 16-frame transmit queue, and are output on the AUX port one frame at a time.

The trace features can be configured to be very selective, to reduce the bandwidth on the AUX port. In case the transmit queue overflows, error messages are produced to indicate loss of data. The transmit queue module can optionally be configured to halt the CPU when an overflow occurs, to prevent the loss of messages, at the expense of longer run-time for the program.

31.3.8.2 Program Trace

Program trace allows the debugger to continuously monitor the program execution in the CPU. Program trace messages are generated for every branch in the program, and contains compressed information, which allows the debugger to correlate the message with the source code to identify the branch instruction and target address.

31.3.8.3 Data Trace

Data trace outputs a message every time a specific location is read or written. The message contains information about the type (read/write) and size of the access, as well as the address and data of the accessed location. The UC3D contains two data trace channels, each of which

Table 32-21. Decoupling Requirements

Symbol	Parameter	Condition	Тур	Techno.	Units
C _{IN2}	Input regulator capacitor 2		4.7	X7R	nF
C _{OUT1}	Output regulator capacitor 1		470	NPO	nF
C _{OUT2}	Output regulator capacitor 2		2.2	X7R	μF

32.9.2 ADC Characteristics

Table 32-22. Channel Conversion Time and ADC Clock

Parameter	Conditions	Min.	Тур.	Max.	Unit
ADC Clock Frequency	10-bit resolution mode			5	MHz
	8-bit resolution mode			8	MHz
Startup Time	Return from Idle Mode			20	μs
Track and Hold Acquisition Time		600			ns
Conversion Time	ADC Clock = 5 MHz			2	μs
	ADC Clock = 8 MHz			1.25	μs
Throughput Rate	ADC Clock = 5 MHz			384 ⁽¹⁾	kSPS
	ADC Clock = 8 MHz			533 ⁽²⁾	kSPS

1. Corresponds to 13 clock cycles: 3 clock cycles for track and hold acquisition time and 10 clock cycles for conversion.

2. Corresponds to 15 clock cycles: 5 clock cycles for track and hold acquisition time and 10 clock cycles for conversion.

Table 32-23. ADC Power Consumption

Parameter	Conditions	Min.	Тур.	Max.	Unit
Current Consumption on VDDANA ⁽¹⁾	On 13 samples with ADC clock = 5 MHz			1.25	mA

1. Including internal reference input current

Table 32-24. Analog Inputs

Parameter	Conditions	Min.	Тур.	Max.	Unit
Input Voltage Range		0		VDDANA	V
Input Leakage Current				1	μA
Input Capacitance			7		pF
Input Resistance			370	810	Ohm

Table 32-25. Transfer Characteristics in 8-bit mode

Parameter	Conditions	Min.	Тур.	Max.	Unit
Resolution			8		Bit
Absolute Accuracy	ADC Clock = 5 MHz			0.8	LSB
	ADC Clock = 8 MHz			1.5	LSB
Integral Non-linearity	ADC Clock = 5 MHz		0.35	0.5	LSB
	ADC Clock = 8 MHz		0.5	1.0	LSB

